STAT 571A - Advanced Statistical Regression Analysis

Appendix A NOTES Review of Probability and Statistics

© 2017 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means - electronic, online, mechanical, photoreproduction, recording, or scanning - without the prior written consent of the course instructor.

Fair Warning

- The material presented from Appendix A is meant completely as a review to establish notation and to act as a refresher.

■ Students should have learned this Appendix's material previously and be immediately familiar with it. If not, a previous course in statistics or matrix algebra is needed before undertaking STAT 571A.

§A.1: Sums and Products

■ Observations: $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{n}}$

- Summation: $Y_{1}+Y_{2}+\cdots+Y_{n}=\sum_{i=1}^{n} Y_{i}$

Consequences:

- $\sum_{i=1}^{n} k=n k$
- $\sum_{i=1}^{n}\left(Y_{i}+Z_{i}\right)=\sum_{i=1}^{n} Y_{i}+\sum_{i=1}^{n} Z_{i}$
- $\sum_{i=1}^{n}\left(k+c Y_{i}\right)=n k+c \sum_{i=1}^{n} Y_{i}$

Sums and Products (cont'd)

Double sum: $\sum_{i=1}^{n} \sum_{j=1}^{m} Y_{i j}$

$$
\begin{aligned}
&= \sum_{i=1}^{n}\left(Y_{i 1}+Y_{i 2} \cdots+Y_{i m}\right) \\
&=\left(Y_{11}+Y_{12}+\cdots+Y_{1 m}\right) \\
&+\cdots+\left(Y_{n 1}+Y_{n 2}+\cdots+Y_{n m}\right) \\
&= \sum_{j=1}^{m} \sum_{i=1}^{n} Y_{i j}
\end{aligned}
$$

Product: $\left(Y_{1}\right)\left(Y_{2}\right) \cdots\left(Y_{n}\right)=\prod_{i=1}^{n} Y_{i}$

§A.2: Probability Rules

\square Events: $A_{1}, A_{2}, \ldots, A_{n}$

- Probability of union:
$P\left(A_{i} \cup A_{j}\right)=P\left(A_{i}\right)+P\left(A_{j}\right)-P\left(A_{i} \cap A_{j}\right)$
- Multiplication rule:
$P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) P\left(A_{j} \mid A_{i}\right)=P\left(A_{j}\right) P\left(A_{i} \mid A_{j}\right)$
$P(A \mid B)$ is a conditional probability

Probability Rules (cont'd)

Complementary event: $\overline{\mathbf{A}}_{\mathrm{j}}=\left\{\operatorname{not} \mathrm{A}_{\mathrm{j}}\right\}$
Complement rule: $P\left(\bar{A}_{j}\right)=1-P\left(A_{j}\right)$ So, e.g., $P\left(\overline{A_{i} \cup A_{j}}\right)=P\left(\bar{A}_{i} \cap \bar{A}_{j}\right)$

§A.3: Random Variables

- A random variable is a numerical outcome of some random process.
- Notation: upper-case Latin letter, say, Y.
- If Y takes on discretely many values it is a Discrete Random Variable.
- If Y lies in a continuum of values, it is a Continuous Random Variable.

Probability Functions

■ The Probability Function, $f_{\mathrm{Y}}(\mathrm{y})$, of Y gives the mass or density of probability for Y. For instance, in the discrete case write

$$
f_{Y}\left(y_{s}\right)=P\left(Y=y_{s}\right) \text { over } s=1, \ldots, k .
$$

■ If so, we write $\mathrm{Y} \sim f_{\mathrm{Y}}(\mathrm{y})$.
■ The tilde (\sim) is read "is distributed as".

Expectation

- The Expected Value of any function of Y, $g(Y)$, is $E[g(Y)]=\sum_{s=1}^{k} g\left(y_{s}\right) f_{Y}\left(y_{s}\right)$ (discrete case)

$$
=\int_{-\infty}^{\infty} g(y) f_{Y}(y) d y \quad \text { (contin. case) }
$$

- The expectation operator, E[•], satisfies
- $\mathrm{E}[\mathrm{a}]=\mathrm{a}$ (for constant a)
- $\mathrm{E}[\mathrm{aY}]=\mathrm{aE}[\mathrm{Y}]$
- $\mathrm{E}[\mathrm{a}+\mathrm{cY}]=\mathrm{a}+\mathrm{cE}[\mathrm{Y}]$
- The Population Mean of Y is $\mu_{Y}=E[Y]$.

Variance

- The Population Variance of Y is

$$
\begin{aligned}
\sigma^{2}[Y] & =E\left[\left(Y-\mu_{Y}\right)^{2}\right] \\
& =E\left[Y^{2}\right]-E^{2}[Y]=E\left[Y^{2}\right]-\mu_{Y}{ }^{2} .
\end{aligned}
$$

- Thus,
- $\sigma^{2}[\mathrm{c}]=0$ (for constant c)
- $\sigma^{2}[\mathrm{c} Y]=\mathrm{c}^{2} \boldsymbol{\sigma}^{2}[\mathrm{Y}]$
- $\sigma^{2}[c+Y]=\sigma^{2}[Y]$
- $\sigma^{2}[c+d Y]=d^{2} \sigma^{2}[Y]$
- The Popl'n Standard Deviation is $\sigma[\mathrm{Y}]$.

Mean Squared Error

- Suppose we estimate a parameter ω with a statistic W. The mean of W is $E[W]$ and the variance of W is $\sigma^{2}\{W\}=E\left\{(W-E[W])^{2}\right\}$.
- We define the Mean Squared Error of \mathbf{W} as $M S E\{W\}=E\left\{(W-\omega)^{2}\right\}$.
- Notice that this is

$$
\begin{aligned}
\operatorname{MSE}\{W\}= & E\left\{(W-E[W]+E[W]-W)^{2}\right\} \\
= & E\left\{[(W-E[W])+(E[W]-W)]^{2}\right\} \\
= & E\left\{(W-E[W])^{2}\right\}+E\left\{(E[W]-W)^{2}\right\} \\
& +2 E\{(W-E[W])(E[W]-\omega)\}
\end{aligned}
$$

Mean Squared Error (cont'd)

- But now
- $E\left\{(W-E[W])^{2}\right\}$ is just $\sigma^{2}\{W\}$
- $E[W]$ - ω has no stochastic features, so $E\left\{(E[W]-\omega)^{2}\right\}=(E[W]-\omega)^{2}=\operatorname{Bias}^{2}\{W\}$
- And then, $E\{(W-E[W])(E[W]-\omega)\}$

$$
\begin{aligned}
& =(E[W]-\omega) E\{W-E[W]\} \\
& =(E[W]-\omega)(E\{W\}-E[W]) \\
& =(E[W]-\omega)(0)=0
\end{aligned}
$$

- So we find MSE\{W\} $=\sigma^{2}\{W\}+\operatorname{Bias}^{2}\{W\}$, i.e., MSE = Variance + Squared Bias.

Joint Probability and Covariance

- The Joint Probability Function of \mathbf{U} and \mathbf{V} is $f_{U, V}\left(u_{s}, v_{t}\right)=P\left(U=u_{s} \cap V=v_{t}\right)$ (discrete case)
- The Covariance of U and V is

$$
\begin{aligned}
\sigma[\mathrm{U}, \mathrm{~V}] & =\mathrm{E}\{(\mathrm{U}-\mathrm{E}[\mathrm{U}])(\mathrm{V}-\mathrm{E}[\mathrm{~V}])\} \\
& =\mathrm{E}[\mathrm{UV}]-\mathrm{E}[\mathrm{U}] \mathrm{E}[\mathrm{~V}]=\mathrm{E}[\mathrm{UV}]-\mu_{\mathrm{U}} \mu_{\mathrm{V}}
\end{aligned}
$$

- The Correlation between U and V is

$$
\begin{aligned}
\rho[\mathrm{U}, \mathrm{~V}] & =\sigma[\mathrm{U}, \mathrm{~V}] /\{\sigma[\mathrm{U}] \sigma[\mathrm{V}]\} \\
& =\sigma\left\{\left(\mathrm{U}-\mu_{\mathrm{U}} / \sigma[\mathrm{U}],\left(\mathrm{V}-\mu_{\mathrm{V}}\right) / \sigma[\mathrm{V}]\right\}\right.
\end{aligned}
$$

where $-1 \leq \rho[\mathrm{U}, \mathrm{V}] \leq 1$.

Covariance (cont'd)

- Notice that if

$$
\sigma[\mathrm{U}, \mathrm{~V}]=\mathrm{E}[\mathrm{UV}]-\mu_{\mathrm{U}} \mu_{\mathrm{V}}
$$

then:
$-\sigma\left[a_{1}+c_{1} U, a_{2}+c_{2} V\right]=c_{1} c_{2} \sigma[U, V]$

- $\sigma\left[a_{1}, a_{2}+c_{2} V\right]=0$
- $\sigma\left[a_{1}+U, a_{2}+V\right]=\sigma[U, V]$
- $\sigma[\mathrm{U}, \mathrm{U}]=\sigma^{2}[\mathrm{U}]$
- Also, if $\sigma[\mathrm{U}, \mathrm{V}]=0$, then $\rho[\mathrm{U}, \mathrm{V}]=0$.

Independence

■ Two random variables U and V are independent if their joint prob. function factors:

$$
f_{u, v}\left(u_{s}, v_{t}\right)=f_{u}\left(u_{s}\right) f_{v}\left(v_{t}\right) \text { for all } u_{s}, v_{t}
$$

- Then we can show

$$
\sigma[\mathrm{U}, \mathrm{~V}]=\rho[\mathrm{U}, \mathrm{~V}]=0
$$

but not vice versa (except in very special cases).

Sums of Random Variables

- If $Y_{i} \sim f_{Y_{i}}(y)$ for $i=1, \ldots, n$, then
- $E\left[\sum_{i} Y_{i}\right]=\sum a_{i} E\left[Y_{i}\right]$
- $\sigma^{2}\left[\sum a_{i} Y_{i}\right]=\sum_{i} \sum_{j} a_{i} a_{j} \sigma\left[Y_{i}, Y_{j}\right]$
- So, e.g., if $\mathbf{n}=2$:
- $E\left[a_{1} Y_{1}+a_{2} Y_{2}\right]=a_{1} E\left[Y_{1}\right]+a_{2} E\left[Y_{2}\right]$
- $\sigma^{2}\left[a_{1} Y_{1}+a_{2} Y_{2}\right]=a_{1}{ }^{2} \sigma^{2}\left[Y_{1}\right]$

$$
+a_{2}{ }^{2} \sigma^{2}\left[Y_{2}\right]+2 a_{1} a_{2} \sigma\left[Y_{1}, Y_{2}\right]
$$

Sums of Variables (cont'd)

- If Y_{1} and Y_{2} are independent, then

$$
\sigma\left[Y_{1}, Y_{2}\right]=0,
$$

so

$$
\sigma^{2}\left[a_{1} Y_{1}+a_{2} Y_{2}\right]=a_{1}{ }^{2} \sigma^{2}\left[Y_{1}\right]+a_{2}{ }^{2} \sigma^{2}\left[Y_{2}\right] .
$$

- More generally, if the Y_{i}^{\prime} 's are (mutually) independent

$$
\sigma^{2}\left[\sum a_{i} Y_{i}\right]=\sum a_{i}^{2} \sigma^{2}\left[Y_{i}\right]
$$

§A.4: Normal Distribution

- The Normal (Probability) Distribution has prob. function

$$
f_{Y}(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma^{2}}\right\}
$$

where "exp" is the base of the natural logarithm.

- This has a (famous)
"bell shape"

Normal Dist'n (cont'd)

- The normal is also called the "Gaussian" distribution.
- Notation: $\mathbf{Y} \sim \mathbf{N}\left(\mu, \sigma^{2}\right)$
- Here, $\mu=E[Y]$ and $\sigma^{2}=\sigma^{2}[Y]$
- Can show: $\mathrm{a}+\mathrm{cY} \sim \mathrm{N}\left(\mathrm{a}+\mathrm{c} \mu, \mathrm{c}^{2} \boldsymbol{\sigma}^{2}\right)$, and in particular, $\mathrm{Z}=(\mathrm{Y}-\mu) / \sigma \sim \mathrm{N}(0,1)$.
- Z then has a Standard Normal Distribution

Normal Dist'n (cont'd)

- If $Z \sim N(0,1)$ we call $\Phi(z)=P(Z \leq z)$ the cumulative distribution function of Z. See Appendix Table B. 1
- $P(Z \leq z)$ has interpretation as the area under the normal prob. function.
For instance,
$P(Z \leq 1.53)=0.937$

Normal Dist'n (cont'd)

A useful online app for visualizing the std. normal is at

http://davidmlane.com/normal.html

(O) Area from a value (Use to compute p from Z)

Value from an area (Use to compute Z for confidence intervals)
Results:
Area (probability) 0.937

Normal Critical Points

- We can reverse the process and ask, what value of $z(1-\alpha)$ gives $P[Z>z(1-\alpha)]=\alpha$:

- This is called the upper- α critical point of Z.
- Notice, by symmetry, that $-z(\alpha)=z(1-\alpha)$.

Chi-square Distribution

- If $Y_{i} \sim \operatorname{indep} . N\left(\mu_{i}, \sigma_{i}^{2}\right)$ for $i=1, \ldots, n$, then

$$
\sum a_{i} Y_{i} \sim N\left(\sum a_{i} \mu_{i}, \sum a_{i}{ }^{2} \sigma_{i}{ }^{2}\right)
$$

- Now, suppose $Z_{i} \sim \operatorname{indep} . N(0,1) i=1, \ldots, v$. Then $U=\sum_{i=1}^{\vee} Z_{i}^{2}$ has a special form:

$$
U \sim \chi^{2}(v)
$$

- We say U is distributed as "chi-square" with v degrees of freedom (d.f.).
- Can show: $\mathrm{E}[\mathrm{U}]=v$ and $\sigma^{2}[\mathrm{U}]=2 \mathrm{v}$.

Chi-square Critical Points

- The upper- α critical point of $U \sim \chi^{2}(v)$ is $\chi^{2}(1-\alpha ; v)$ such that $P\left[U>\chi^{2}(1-\alpha ; v)\right]=\alpha$:

- Find these in Appendix Table B.3.

t-distribution

- Now, suppose $\mathbf{Z} \sim \mathbf{N}(0,1)$ is indep. of $\mathbf{U} \sim \chi^{2}(v)$. Let

$$
T=\frac{Z}{\sqrt{U / v}}
$$

- Then we say T is distributed as "Student's t " with v degrees of freedom: $\mathrm{T} \sim \mathrm{t}(\mathrm{v})$.
- Can show: $E[T]=0$ and $\sigma^{2}[T]=v /(v-2)$.

t Critical Points

- The upper- α critical point of $T \sim \mathbf{t}(v)$ is $t(1-\alpha ; v)$ such that $P[T>t(1-\alpha ; v)]=\alpha$:

- By symmetry, $-\mathbf{t}(\alpha ; v)=\mathbf{t}(1-\alpha ; v) ;$ e.g., $-t(.975 ; v)=t(.025 ; v)$
- Find these in Appendix Table B.2.

F-distribution

- Now, suppose $\mathrm{U}_{\mathrm{i}} \sim$ indep. $\chi^{2}\left(v_{\mathrm{i}}\right), \mathrm{i}=1,2$. Let

$$
\mathrm{F}=\frac{\mathrm{U}_{1} / V_{1}}{\mathrm{U}_{2} / v_{2}}
$$

- Then we say F is distributed as, well, ' F ' with v_{1} numerator d.f. and v_{2} denominator d.f. (order is important): $\mathrm{F} \sim \mathrm{F}\left(\mathrm{v}_{1}, v_{2}\right)$.
- Can show (sorta' obvious): 1/F ~ F($\left.v_{2}, v_{1}\right)$

F Critical Points

- The upper- α critical point of $\mathrm{F} \sim \mathrm{F}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ is $F\left(1-\alpha ; v_{1}, v_{2}\right)$ such that

$$
P\left[F>F\left(1-\alpha ; v_{1}, v_{2}\right)\right]=\alpha:
$$

- Find (some of) these in Appendix Table B. 4 .

Central Limit Theorem

- The Central Limit Theorem states that if $Y_{i} \sim$ indep. $\left(\mu, \sigma^{2}\right)$ for $i=1, \ldots, n$, then

$$
\frac{\frac{1}{n} \Sigma_{i=1}^{n} Y_{i}-\mu}{\sigma / \sqrt{n}} \dot{\sim}(0,1)
$$

where the • over the ~ reads "is approximately distributed as."

- The approximation improves as $\mathrm{n} \rightarrow \infty$.

§A.5: Statistical Estimation

- Suppose some parameter of a prob. function $f_{Y}(y)$, say, θ, is unknown.
- A statistical estimator of $\boldsymbol{\theta}$ is generically denoted by $\hat{\boldsymbol{\theta}}$
- $\hat{\boldsymbol{\theta}}$ is unbiased for $\boldsymbol{\theta}$ if $\mathrm{E}[\hat{\boldsymbol{\theta}}]=\boldsymbol{\theta}$

Statistical Estimation (cont'd)

- To find an estimator of θ we can employ the Method of Least Squares (LS).
- Given $Y_{i} \sim$ indep. $f_{Y_{i}}(y)$ for $i=1, \ldots, n$, with $E\left[Y_{i}\right]=\theta$. The LS estimator of θ minimizes the objective quantity

$$
\mathbf{Q}=\Sigma\left(Y_{i}-\theta\right)^{2}
$$

- We can model θ as a function of other parameters to expand the setting.

§A.6: Inference

- Normal sampling: $Y_{i} \sim$ i.i.d. $N\left(\mu, \sigma^{2}\right)$ for $i=$ 1,...,n, where "i.i.d." stands for "independent and identically distributed."
- The sample mean is $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$
- The sample variance is $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$

$$
=\frac{1}{n-1}\left\{\sum_{i=1}^{n} Y_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right\}
$$

- The sample std. deviation is $S=\sqrt{ } \mathbf{S}^{2}$

t-Statistic

- The standard error (of the mean) is

$$
s(\bar{Y})=S / \sqrt{n}
$$

- This is used in the t-statistic

$$
t=(\bar{Y}-\mu) / s(\bar{Y})=\frac{\bar{Y}-\mu}{S / \sqrt{n}}
$$

- Here, $\mathbf{t} \sim \mathrm{t}(\mathbf{n} \mathbf{- 1})$.

Interval Estimates

- An Interval Estimate for μ is based on the t-statistic, and its reference t-dist'n:
$\bar{Y}-t\left(1-\frac{\alpha}{2} ; n-1\right) \frac{S}{\sqrt{n}}<\mu<\bar{Y}+t\left(1-\frac{\alpha}{2} ; n-1\right) \frac{S}{\sqrt{n}}$ or simply

$$
\bar{Y} \pm t\left(1-\frac{\alpha}{2} ; n-1\right) \frac{S}{\sqrt{n}}
$$

- This is called a 1- α Confidence Interval for μ. (Note: confidence is not probability!)

Statistical Inferences

- Confidence intervals are forms of statistical inference, where a statement about a population parameter is constructed using probability arguments.
- Another form of such inference is called hypothesis testing, where hypotheses about an unknown parameter are tested \rightarrow

Hypothesis Test for μ

Null hypoth. Altern. hypoth. Rejection Region

$$
\begin{array}{lll}
H_{0}: \mu=\mu_{o} & H_{a}: \mu \neq \mu_{o} & \left|t^{\star}\right|>t\left(1-\frac{\alpha}{2} ; n-1\right) \\
H_{0}: \mu=\mu_{o} & H_{a}: \mu<\mu_{o} & t^{*}<-t(1-\alpha ; n-1) \\
H_{0}: \mu=\mu_{0} & H_{a}: \mu>\mu_{o} & \mathbf{t}^{\star}>t(1-\alpha ; n-1)
\end{array}
$$

where the test statistic is $t^{*}=\frac{\bar{Y}-\mu_{0}}{S / \sqrt{n}}$

P-values

- The P-value from an hypoth. test is the probability of recovering a test statistic as extreme or more extreme than t^{*} under H_{0}.
- "More extreme" is defined in the direction of H_{a} :

$$
\begin{array}{lll}
\mathrm{H}_{0}: \mu=\mu_{\circ} & \mathrm{H}_{\mathrm{a}}: \mu \neq \mu_{\mathrm{o}} & \mathrm{P}=2 \mathrm{P}\left[\mathrm{t}(\mathrm{n}-1)>\left|\mathrm{t}^{*}\right|\right] \\
\mathrm{H}_{0}: \mu=\mu_{\mathrm{o}} & \mathrm{H}_{\mathrm{a}}: \mu<\mu_{\mathrm{o}} & \mathrm{P}=\mathrm{P}\left[\mathrm{t}(\mathrm{n}-1)<\mathrm{t}^{\star}\right] \\
\mathrm{H}_{0}: \mu=\mu_{\mathrm{o}} & \mathrm{H}_{\mathrm{a}}: \mu>\mu_{\mathrm{o}} & \mathrm{P}=\mathrm{P}\left[\mathrm{t}(\mathrm{n}-1)>\mathrm{t}^{\star}\right]
\end{array}
$$

Significance and Error Rates

- The quantity α here is the significance level of the test ($0<\alpha<1$). Can relate this to the P-value: always reject H_{o} in favor of H_{a} when $\mathrm{P}<\alpha$.
- Interpretation is based on error rates:
- $\alpha=P\left[\right.$ reject $H_{o} \mid H_{o}$ true] = P[false positive error]
- $\beta=P$ [accept $H_{0} \mid H_{0}$ false] $=P$ [false neg. error]
- We say $1-\beta$ is the power of the test (see §2.3).

Error Rates

- Older terminology for a false positive error is a Type I error,
while that for a false negative error is a Type II error.
- Can think of it this way:

True Situation

		H_{0} true	H_{0} false
Our Decision	Do not reject H_{0} Reject H_{0}	Correct Type I error	Type II error Correct

Default is Two-Sided

- In any hypothesis testing scenario, the decision to chose a one-sided vs. a twosided alternative hypothesis MUST be made prior to sampling the data.
- If the subject-matter cannot guide this decision then use a two-sided alternative hypothesis, by default.

Tautology

- There is a tautology between confidence intervals and hypothesis tests: they are two forms of the same inference!
- For the "two-sided" case with $\mathrm{H}_{0}: \mu=\mu_{\mathrm{o}}$ vs. $H_{a}: \mu \neq \mu_{o}$, we reject H_{o} at signif. level α if and only if μ_{o} is not contained in the $1-\alpha$ confidence interval

$$
\bar{Y} \pm t\left(1-\frac{\alpha}{2} ; n-1\right) \frac{S}{\sqrt{n}}
$$

Tautology (cont'd)

- Similarly, for the "one-sided" case with $H_{0}: \mu=\mu_{o}$ vs. $H_{a}: \mu>\mu_{0}$, reject H_{o} at signif. level α if and only if μ_{o} exceeds the (onesided) 1 - α confidence bound

$$
\bar{Y}+t(1-\alpha ; n-1) s / \sqrt{n}
$$

- For $H_{o}: \mu=\mu_{o}$ vs. $H_{a}: \mu<\mu_{o}$, reject H_{o} at signif. level α if and only if μ_{o} lies below the (one-sided) 1 - α confidence bound

$$
\bar{Y}-t(1-\alpha ; n-1) s / \sqrt{n}
$$

§A.7: Two-Sample Inference

- $Y_{i} \sim$ i.i.d. $N\left(\mu_{1}, \sigma^{2}\right)$ for $i=1, \ldots, n_{1}$, indep. of $\mathrm{U}_{\mathrm{j}} \sim$ i.i.d. $N\left(\mu_{2}, \sigma^{2}\right)$ for $\mathrm{j}=1, \ldots, \mathrm{n}_{2}$.
- Find sample means \bar{Y} and $\overline{\mathrm{U}}$, and pooled sample variance

$$
S_{\text {pool }}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

- The pooled variance estimates the common σ^{2}.

Two-Sample Inference (cont'd)

Then, find the test statistic

$$
T_{12}=(\bar{Y}-\bar{U}) / s\{\bar{Y}-\bar{U}\}
$$

where $s\{\bar{Y}-\bar{U}\}=S_{\text {pool }} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$ is the std. error of $\bar{Y}-\bar{U}$.
A $1-\alpha$ conf. int. for the difference $\mu_{1}-\mu_{2}$ is then

$$
(\bar{Y}-\bar{U}) \pm t\left(1-\frac{\alpha}{2} ; n_{1}+n_{2}-2\right) s\{\bar{Y}-\bar{U}\}
$$

Hypothesis Test for $\mu_{1}-\mu_{2}$

Null hypoth. Altern. hypoth. Rejection Region

$$
\begin{array}{lll}
H_{0}: \mu_{1}=\mu_{2} & H_{a}: \mu_{1} \neq \mu_{2} & \left|t^{*}\right|>t\left(1-\frac{\alpha}{2} ; d f\right) \\
H_{0}: \mu_{1}=\mu_{2} & H_{a}: \mu_{1}<\mu_{2} & t^{*}<-t(1-\alpha ; d f) \\
H_{0}: \mu_{1}=\mu_{2} & H_{a}: \mu_{1}>\mu_{2} & t^{*}>t(1-\alpha ; d f)
\end{array}
$$

where $\mathrm{df}=\mathrm{n}_{1}+\mathrm{n}_{2}-2$ and the test statistic is

$$
\mathbf{t}^{*}=(\bar{Y}-\bar{U}) / \mathbf{s}\{\bar{Y}-\bar{U}\}
$$

P-values for $\mu_{1}-\mu_{2}$

Null hypoth. Altern. hypoth. P-value

$$
\begin{array}{lll}
H_{0}: \mu_{1}=\mu_{2} & H_{a}: \mu_{1} \neq \mu_{2} & P=2 P\left[t(d f)>\left|t^{\star}\right|\right] \\
H_{0}: \mu_{1}=\mu_{2} & H_{a}: \mu_{1}<\mu_{2} & P=P\left[t(d f)<t^{\star}\right] \\
H_{0}: \mu_{1}=\mu_{2} & H_{a}: \mu_{1}>\mu_{2} & P=P\left[t(d f)>t^{\star}\right]
\end{array}
$$

where $\mathrm{df}=\mathrm{n}_{1}+\mathrm{n}_{2}-2$ and the test statistic is

$$
\mathbf{t}^{*}=(\bar{Y}-\bar{U}) / \mathbf{s}\{\bar{Y}-\bar{U}\}
$$

Unequal Variances

- If $Y_{i} \sim$ i.i.d. $N\left(\mu_{1}, \sigma_{1}{ }^{2}\right)$ for $i=1, \ldots, n_{1}$, indep. of $\mathrm{U}_{\mathrm{j}} \sim$ i.i.d. $N\left(\mu_{2}, \sigma_{2}{ }^{2}\right)$ for $\mathrm{j}=1, \ldots, \mathrm{n}_{2}$, the variances are heterogeneous. Do NOT use the pooled variance estimator.
- Instead, apply the "Welch-Satterthwaite correction" which uses the individual samples variances and adjusts the t -dist'n d.f. (See your intro. stat. textbook.)

§A.8: Inferences on $\sigma^{\mathbf{2}}$

- Let $Y_{i} \sim$ i.i.d. $N\left(\mu, \sigma^{2}\right)$ for $i=1, \ldots, n$.
- Estimate $\boldsymbol{\sigma}^{2}$ with the sample variance \mathbf{S}^{2}.
- In fact, $\mathrm{E}\left[\mathrm{S}^{2}\right]=\sigma^{2}$ (unbiased!)
- Also, ($\mathbf{n}-1$) $\mathbf{S}^{2} / \boldsymbol{\sigma}^{2} \sim \chi^{2}(\mathbf{n}-1)$. So, a $1-\alpha$ conf. int. for σ^{2} is

$$
\frac{(n-1) S^{2}}{\chi^{2}\left(1-\frac{\alpha}{2} ; n-1\right)}<\sigma^{2}<\frac{(n-1) S^{2}}{\chi^{2}\left(\frac{\alpha}{2} ; n-1\right)}
$$

- (But, it's not optimal...)

Hypothesis Tests for $\boldsymbol{\sigma}^{\mathbf{2}}$

Null hypoth. Alters. hypoth. Rejection Region

$$
\begin{array}{ll}
H_{0}: \sigma=\sigma_{0} \quad H_{a}: \sigma \neq \sigma_{0} & X^{2 *}>\chi^{2}\left(1-\frac{\alpha}{2} ; n-1\right) \\
& \text { or } X^{2 *}<\chi^{2}\left(\frac{\alpha}{2} ; n-1\right)
\end{array}
$$

$$
H_{0}: \sigma=\sigma_{0} \quad H_{a}: \sigma<\sigma_{0}
$$

$$
X^{2 *}<\chi^{2}(\alpha ; n-1)
$$

$$
H_{0}: \sigma=\sigma_{0}
$$

$$
H_{\mathrm{a}}: \sigma>\sigma_{\mathrm{o}}
$$

$$
X^{2 *}>\chi^{2}(1-\alpha ; n-1)
$$

where the test statistic is $X^{2 *}=\frac{(n-1) S^{2}}{\sigma_{0}^{2}}$

§A.9: Two Variances

- We can also extend inferences on variances to the two-sample case, to find a confidence interval on the ratio $\sigma_{1}{ }^{2} / \sigma_{2}{ }^{2}$ or to test hypotheses such as $H_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$.
- The reference dist'n becomes $F\left(n_{1}-1\right.$, $\mathrm{n}_{2}-1$). See Appendix A. 9 for details.

