Introduction to Statistics and Biostatistics: Practice Exercises for Sec. 8.1
Name: \qquad
Instructions: Read each question carefully before determining the best answer. For numerical answers, report all final numerical values to a precision of 4 units past the decimal point. SHOW ALL YOUR WORK; do not rely on a computer output to satisfy the answer.

1. In each of the following circumstances with $X \sim B(n, p)$, state whether or not you may use the plus-four/Agresti-Coull confidence interval for estimating an unknown p.
Want $X \geq 10$ and $n-X \geq 10$:
a. $\mathrm{n}=70, \mathrm{X}=50$

Yes $X \quad X=50 \geq 10$ and $n-X=20 \geq 10$
No

b. $\mathrm{n}=80, \mathrm{X}=15$

Yes X $X=15 \geq 10$ and $n-X=65 \geq 10$

No

c. $\mathrm{n}=10, \mathrm{X}=5$

Yes
No X

$$
X=5<10
$$

d. $n=60, X=50$

Yes $X \quad X=50 \geq 10$ and $n-X=10 \geq 10$
No

e. $n=20, X=15$

Yes
No X
$n-X=5<10$

Introduction to Statistics and Biostatistics: Practice Exercises for Sec. 8.1
Name: \qquad
2. Gambling is an issue of great concern to those involved in intercollegiate athletics. Because of this concern, the National Collegiate Athletic Association (NCAA) surveyed studentathletes concerning their gambling-related behaviors. They found that 1337 out of a total of 3381 female student-athletes reported participation in some gambling activity. Employ the plus-four/Agresti-Coull confidence interval to estimate the true proportion with a 95% confidence interval. (Use the space below to show your work.)

Lower limit:
0.3791

Upper limit 0.4120

We have $X \sim B(3381, p)$ with $X=1337$ observed.

First: check the plus-four condition $(x \geq 10$ and $n-X \geq 10): X=1337 \geq 10$

$$
n-X=2044 \geq 10
$$

Next, calculate $\tilde{p}=\frac{x+2}{n+4}=\frac{1339}{3385}=0.3956$, with standard error $S E_{\tilde{p}}=\sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}=$ $\sqrt{\frac{(0.3956)(0.6044)}{3385}}=\sqrt{7.0635 \times 10^{-5}}=0.0084$.
At $C=0.95$, find $z_{.025}{ }^{*}=1.96$. Then, the m.o.e. is $m=(1.96)(0.0084)=0.0165$.
Thus the lower limit is $0.3956-0.0165=0.3791$
and the upper limit is $0.3956+0.0165=0.4121$.

Introduction to Statistics and Biostatistics: Practice Exercises for Sec. 8.1
Name: \qquad Answer Key
3. A survey of 1300 student loan borrowers found that 444 had loans totaling more than $\$ 20,000$ for their undergraduate education. Give a 90% plus-four/Agresti-Coull confidence interval for the proportion of all student loan borrowers who have loans of $\$ 20,000$ or more for their undergraduate education. (Use the space below to show your work.)

Lower limit:
0.3205

Upper limit
0.3635

We have $X \sim B(1300, p)$ with $X=444$ observed.

First: check the plus-four condition ($X \geq 10$ and $n-X \geq 10$): $X=444 \geq 10$

$$
n-X=856 \geq 10
$$

Next, calculate $\tilde{p}=\frac{x+2}{n+4}=\frac{446}{1304}=0.3420$, with standard error $S E_{\tilde{p}}=\sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}=$ $\sqrt{\frac{(0.3420)(0.6580)}{1304}}=\sqrt{1.7258 \times 10^{-4}}=0.0131$.
At $C=0.90$, find $z_{.05}{ }^{*}=1.645$. Then, the m.o.e. is $m=(1.645)(0.0131)=0.0215$.
Thus the lower limit is $0.3420-0.0215=0.3205$
and the upper limit is $0.3420+0.0215=0.3635$.

Introduction to Statistics and Biostatistics: Practice Exercises for Sec. 8.1

Name: \qquad
4. In a study of the relationship between pet ownership and physical activity in older adults, 615 subjects reported that they owned a pet, while 1942 reported that they did not. Give a plus-four/Agresti-Coull 90% confidence interval for the proportion of older adults in this population who are pet owners. (Use the space below to show your work.)

Lower limit:
0.2269

Upper limit
0.2549

We have $X \sim B(2557, p)$ with $X=615$ observed.

First: check the plus-four condition ($X \geq 10$ and $n-X \geq 10$): $X=615 \geq 10$

$$
n-X=1942 \geq 10
$$

Next, calculate $\tilde{p}=\frac{x+2}{n+4}=\frac{617}{2561}=0.2409$, with standard error $S E_{\tilde{p}}=\sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}=$ $\sqrt{\frac{(0.2409)(0.7591)}{2561}}=\sqrt{7.1405 \times 10^{-5}}=0.0085$.
At $C=0.90$, find $z_{.05}{ }^{*}=1.645$. Then, the m.o.e. is $m=(1.645)(0.0085)=0.0140$.
Thus the lower limit is $0.2409-0.0140=0.2269$
and the upper limit is $0.2409+0.0140=0.2549$.

Introduction to Statistics and Biostatistics: Practice Exercises for Sec. 8.1

Name: \qquad
5. Many people die in bicycle accidents each year. One study examined the records of 1911 bicyclists aged 15 or older who were fatally injured in bicycle accidents in a five-year period, who also had their blood alcohol concentrations recorded. In this study 390 bicyclists had blood alcohol levels above 0.10%, a level defining legally drunk at the time. Give a plus-four/Agresti-Coull 99\% confidence interval for the underlying true proportion who were legally drunk according to this criterion. (Use the space below to show your work.)

Lower limit:
0.1810

Upper limit
0.2284

We have $X \sim B(1911, p)$ with $X=390$ observed.

First: check the plus-four condition $(x \geq 10$ and $n-X \geq 10): X=390 \geq 10$

$$
n-X=1521 \geq 10
$$

Next, calculate $\tilde{p}=\frac{x+2}{n+4}=\frac{392}{1915}=0.2047$, with standard error $S E_{\tilde{p}}=\sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}=$ $\sqrt{\frac{(0.2047)(0.7953)}{1915}}=\sqrt{8.5012 \times 10^{-5}}=0.0092$.
At $C=0.99$, find $z_{.005}{ }^{*}=2.576$. Then, the m.o.e. is $m=(2.576)(0.0092)=0.0237$.
Thus the lower limit is $0.2047-0.0237=0.1810$
and the upper limit is $0.2047+0.0237=0.2284$.

