A Gordon type theorem for measure perturbed Schrödinger operators

Christian Seifert

Christian Seifert, Chemnitz University of Technology

March 16 2012

Motivation

Three principles in modelling quasicrystals:

- locally regular/ordered
- globally aperiodic
- randomization

```
1976 Gordon: H=-rac{d^2}{dx^2}+V does not have eigenvalues for "nice" V\in L_\infty(\mathbb{R})
```

2000 Damanik/Stolz: same result for $V \in L_{1,loc}(\mathbb{R})$

2011 S: generalization for measure perturbations

Motivation

Three principles in modelling quasicrystals:

- locally regular/ordered
- globally aperiodic
- randomization

1976 Gordon:
$$H=-\frac{d^2}{dx^2}+V$$
 does not have eigenvalues for "nice" $V\in L_\infty(\mathbb{R})$

2000 Damanik/Stolz: same result for $V \in L_{1,\mathrm{loc}}(\mathbb{R})$

2011 S: generalization for measure perturbations

Gordon measures

Definition

Let $\mu = \mu_+ - \mu_-$ be a signed Borel measure. μ uniformly locally bounded ($\mu \in \mathcal{M}_{loc,unif}(\mathbb{R})$)

$$:\Longleftrightarrow \|\mu\|_{\mathrm{loc}} := \sup_{\mathbf{x} \in \mathbb{R}} |\mu| \left([\mathbf{x}, \mathbf{x} + 1] \right) < \infty.$$

 μ Gordon measure : $\iff \mu \in \mathcal{M}_{\mathrm{loc,unif}}(\mathbb{R})$ and there exists (μ^m) in $\mathcal{M}_{\mathrm{loc,unif}}(\mathbb{R})$ of periodic measures with period sequence (p_m) : $p_m \to \infty$ and

$$\forall C \geq 0: \lim_{m \to \infty} e^{Cp_m} \left| \mu - \mu^m \right| \left(\left[-p_m, 2p_m \right] \right) = 0.$$

Christian Seifert (CUT)

Definition of H_{μ} : form methods

 $\mu \in \mathcal{M}_{\mathrm{loc,unif}}(\mathbb{R}) \Longrightarrow \mu$ infinitesimally form small with respect to classical Dirichlet form

$$D(au_0) := W_2^1(\mathbb{R}), \quad au_0(u,v) := \int u'\overline{v'},$$

i.e.

$$\forall \gamma \in (0,1) \exists C_{\gamma} \geq 0 : \int |u|^2 d\mu \leq \gamma \tau_0(u,u) + C_{\gamma} \|u\|_{L_2(\mathbb{R})}^2 \quad (u \in D(\tau_0)).$$

Hence:

$$D(au_{\mu}):=W_2^1(\mathbb{R}), \quad au_{\mu}(u,v):=\int u'\overline{v'}+\int u\overline{v}\,d\mu$$

densely defined, symmetric, semibounded from below and closed. Let $H_{\mu} \sim \tau_{\mu}$, i.e.

$$(H_{\mu}u \mid v) = \tau_{\mu}(u, v) \quad (u \in D(H_{\mu}), v \in D(\tau_{\mu})).$$

Gordons Theorem

Theorem (S 2011)

Let μ be a Gordon measure. Then H_{μ} does not have any eigenvalues.

Proof

Fix normalized initial condition at 0. Let u be the solution of $H_{\mu}u=Eu$, u_m the solution of $H_{\mu^m}u_m=Eu_m$ ($m\in\mathbb{N}$). By Gronwall inequality:

$$\left\| \begin{pmatrix} u(x) \\ u'(x+) \end{pmatrix} - \begin{pmatrix} u_m(x) \\ u'_m(x+) \end{pmatrix} \right\| \le C e^{C|x|} |\mu - \mu^m| ([0, x])$$

$$\le \frac{1}{4} \quad (x \in [-\rho_m, 2\rho_m], \ m \text{ large})$$

For solutions v to periodic measures with period p

$$\max\left\{\left\|\begin{pmatrix}v(-p)\\v'(-p+)\end{pmatrix}\right\|, \left\|\begin{pmatrix}v(p)\\v'(p+)\end{pmatrix}\right\|, \left\|\begin{pmatrix}v(2p)\\v'(2p+)\end{pmatrix}\right\|\right\} \ge \frac{1}{2}.$$

Hence,

$$\limsup_{|x|\to\infty} \left(|u(x)|^2 + \left| u'(x+) \right|^2 \right) \ge \left(\frac{1}{4}\right)^2 > 0.$$

Therefore, $u \notin D(H_{\mu})$.

Proof

Fix normalized initial condition at 0. Let u be the solution of $H_{\mu}u=Eu$, u_m the solution of $H_{\mu^m}u_m=Eu_m$ ($m\in\mathbb{N}$). By Gronwall inequality:

$$\left\| \begin{pmatrix} u(x) \\ u'(x+) \end{pmatrix} - \begin{pmatrix} u_m(x) \\ u'_m(x+) \end{pmatrix} \right\| \le C e^{C|x|} |\mu - \mu^m| ([0, x])$$

$$\le \frac{1}{4} \quad (x \in [-p_m, 2p_m], \ m \text{ large}).$$

For solutions v to periodic measures with period p:

$$\max\left\{\left\| \begin{pmatrix} v(-p) \\ v'(-p+) \end{pmatrix} \right\|, \left\| \begin{pmatrix} v(p) \\ v'(p+) \end{pmatrix} \right\|, \left\| \begin{pmatrix} v(2p) \\ v'(2p+) \end{pmatrix} \right\| \right\} \geq \frac{1}{2}.$$

Hence,

$$\limsup_{|x|\to\infty} \left(|u(x)|^2 + \left| u'(x+) \right|^2 \right) \ge \left(\frac{1}{4} \right)^2 > 0.$$

Therefore, $u \notin D(H_u)$.