The eight queens problem
- a neural network approach

Martin Leslie

MATH577 Project

Fall ’09
The problem

- We want to place 8 queens on a standard 8×8 chessboard so that no queen can attack another.
- Remember queens attack vertically, horizontally and diagonally.
- An attempt at a 4×4 solution:
The problem

- We want to place 8 queens on a standard 8×8 chessboard so that no queen can attack another.
- Remember queens attack vertically, horizontally and diagonally.
- An attempt at a 4×4 solution:
The problem

- We want to place 8 queens on a standard 8 \times 8 chessboard so that no queen can attack another.
- Remember queens attack vertically, horizontally and diagonally.
- An attempt at a 4 \times 4 solution:
We want to place 8 queens on a standard 8×8 chessboard so that no queen can attack another.

Remember queens attack vertically, horizontally and diagonally.

An attempt at a 4×4 solution:
The problem

- We want to place 8 queens on a standard 8×8 chessboard so that no queen can attack another.
- Remember queens attack vertically, horizontally and diagonally.
- An attempt at a 4×4 solution:

```
  0 1 2 3 4 5
  0
  0.5
  1
  1.5
  2
  2.5
  3
  3.5
  4
  4.5
  5
```

- And we’re stuck!
The neural network

- We look to Hopfield and Tank’s approach to the traveling salesman problem for inspiration.
- We have N^2 nodes in our network each representing a square of the chessboard: 0 for no queen and 1 for a queen.
- We find an energy function E that is minimized for a solution to our problem.
- Then neuron $n_{r,s}$ has activation

$$a_{r,s} = - \frac{\partial E}{\partial n_{r,s}}$$

and updated value

$$n_{r,s} = \frac{1}{1 + e^{-\beta a_{r,s}}}.$$
The energy function

\[E = \text{term for columns} + \text{term for rows} \]
\[+ \text{term for NW-SE diagonals} \]
\[+ \text{term for NE-SW diagonals} \]
\[+ \text{term to have } N \text{ queens} \]
The energy function

\[E = \sum_{j=1}^{N} \left(1 - \sum_{i=1}^{N} n_{ij} \right)^2 + \text{term for rows} \]
\[+ \text{term for NW-SE diagonals} \]
\[+ \text{term for NE-SW diagonals} \]
\[+ \text{term to have } N \text{ queens} \]
The energy function

\[E = \sum_{j=1}^{N} \left(1 - \sum_{i=1}^{N} n_{ij} \right)^2 + \sum_{i=1}^{N} \left(1 - \sum_{j=1}^{N} n_{ij} \right)^2 \]

+ term for NW-SE diagonals
+ term for NE-SW diagonals
+ term to have \(N \) queens
The energy function

\[E = \sum_{j=1}^{N} \left(1 - \sum_{i=1}^{N} n_{ij} \right)^2 + \sum_{i=1}^{N} \left(1 - \sum_{j=1}^{N} n_{ij} \right)^2 \]

\[+ \sum_{i=1}^{N} \sum_{j=1}^{N} n_{ij} \text{ (# of other 1's on NW-SE diagonal containing } i, j) \]

\[+ \text{ term for NE-SW diagonals} \]

\[+ \text{ term to have } N \text{ queens} \]
The energy function

\[
E = \sum_{j=1}^{N} \left(1 - \sum_{i=1}^{N} n_{ij}\right)^2 + \sum_{i=1}^{N} \left(1 - \sum_{j=1}^{N} n_{ij}\right)^2 \\
+ \sum_{i=1}^{N} \sum_{j=1}^{i} n_{ij} \sum_{k=1}^{N-(i-j)} n_{k+i-j,k} + \sum_{i=1}^{N} \sum_{j=i+1}^{N} n_{ij} \sum_{k=1-(i-j)}^{N} n_{k+i-j,k} \\
+ \text{term for NE-SW diagonals} \\
+ \text{term to have } N \text{ queens}
\]
The energy function

\[E = \sum_{j=1}^{N} \left(1 - \sum_{i=1}^{N} n_{ij} \right)^2 + \sum_{i=1}^{N} \left(1 - \sum_{j=1}^{N} n_{ij} \right)^2 + \sum_{i=1}^{N} \sum_{j=1}^{N-i} n_{ij} \sum_{k=1}^{N-(i-j)} n_{k+i-j,k} + \sum_{i=1}^{N} \sum_{j=i+1}^{N} n_{ij} \sum_{k=1}^{N-(i-j)} n_{k+i-j,k} + \sum_{i=1}^{N} \sum_{j=1}^{N+1-i} n_{ij} \sum_{k=1}^{i+j-1} n_{i+j-k,k} + \sum_{i=1}^{N} \sum_{j=N+2-i}^{N} n_{ij} \sum_{k=i+j-N}^{N} n_{i+j-k,k} + \text{ term to have } N \text{ queens} \]
The energy function

\[E = \sum_{j=1}^{N} \left(1 - \sum_{i=1}^{N} n_{ij} \right)^2 + \sum_{i=1}^{N} \left(1 - \sum_{j=1}^{N} n_{ij} \right)^2 \]

\[+ \sum_{i=1}^{N} \sum_{j=1}^{i} \sum_{k=1}^{N-(i-j)} n_{ij} n_{k+i-j,k} + \sum_{i=1}^{N} \sum_{j=i+1}^{N} \sum_{k=1-(i-j)}^{N} n_{ij} n_{k+i-j,k} \]

\[+ \sum_{i=1}^{N} \sum_{j=1}^{N+1-i} \sum_{k=1}^{i+j-1} n_{ij} n_{i+j-k,k} + \sum_{i=1}^{N} \sum_{j=N+2-i}^{N} \sum_{k=i+j-N}^{N} n_{ij} n_{i+j-k,k} \]

\[+ \left(\sum_{i=1}^{N} \sum_{j=1}^{N} n_{ij} - N \right)^2 \]
The constants

- Actually, we should have some constants out the front of our energy terms:
 - $\gamma/2$ for column and row terms;
 - $\delta/2$ for diagonal terms;
 - $\epsilon/2$ for N queens term.
- Also, β is inverse temperature.
Taking derivative of E

- Taking the derivative isn’t too bad. For example

$$
\frac{\partial}{\partial n_{rs}} \text{(NW-SE diagonal term)}
$$

$$
= \frac{\partial}{\partial n_{rs}} \sum_{i=1}^{N} \sum_{j=1}^{N} n_{ij} \ (# \ of \ other \ 1's \ on \ diag. \ including \ i, j)
$$

$$
= (\# \ of \ other \ 1's \ on \ diag. \ including \ r, s) + \sum (n_{ij} \ where \ i, j \ is \ on \ same \ diagonal \ as \ r, s)
$$

$$
= 2 (\# \ of \ other \ 1's \ on \ diag. \ including \ r, s)
$$
Implementing the network

- Fix constants: I took $\gamma = \delta = \epsilon = 1$ to start with.
- Create an initial state $n = (n_{ij})$ with random entries between 0 and 1.
- Run through the neurons in order (asynchronously) and update them as discussed earlier.
Does it work?

- No.
- If we take β fixed and small, say $\beta = 1$ or 0.1, then n converges to a state where all the entries are approximately equal. This isn’t a very good solution.
- If we take β fixed but larger, say $\beta = 10$, then n quickly settles down from its initial high energy random state but then oscillates wildly.
The fix: ‘continuous’ network + simulated annealing

- We use the update rule

\[n_{r,s} = n_{r,s} + \left(\frac{1}{1 + e^{-\beta a_{r,s}} - n_{r,s}} \right) \Delta t \]

with \(\Delta t = 0.1 \) to make the oscillations less wild.

- Also we cool down the temperature as the network runs by setting the inverse temperature to be

\[\beta = 20 \left(\frac{l}{L} \right)^2 \]

when on step \(l \) of a total \(L \).
Does it work now?

- With $\gamma = \delta = \epsilon = 1$ and $L = 10000$ we converge to an almost solution:
One way to fix it

- If we make $L = 20000$, giving the system more time to bounce around, it converges to the following solution:
Another way

- We can keep $L = 10000$, but change γ to 1.1. This finds the following solution:

```
z = 8
```