Entropy and Huffman Coding

Martin Leslie

Department of Mathematics
University of Arizona

September 28, 2011
Twenty questions

- Imagine a ‘spinner’ that produces various symbols with probabilities as follows:

<table>
<thead>
<tr>
<th>x</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(x)$</td>
<td>1/2</td>
<td>1/4</td>
<td>1/8</td>
<td>1/16</td>
<td>1/32</td>
<td>1/32</td>
</tr>
</tbody>
</table>

- Can you devise a set of yes–no questions that minimise the maximum number of questions to find out which result occurred?

- What about minimising the average number of yes–no questions?
Data compression

- Our answers can also be used as methods to store the results of each spin. ‘Uncompressed’ storage needs 3 bits per letter, our optimal solution is 63/32 bits per letter.
Entropy

- Let X be a discrete random variable taking values in a finite alphabet \mathcal{X} with probability mass function $p(x)$.
- The self-information (or surprisal) of $x \in \mathcal{X}$ is $\log \frac{1}{p(x)}$ where log means \log_2.
- The entropy of X is

$$H(X) = \text{average self-information}$$

$$= E_p \left[\log \frac{1}{p(X)} \right]$$

$$= \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)}$$

$$= - \sum_{x \in \mathcal{X}} p(x) \log p(x)$$
How to think about entropy

Entropy is the average number of bits of information you gain about the value of X.

Equivalently, it is the average uncertainty you have about each value of X before you receive it.

The entropy of a fair coin flip is one bit. The entropy of a biased coin flip is less. For example $H(0.1, 0.9) = 0.47$.
Some examples

- The original spinner example has $H \approx 1.97$:

<table>
<thead>
<tr>
<th>p_i</th>
<th>1/2</th>
<th>1/4</th>
<th>1/8</th>
<th>1/16</th>
<th>1/32</th>
<th>1/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\log p_i$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

- If we have probabilities as below we get $H \approx 2.23$:

<table>
<thead>
<tr>
<th>p_i</th>
<th>0.35</th>
<th>0.17</th>
<th>0.17</th>
<th>0.16</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\log p_i$</td>
<td>1.51</td>
<td>2.56</td>
<td>2.56</td>
<td>2.64</td>
<td>2.74</td>
</tr>
</tbody>
</table>
Axioms for entropy

Let \(\Delta_m = \left\{ (p_1, p_2, \ldots, p_m) : p_i \in (0, 1), \sum_{i=1}^{m} p_i = 1 \right\} \).

Then entropy is the unique sequence of functions

\[
H_m : \Delta_m \rightarrow \mathbb{R}_{\geq 0}
\]

for \(m = 2, 3, \ldots \) such that

1. \(H_m \) is symmetric in its inputs.
2. \(H_2 \left(\frac{1}{2}, \frac{1}{2} \right) = 1. \)
3. \(H_2(p, 1 - p) \) is continuous in \(p \).
4. \(H_m(p_1, p_2, \ldots, p_m) = H_{m-1}(p_1 + p_2, p_3, \ldots, p_m) + (p_1 + p_2) \cdot H_2 \left(\frac{p_1}{p_1 + p_2}, \frac{p_2}{p_1 + p_2} \right). \)
Entropy and physics

- Gibbs entropy of system with microstates of probability p_i is

$$H = -k_B \sum_i p_i \log p_i.$$

- This entropy (without the constant k_B) is basically the average length of description of a microstate given the macrostate.

- In equilibrium all microstates are equally likely. This maximises the entropy, so as a system goes through different macrostates towards equilibrium it increases in entropy (the Second Law of Thermodynamics!).
An Inequality

If ϕ is a convex function then

$$\phi(px_1 + (1 - p)x_2) \leq p\phi(x_1) + (1 - p)\phi(x_2).$$

By induction this can be extended to

$$\phi(E_p[X]) \leq E_p[\phi(X)].$$

(Jensen’s inequality!).
Gibbs’ inequality

- Gibbs’ inequality says that if you use the ‘wrong’ probabilities q_i instead of p_i entropy will only increase:

$$\sum p_i \log \frac{1}{q_i} \geq \sum p_i \log \frac{1}{p_i}.$$

- To prove this:

$$\sum p_i \log \frac{p_i}{q_i} = E_p \left[- \log \frac{q_i}{p_i}\right]$$

$$\geq - \log E_p \left[\frac{q_i}{p_i}\right]$$

$$= - \log \sum q_i$$

$$= 0$$
We consider source codes (i.e. lossless data compression) which take one input symbol at a time and give out a string of bits.

A source code $C: \mathcal{X} \rightarrow \{0, 1\}^+$ is a prefix code if no codeword $C(x)$ is a prefix of any other codeword.

A prefix code can be decoded ‘instantaneously’ and uniquely.

We would like to minimise $\bar{L} = \sum p_i l_i$ where l_i are codeword lengths.
Kraft inequality

- A prefix code with codeword lengths l_i exists if and only if
 \[\sum 2^{-l_i} \leq 1. \]

- To prove this consider a complete binary tree of depth l_m:
Kraft inequality Proof

- A codeword of length l_i has a ‘shadow’ of $2^{l_m - l_i}$ leaves in the tree.
- So $\sum_i 2^{l_m - l_i} \leq 2^{l_m}$.
Let $z = \sum_j 2^{-l_j}$ and $q_i = 2^{-l_i}/z$.
Rearranging, $l_i = \log \frac{1}{q_i} - \log z$.

If we have a prefix code for X, then $H(X) \leq \bar{L}$. To see this:

\[
\bar{L} = \sum p_i l_i = \sum p_i \log \frac{1}{q_i} - \log z
\geq \sum p_i \log \frac{1}{p_i} - \log z
\geq H(X)
\]

So entropy gives a lower bound for how much a source can be compressed! (Assuming the source has iid outputs and we compress one symbol at a time).
How might we compress something?

- We want to find integers l_i with $\sum_i 2^{-l_i} \leq 1$ that minimize $\sum p_i l_i$.
- Shannon coding takes $l_i = \lceil - \log p_i \rceil$.
- We have

$$
\sum 2^{-l_i} \leq \sum 2^{\log p_i} \\
= 1
$$

so there exists a prefix code with these lengths.

- Also,

$$
\sum p_i l_i \leq \sum p_i (- \log p_i + 1) \\
= - \sum p_i \log p_i + \sum p_i \\
= H(X) + 1
$$

- So with Shannon coding $H(X) \leq \bar{L} \leq H(X) + 1$.
Can you think of another way?

- Fano coding orders the probabilities and then recursively cuts them in half in the most even way possible.

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$p_i$ & 0.35 & 0.17 & 0.17 & 0.16 & 0.15 \\
\hline
$- \log p_i$ & 1.51 & 2.56 & 2.56 & 2.64 & 2.74 \\
$l_S$ & 2 & 3 & 3 & 3 & 3 \\
$l_F$ & 2 & 2 & 2 & 3 & 3 \\
\hline
\end{tabular}
```

$H = 2.23, L_S = 2.65, L_F = 2.31$
Optimal prefix codes

- Order the elements of our alphabet so that $p_1 \geq p_2 \geq \ldots \geq p_m$. Then there exists an optimal prefix code with lengths l_i such that:
 1. $p_j > p_k$ implies $l_j \leq l_k$;
 2. the two longest codewords have the same length; and
 3. Two of the longest codewords correspond to two of the least likely symbols and differ only in their last bit.

- From here we proceed by induction to construct Huffman codes

- For probabilities $p_1 \geq p_2 \geq \ldots \geq p_m$, by induction we have an optimal code on $m - 1$ symbols for probabilities $p_1, p_2, \ldots, p_{m-2}, p_{m-1} + p_m$. Say this code has lengths $l_1, l_2, \ldots, l_{m-2}, \ell$.

- Construct a code for m symbols by extending this code to lengths $l_1, l_2, \ldots, l_{m-2}, l_{m-1} = \ell + 1, l_m = \ell + 1$.

Huffman code optimality

- If the lengths l_1, \ldots, l_m are not optimal then there exists a code with lengths l'_1, \ldots, l'_m that satisfies 1-3 from previous slide and has $\sum_{i=1}^{m} p_i l'_i < \sum_{i=1}^{m} p_i l_i$.
- Condense down the code with lengths l'_i on m symbols to a code on $m - 1$ symbols with lengths $l'_1, \ldots, l'_{m-2}, l'_{m-1} - 1$.
- This code has average length

$$\sum_{i=1}^{m-2} p_i l'_i + (p_{m-1} + p_m)(l'_{m-1} - 1)$$

$$= \sum_{i=1}^{m} p_i l'_i - (p_{m-1} + p_m)$$

$$< \sum_{i=1}^{m} p_i l_i - (p_{m-1} + p_m)$$

$$= \sum_{i=1}^{m-2} p_i l_i + (p_{m-1} + p_m)(l_{m-1} - 1).$$
Huffman coding

- Huffman code builds tree from the bottom.

\[
\begin{array}{c|ccc|cc}
 p_i & 0.35 & 0.17 & 0.17 & 0.16 & 0.15 \\
 \hline
 - \log p_i & 1.51 & 2.56 & 2.56 & 2.64 & 2.74 \\
 l_S & 2 & 3 & 3 & 3 & 3 \\
 l_F & 2 & 2 & 2 & 3 & 3 \\
 l_H & 1 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\(H = 2.23 \), \(L_S = 2.65 \), \(L_F = 2.31 \), \(L_H = 2.30 \)