Ranks of quadratic twists of elliptic curves over $\mathbb{F}_q(t)$

Part II

Enrique Acosta and Martin Leslie
Advisor: Doug Ulmer

Department of Mathematics
University of Arizona

December 11, 2008
Elliptic Curves

Let k be a field with char $k \neq 2, 3$. An Elliptic Curve over k is:

Definition (1)
A nonsingular genus 1 curve with a point with coordinates in k.
Elliptic Curves

Let k be a field with $\text{char } k \neq 2, 3$. An Elliptic Curve over k is:

Definition (1)
A nonsingular genus 1 curve with a point with coordinates in k.

Definition (2)
A curve in $k\mathbb{P}^2$ defined by an equation of the form

$$y^2 = x^3 + ax + b$$

where $a, b \in k$, and the cubic polynomial on the right has no repeated roots.
The Group Law

\[E(k) = \text{The set of points with coordinates in } k \text{ has a group structure.} \]

\[y^2 = x^3 + 5x^2 - 6x \]

Example

\[k = \mathbb{Q} \]

\[(0,0) = q \]

\[p = (-3,-6) \]
\[y^2 = x^3 + 5x^2 - 6x \]
$y^2 = x^3 + 5x^2 - 6x$

$(-96/25, 792/125) = 2p + q$

$p = (-3, -6)$

$q = (2, 4)$

$p + q = (2, -4)$
Mordell’s Theorem

Theorem
\(E(\mathbb{Q}) \) is finitely generated.

Consequence
\(E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus \text{“Finite Abelian Group”} \)

Definition
\(r \) is called the rank of the elliptic curve.
Mordell’s Theorem

Theorem
\[E(\mathbb{Q}) \text{ is finitely generated.} \]

Consequence
\[E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus \text{“Finite Abelian Group”} \]

Definition
\(r \) is called the rank of the elliptic curve.

- There is no known effective method to find the rank.
- Conjecture: There are elliptic curves over \(\mathbb{Q} \) with arbitrary large rank.
Mordell’s Theorem

Theorem

\(E(\mathbb{Q}) \) is finitely generated.

Consequence

\[E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus \text{“Finite Abelian Group”} \]

Definition

\(r \) is called the rank of the elliptic curve.

- There is no known effective method to find the rank.
- Conjecture: There are elliptic curves over \(\mathbb{Q} \) with arbitrary large rank.
- BSD Conjecture (1 Million): The rank of an elliptic curve \(E \) is the order of a zero at \(s = 1 \) of an \(L \)-series associated to \(E \).
Mordell’s Theorem over $\mathbb{F}_q(t)$

Theorem

$E(\mathbb{F}_q(t))$ is finitely generated.

$E(\mathbb{F}_q(t)) \cong \mathbb{Z}^r \oplus \text{“Finite Abelian Group”}$

r is called the rank of the elliptic curve.

- There is no known effective method to find the rank.
- THEOREM: There are elliptic curves over $\mathbb{F}_q(t)$ with arbitrary large rank (Shafarevich, Tate).
- BSD Conjecture: The rank of an elliptic curve E is the order of a zero at $s = 1$ of an L-series associated to E.
Twists of Elliptic Curves

$k = \mathbb{Q}$. Let E/k be an elliptic curve defined by

$$E : \quad y^2 = x^3 + ax + b.$$

Definition

Let D be a square free integer. The quadratic twist E_D of E by D is the elliptic curve defined by

$$E_D : \quad Dy^2 = x^3 + ax + b$$

Question

¿ What is the rank of E_D?
The Parity Conjecture

A consequence of two BIG ingredients:

- Conjecture: The Birch and Swinnerton-Dyer conjecture.
- THEOREM: Modularity (gives a functional equation of the associated L-series to an elliptic curve).

Parity Conjecture

Let E/\mathbb{Q} be an elliptic curve with conductor C and let D be a square-free integer relatively prime to $2C$. Then the ranks of E and E_D have the same parity if and only if $\chi_D(-C) = 1$ (a congruence condition on D depending on C).

Parity Conjecture (for mortals)

There are some congruence conditions on D depending on E which determine if the twist has even or odd rank.
The Article

F. Gouvêa and B. Mazur (1991)
The Square-Free Sieve and the Rank of Elliptic Curves

Idea

- Use the parity conjecture to make twists have rank ≥ 2.
- Use this to show there are lots of twists of a given elliptic curve with rank ≥ 2.
- Get a lower bound for the density of twists with rank ≥ 2.

Theorem

Let E/\mathbb{Q} be an elliptic curve, and let $\epsilon > 0$. Assume the parity conjecture holds. Then for sufficiently large x we have

$$x^{\frac{1}{2}-\epsilon} \leq \#\{\text{square-free } D \mid |D| \leq x \text{ and } \text{rank}(E_D) \geq 2\}$$
Our Goal

Prove the theorem for $\mathbb{F}_q(t)$.
Our Goal

Prove the theorem for $\mathbb{F}_q(t)$.

- Figure out what the correct statement is (RTG).
- Prove it (coming).
Our Goal

Prove the theorem for $\mathbb{F}_q(t)$.

- Figure out what the correct statement is (RTG).
- Prove it (coming).

Theorem (conjectured)

Let $E/\mathbb{F}_q(t)$ be an elliptic curve, and let $\epsilon > 0$. Assume the parity conjecture holds. Then for sufficiently large x we have

$$x^{\frac{1}{2} - \epsilon} \leq \# \{\text{square-free polynomial } D \mid q^{\deg D} \leq x \text{ and } \text{rank}(E_D) \geq 2\}$$
Structure of the original proof

Theorem

If the parity conjecture holds then for sufficiently large x:

$$x^{\frac{1}{2}-\epsilon} \leq \#\{\text{square-free } D \mid |D| \leq x \text{ and } \text{rank}(E_D) \geq 2\}$$

- $\{\text{Twists with rank } \geq 2\} \supseteq \{\text{Twists with rank } \geq 2 \text{ and EVEN}\}$
- $\{\ldots\} \supseteq \{\text{square-free } D \text{ satisfying the right congruence conditions for the rank of } E_D \text{ to be even, and } \text{rank}(E_D) \geq 1\}$
Structure of the original proof

Take the equation of $E : y^2 = x^3 + ax + b$ to have integral coefficients.

- Plug in an integer n on the RHS....get $D\hat{n}^2$ with $D \in \mathbb{Z}$ square-free.
- $(x, y) = (n, \hat{n})$ is a point on the twist E_D.
- Theorem (Shafarevich): Only finitely many twists have points of finite order > 2.
- Therefore, this point on this twist will in general have infinite order, so rank(E_D) ≥ 1.
- NOW: Make sure D is in the right congruence classes to get rank(E_D) ≥ 2.
Homogenize the RHS of the equation of $E : y^2 = x^3 + ax + b$ to get $f(X, Z) = X^3 + aXZ + bZ^3$.

- Define $F(X, Z) = Z(X^3 + aXZ + bZ^3)$.
- Any square-free value $D = F(u, v)$ with $u, v \in \mathbb{Z}$ gives you a point on E_D which in general has infinite order.
- Place congruence conditions on u, v so that the D's you get are in the right congruence classes.
- Asymptotics of square-free values of binary integral forms subject to the entries belonging to some fixed congruence classes.
Asymptotics

\[F(X, Z) = Z(X^3 + aXZ + bZ^3) \]

\[\{ (u, v) \in \mathbb{Z}^2 \text{ such that } D = F(v, u) \text{ is square-free and are in the right congruence classes} \} \]

\[\downarrow \]

\[\left\{ \text{square-free } D \mid \text{rank}(E_D) \geq 2 \right\} \]

Show the bottom is large by:
- Showing the fibers are not that large (easy).
- Showing the top is large (hard).
Asymptotics

Setup

- $F(X, Z)$ binary form with integral coefficients and irreducible factors of degree ≤ 3.
- Let M be a positive integer, a_0, b_0 integers that are relatively prime to M.
- $N(x) = \text{set of } (a, b) \in \mathbb{Z}^2 \text{ with:}$
 - $0 \leq a, b \leq x$
 - $a \equiv a_0 \pmod{M}, b \equiv b_0 \pmod{M}$
 - $F(a, b)$ square-free

Theorem

As $x \to \infty$,

$$\#N(x) = Ax^2 + O(x^2/\log^{1/2}x)$$

for an explicitly given constant A.
Theorem (Acosta/Leslie, 2009?)

Let $F(u,v)$ be a homogeneous square-free polynomial with coefficients in $\mathbb{F}_q[t]$ such that all of its irreducible factors are of degree ≤ 3. Let $M, a_0, b_0 \in \mathbb{F}_q[t]$ with a_0, b_0 both relatively prime to M. Let $N(x)$ denote the number of pairs of monic polynomials (a, b) satisfying $q^{\deg(a)}, q^{\deg(b)} \leq x$ with $(a, b) \equiv (a_0, b_0)$ (mod M) for which $F(a, b)$ is square-free.

Then as $x \to \infty$, we have

$$N(x) = A \cdot x^2 + O\left(x^2 / \log^{1/2}(x)\right)$$

where A is given by

$$A = \left(1/q^{2 \deg(M)}\right) \prod_p \left(1 - r(p^2)/q^{4 \deg(p)}\right)$$

with the product taken over all monic irreducible p.

The translation?