Fractional moment localization in a system of interacting particles in an alloy-type random potential

Michael Fauser

Technische Universität München

March 16, 2012

joint work with Simone Warzel

The model

Consider a random Schrödinger operator for a system of n interacting particles in \mathbb{R}^d , acting on $L^2(\mathbb{R}^d)^n \cong L^2(\mathbb{R}^{dn})$:

$$H^{(n)}(\omega) = \sum_{j=1}^{n} (-\Delta_j + V_0(x_j) + V(\omega, x_j)) + \alpha \sum_{j < k} W(x_j - x_k)$$

- $V_0 \in L^\infty(\mathbb{R}^d)$: \mathbb{Z}^d -periodic background potential
- $V(\omega)$: alloy-type random potential:

$$V(\omega, x) = \sum_{\zeta \in \mathbb{Z}^d} \eta_{\zeta}(\omega) U(x - \zeta)$$

- $U \in L_c^{\infty}(\mathbb{R}^d)$, $\sum_{\zeta} U(x-\zeta) \ge 1$ for all $x \in \mathbb{R}^d$
- $(\eta_{\zeta})_{\zeta \in \mathbb{Z}^d}$: iid random variables with density $\rho \in L^{\infty}_c(\mathbb{R})$
- $W \in L^{\infty}(\mathbb{R}^d)$: exponentially decaying interaction potential, strength controlled via $\alpha \geq 0$

Goal:

Dynamical localization in an interval $I = [E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ at the bottom $E_0^{(n)} = \inf \sigma(H^{(n)})$ of the spectrum:

$$\mathbb{E}\bigg[\sup_{t\in\mathbb{R}}\big\|\mathbf{1}_{B_1(\mathbf{x})}e^{-itH^{(n)}}P_I(H^{(n)})\mathbf{1}_{B_1(\mathbf{y})}\big\|\bigg]\leq Ce^{-\mu\operatorname{dist}_H(\mathbf{x},\mathbf{y})}$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{dn}$.

- $P_I(H^{(n)}) = \text{spectral projection of } H^{(n)} \text{ onto } I$
- $\operatorname{dist}_{H}(\mathbf{x}, \mathbf{y}) = \max\{\max_{j} \min_{k} |x_{j} y_{k}|, \max_{j} \min_{k} |y_{j} x_{k}|\}$ = $\operatorname{Hausdorff} \operatorname{distance} \operatorname{of} \operatorname{the} \operatorname{sets} \{x_{j} \mid 1 \leq j \leq n\}$ and $\{y_{j} \mid 1 \leq j \leq n\}$

Goal:

Dynamical localization in an interval $I = [E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ at the bottom $E_0^{(n)} = \inf \sigma(H^{(n)})$ of the spectrum:

$$\mathbb{E}\bigg[\sup_{t\in\mathbb{R}}\big\|\mathbf{1}_{B_1(\mathbf{x})}e^{-itH^{(n)}}P_I(H^{(n)})\mathbf{1}_{B_1(\mathbf{y})}\big\|\bigg]\leq Ce^{-\mu\operatorname{dist}_H(\mathbf{x},\mathbf{y})}$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{dn}$.

- $P_I(H^{(n)}) = \text{spectral projection of } H^{(n)} \text{ onto } I$
- $\operatorname{dist}_{H}(\mathbf{x}, \mathbf{y}) = \max\{\max_{j} \min_{k} |x_{j} y_{k}|, \max_{j} \min_{k} |y_{j} x_{k}|\}$ = $\operatorname{Hausdorff} \operatorname{distance} \operatorname{of} \operatorname{the} \operatorname{sets} \{x_{j} \mid 1 \leq j \leq n\}$ and $\{y_{j} \mid 1 \leq j \leq n\}$

Related results:

Aizenman/Warzel '09, Chulaevsky/Suhov '09, Chulaevsky/Boutet de Monvel/Suhov '11, ...

Fractional moment localization

Definition

A bounded interval I is a regime of fractional moment (FM) localization in I if and only if there exist $s \in (0,1)$ and $C, \mu > 0$ such that

$$\sup_{\substack{\Omega\subset\mathbb{R}^d\\\text{open, bd.}}}\sup_{0<|\operatorname{Im} z|<1}\mathbb{E}\big[\|\mathbf{1}_{B_1(\mathbf{x})}(H_{\Omega}^{(n)}-z)^{-1}\mathbf{1}_{B_1(\mathbf{y})}\|^s\big]\leq C\mathrm{e}^{-\mu\operatorname{dist}_H(\mathbf{x},\mathbf{y})}$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{dn}$.

 $H_{\Omega}^{(n)}=$ restriction of $H^{(n)}$ to Ω^n with Dirichlet boundary conditions

Fractional moment localization

Definition

A bounded interval I is a regime of fractional moment (FM) localization in I if and only if there exist $s \in (0,1)$ and $C, \mu > 0$ such that

$$\sup_{\substack{\Omega\subset\mathbb{R}^d\text{ open, bd. }0<|\operatorname{Im}z|<1}} \mathbb{E}\big[\|\mathbf{1}_{B_1(\mathbf{x})}(H_{\Omega}^{(n)}-z)^{-1}\mathbf{1}_{B_1(\mathbf{y})}\|^s\big] \leq C\mathrm{e}^{-\mu\operatorname{dist}_H(\mathbf{x},\mathbf{y})}$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{dn}$.

 $H_{\Omega}^{(n)}=$ restriction of $H^{(n)}$ to Ω^n with Dirichlet boundary conditions

Lemma

FM localization in 1 implies dynamical localization in 1.

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $[E_0^{(1)}, E_0^{(1)} + \eta^{(1)}]$ (cf. Aizenman et al. '06).

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $[E_0^{(1)}, E_0^{(1)} + \eta^{(1)}]$ (cf. Aizenman et al. '06).

• For any $\eta^{(n)} \in (0, \eta^{(1)})$ there exists $\alpha^{(n)} > 0$ such that for all $\alpha \in [0, \alpha^{(n)}]$ the interval $[E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ is a regime of FM localization for $H^{(n)}$.

Theorem

Assume that the one-particle operator exhibits FM localization in the interval $[E_0^{(1)}, E_0^{(1)} + \eta^{(1)}]$ (cf. Aizenman et al. '06).

- For any $\eta^{(n)} \in (0, \eta^{(1)})$ there exists $\alpha^{(n)} > 0$ such that for all $\alpha \in [0, \alpha^{(n)}]$ the interval $[E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ is a regime of FM localization for $H^{(n)}$.
- If $W \ge 0$, then for any $\alpha \ge 0$ there exists $\eta^{(n)} \in (0, \eta^{(1)})$ such that the interval $[E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ is a regime of FM localization for $H^{(n)}$.

$\mathsf{Theorem}$

Assume that the one-particle operator exhibits FM localization in the interval $[E_0^{(1)}, E_0^{(1)} + \eta^{(1)}]$ (cf. Aizenman et al. '06).

- For any $\eta^{(n)} \in (0, \eta^{(1)})$ there exists $\alpha^{(n)} > 0$ such that for all $\alpha \in [0, \alpha^{(n)}]$ the interval $[E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ is a regime of FM localization for $H^{(n)}$.
- If $W \ge 0$, then for any $\alpha \ge 0$ there exists $\eta^{(n)} \in (0, \eta^{(1)})$ such that the interval $[E_0^{(n)}, E_0^{(n)} + \eta^{(n)}]$ is a regime of FM localization for $H^{(n)}$.

Current work:

Extension of these results to interactions with sufficiently fast polynomial decay