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Fair Warning

m The material presented from Appendix A is
meant completely as a review to establish
notation and to act as a refresher.

m Students should have learned this
Appendix’s material previously and be
immediately familiar with it. If not, a
previous course in statistics or matrix

algebra is needed before undertaking STAT
571A.




§A.1: Sums and Products

m Observations: Y., Y,, ..., Y

n
= Summation: Y{+Yo+ -~ +Y, = 3...Y;

Consequences:

- 1.k =nk
' z?=1(Yi + Z;) = z?=1Yi + 2?=1Zi
- 3. (k +cY;) =nk +c3_.Y;




Sums and Products (cont’d)

Double sum: 3.,5.0,Y;
= S (Yiu+Yiz - +Yim)
= (Y11+Y 12+ = +Yqm)
+ + (Yn1*+Yn2t = +Ynm)
= 3t ZimYi

Product: (Y)(Y2) - (Yn) =TI:L,Y;




§A.2: Probability Rules

mEvents: A A, ..., A,

= Probability of union:

m Multiplication rule:
P(A; N A = P(A)P(A;|A) = P(A)P(A|A)

/

P(A|B) is a conditional probability




Probability Rules (cont’d)

Complementary event: A; = {not A}

Complement rule: P(A) =1 - P(A))
So, e.g.,, P(ALUA) = P(A; N Kj)




§A.3: Random Variables

m A random variable is a numerical outcome
of some random process.

m Notation: upper-case Latin letter, say, Y.

m If Y takes on discretely many values it is a
Discrete Random Variable.

mlIf Y lies in a continuum of values, it is a
Continuous Random Variable.




Probability Functions

m The Probability Function, fy(y), of Y
gives the mass or density of probability
for Y. For instance, in the discrete
case write

fy(ys) = P(Y =y,) overs =1,...,k.

m If so, we write Y ~ f(y).
m The tilde (~) is read “is distributed as”.




Expectation

m The Expected Value of any function of Y,
g(Y), is E[g(Y)] =3¢, 9(ys) fy(ys) (discrete case)

= I:o g(y) fy(y)dy (contin. case)

m The expectation operator, E[-], satisfies
 E[a] = a (for constant a)
e E[aY] = aE[Y]
« E[a + cY] = a + cE[Y]

m The Population Mean of Y is yy = E[Y].




Variance

m The Population Variance of Y is
o’[Y] = E[(Y — py)?]
= E[Y?] - E’[Y] = E[Y?] - p/%

m Thus,
* 0[c] = 0 (for constant c)
e 0?[cY] = c?0?[Y]
e 0?[c + Y] = o?[Y]
¢ 0?[c + dY] = d?0?[Y]

m The Popl’n Standard Deviation is o[Y].




Mean Squared Error

m Suppose we estimate a parameter w with a
statistic W. The mean of W is E[W] and the
variance of W is o?{W} = E{(W - E[W])3}.

m We define the Mean Squared Error of W as
MSE{W} = E{(W — w)?}.

m Notice that this is
MSE{W} = E{(W - E[W] + E[W] — w)?3}

= E{[(W - E[W]) + (E[W] — w)]*}
= E{(W - E[W])?} + E{(E[W] — w)?}
+ 2E{(W - E[W])(E[W] — w)}




Mean Squared Error (cont’d)

m But now
 E{(W - E[W])?} is just o2{W}
 E[W] — w has no stochastic features, so
E{(E[W] — w)?} = (E[W] — w)? = Bias*{W}
e And then, E{(W — E[W])(E[W] — w)}
= (E[W] — w) E{W - E[W]}
= (E[W] — w) (E{W} — E[W])
= (E[W] - w) (0) =0
m So we find MSE{W} = c?{W} + Bias?{W},
i.e., MSE = Variance + Squared Bias.




Joint Probability and Covariance

m The Joint Probability Function of U and V is
fuv(Uus,vy) =P(U=ugnV=v,) (discrete case)

m The Covariance of U and V is
o[U,V] = E{(U - E[U])(V - E[V])}
= E[UV] - E[U]E[V] = E[UV] - pyuy

m The Correlation between U and V is
p[U,V] = ofU,V]{o[U]o[V]}

=o{ (U -py)ol[U], (V-pny)o[V] }
where -1 < p[U,V] = 1.




Covariance (cont’d)

m Notice that if
o[U,V] = E[UV] = pypy
then:
e o[a, +c,U, a, +c,V] = c,c,0[U,V]
e o[a,,a,+c,V] = 0
e o[la, +U,a,+V] = o[U,V]
e o[U,U] = o?[U]

m Also, if o[U,V] =0, then p[U,V] = 0.




Independence

m Two random variables U and V are
independent if their joint prob. function
factors:

fu v(Us,Vy) = Ty(ug) fy(vy) for all ug,v,

m Then we can show
o[U,V] = p[U,V] = 0,
but not vice versa (exceptin very special
cases).




Sums of Random Variables

m|fY;~fy(y) for i=1,...,n, then
* E[ 2a)Y;]1=2aE[Y]]
« o[ >a)Y;]1=2,2; a3 ol[Y;, Y]

m So, e.g., ifn=2:
* E[a,Y, + a,Y,] = a,E[Y,] + a,E[Y)]
* 0%[a,Y+ a,Y,] = a,*0°[Y,]
+ a,202[Y,] + 2a,a,0[Y,,Y,]




Sums of Variables (cont’d)

mif Y, and Y, are independent, then
o[Y,,Y,] =0,
SO
o’[a,Y + a,Y,] = a,*0°[Y,] + a,°0°[Y,].

m More generally, if the Y,’s are

(mutually) independent
o[ >a)Y;]=>a?0?[Y]




§A.4: Normal Distribution

m The Normal (Probability) Distribution has
prob. function

1 _ 2
oY) = g e~ ¥ 5|

where “exp” is the base of the natural

logarithm.

m This has a
(famous)
“bell shape”

I I I
U+G Uu+20 Uu+30




Normal Dist’n (cont’d)

m The normal is also called the “Gaussian’
distribution.

m Notation: Y ~ N(u,0?)
m Here, y = E[Y] and o? = 0?[Y]

m Can show: a + cY ~ N(a + cp, c20?),
and in particular, Z = (Y — py)/o ~ N(0,1).

m Z then has a Standard Normal Distribution




Normal Dist’n (cont’d)

mIf Z~ N(0,1) we call ®(z) = P(Z < z) the
cumulative distribution function of Z.
See Appendix Table B.1

m P(Z < z) has interpretation as the area
under the normal
prob. function.

For instance,
P(Z <1.53) = 0.937

\/ [




Normal Dist’n (cont’d)

A useful online app for visualizing the std.
normal is at
http://davidmlane.com/normal.htmi

Specify Parameters:
Mean O

sD 1

Above
9@ 153

=1

@) Area from a value (Uze to compute p from Z)

Value from an area (Use to compute Z for confidence intervals)




Normal Critical Points

m We can reverse the process and ask, what
value of z(1-a) gives P[Z > z(1-a)] = a:

\C‘eaa
I

0 Z(1-o)

m This is called the upper-a critical point of Z.
m Notice, by symmetry, that —z(a) = z(1-a).




Chi-square Distribution

mIf Y, ~indep. N(y;,0,%) fori=1,...,n, then
2aY; ~N(>ap;, >a%0?) (A.40)

m Now, suppose Z; ~ indep.N(0,1) i=1,...,v.

Then U =3_.Z? has a special form:
U~ x*(v)

m We say U is distributed as “chi-square”
with v degrees of freedom (d.f.).

m Can show: E[U] = v and o?[U] = 2v.




Chi-square Critical Points

m The upper-a critical point of U ~ y?(v) is
v2(1-a;v) such that P[ U > y?(1-a;v) ] = a:

10
+H(0.95;v)

m Find these in Appendix Table B.3.




t-distribution

m Now, suppose Z ~ N(0,1) is indep. of
U~ y3(v). Let

Z
Iv

Uy

m Then we say T is distributed as
“Student’s t” with v degrees of freedom:
T ~ t(v).

m Can show: E[T] = 0 and o?[T] = v/(v — 2).




t Critical Points

m The upper-a critical pointof T ~ t(v) is
t(1—a;v) such that P[ T > t(1-a;v) ] = a:

[
—1(.975:v) 0 1(.975:v)

m By symmetry, —t(a;v) = t(1—-a;v); e.g.,
—t(.975;v) = t(.025;V)
m Find these in Appendix Table B.2.




F-distribution

m Now, suppose U. ~ indep. ¥%(v,), i =1,2. Let

_ U1/V1
- U2/V2

F

m Then we say F is distributed as, well, ‘F’
with v, numerator d.f. and v, denominator
d.f. (order is important): F ~ F(v,,v,).

m Can show (sorta’ obvious): 1/F ~ F(v,,v,)




F Critical Points

m The upper-a critical point of F ~ F(v,,v,)
iIs F(1-a; v,4,v,) such that
P[F>F(1-a; v,,v,) ] = a:

A

~

10
FO.55v,, v

m Find (some of) these in Appendix
Table B.4.




Central Limit Theorem

m The Central Limit Theorem states that if
Y, ~indep.(p,0%) fori=1,...,n, then

- M .
< N(0,1)

where the - over the ~ reads
“is approximately distributed as.”

m The approximation improves as n—w.




§A.5: Statistical Estimation

m Suppose some parameter of a
prob. function f,(y), say, 6, is
unknown.

m A statistical estimator of Ois
generically denoted by 0

m 0 is unbiased for 0 if E[0]=6




Statistical Estimation (cont’d)

m To find an estimator of 6 we can employ the
Method of Least Squares (LS).

m Given Y; ~indep.fy(y) fori=1,...,n, with

E[Y.] = 6. The LS estimator of 8 minimizes
the objective quantity
Q = 5(Y; - 6)’

m We can model 0 as a function of other
parameters to expand the setting.




§A.6: Inference

m Normal sampling: Y; ~ i.i.d.N(u,0?%) fori=
1,...,n, where “i.i.d.” stands for
“independent and identically distributed.”

a The sample mean is Y = *3" 1Y-

= The sample variance is §%*= 3" (Y; - Y)?
= ﬁ{ziﬂYiz - ﬁ(zi=1Yi) }

m The sample std. deviation is S = VS2




t-Statistic

m The standard error (of the mean) is

s(Y) = Sh/n
m This is used in the t-statistic

Y—p
S/H/n

t=(Y - p)s(Y) =

m Here, t ~ t(n—1).




Interval Estimates

m An Interval Estimate for y is based on the
t-statistic, and its reference t-dist’n:

Y -t(1-2; n- 1)\%<p<7+t(1—g; n—1)%

or simply

m This is called a 1—a Confidence Interval for
M. (Note: confidence is not probability!)




Statistical Inferences

m Confidence intervals are forms of statis-
tical inference, where a statement about a
population parameter is constructed using

probability arguments.

m Another form of such inference is called
hypothesis testing, where hypotheses
about an unknown parameter are tested —




Hypothesis Test for p

Null hypoth. Altern. hypoth. Rejection Region

t* < -t(1—-a;n-1)
t* > t(1—-a;n-1)




P-values

m The P-value from an hypoth. test is the
probability of recovering a test statistic as
extreme or more extreme than t* under H.,.

m “More extreme” is defined in the direction

of H.:
Hoth =, Hip#Fp, P=2P[t(n-1) > |t*]]
Hoip =M, Hpip<p, P=P[t(n—1)<t’]
Hoh =1, Haip>p, P =Pt(n-1)>t7]




Significance and Error Rates

m The quantity a here is the significance level
of thetest (0 <a <1).
Can relate this to the P-value: always reject
H, in favor of H, when P < a.

m Interpretation is based on error rates:
 a = P[reject H, | H, true] = P[false positive error]
* B =PJaccept H, | H, false] = P[false neg. error]

mWe say 1 is the power of the test (see §2.3).




Error Rates

m Older terminology for a false positive error
is a Type | error,

while that for a false negative error is a
Type |l error.

m Can think of it this way:

True Situation

H, true H, false

Our Do not reject H, Correct Type Il error
Decision Reject H, Type I error Correct




Default is Two-Sided

m In any hypothesis testing scenario, the
decision to chose a one-sided vs. a two-
sided alternative hypothesis MUST be
made prior to sampling the data.

m If the subject-matter cannot guide this
decision then use a two-sided alternative
hypothesis, by default.




Tautology

m There is a tautology between confidence
intervals and hypothesis tests: they are
two forms of the same inference!

e For the “two-sided” case with H_: g = 4, vs.
H.: U # y,, we reject H, at signif. level a if
and only if p, is not contained in the 1 — a
confidence interval




Tautology (cont’d)

« Similarly, for the “one-sided” case with
H,: M=, Vvs. H: 4>, reject H, at signif.
level a if and only if gy, exceeds the (one-
sided) 1 — a confidence bound

Y + t(1-a; n—1)S/\/n

e ForH_: p=y,vs.H: y<p, reject H, at
signif. level a if and only if y, lies below the
(one-sided) 1 — a confidence bound

Y - t(1-a; n—1)S/\/n




§A.7: Two-Sample Inference

mY,~i.id.N(un,,0%) fori=1,...,n,, indep. of
U; ~ i.i.d.N(u,,0%) forj=1,...,n,.

= Find sample means Y and U, and
pooled sample variance

,  (n=1)S] + (n2—1)S;
pool — n1+n2—2

m The pooled variance estimates the
common o2,




Two-Sample Inference (cont’d)

Then, find the test statistic
T2 = (Y = U)/s{Y - U}
where s{Y — U} = Spoo\ /. + , is the std.

error of Y — U.
A 1-a conf. int. for the difference pi— M3 is
then

(Y U) tt(1-3; n1+n2—2)s{Y U}




Hypothesis Test for p,—p,

Null hypoth. Altern. hypoth. Rejection Region

It*] > t(1- 2;df)

t* < —t(1—a;df)
t* > t(1-a;df)

where df = n, + n,— 2 and the test statistic is
t* = (Y — U)/s{Y - U}




P-values for p,—p,

Null hypoth. Altern. hypoth. P-value
P = 2P[t(df) > |t*]]
P = P[t(df) < t*]
P = P[t(df) > t¥]

where df = n, + n,— 2 and the test statistic is
t* = (Y — U)/s{Y - U}




Unequal Variances

mlfY, ~ii.d.N(u,,0,%) fori=1,...,n, indep. of
U; ~ i.i.d.N(u,,0,%) forj=1,...,n, the
variances are heterogeneous. Do NOT use
the pooled variance estimator.

m Instead, apply the “Welch-Satterthwaite
correction” which uses the individual
samples variances and adjusts the t-dist’n
d.f. (See your intro. stat. textbook.)




§A.8: Inferences on o2

mletY,~ii.d.N(p,0?) fori=1,...,n.
m Estimate o2 with the sample variance S2.
m In fact, E[S?] = 02 (unbiased!)

m Also, (n—1)S?%/a? ~ y?(n-1). So, a 1—a conf.
int. for o2 is
(n—1)S? ,  (n—=1)S?
a < o < a.
x“(1-3; n—1) x(3; n-1)

m (But, it’s not optimal...)




Hypothesis Tests for o2

Null hypoth. Altern. hypoth. Rejection Region

X% < y*(a; n—1)
X?* > 52 (1—a; n—1)

(n—-1)S?
0_2

where the test statistic is X** =

o




§A.9: Two Variances

m We can also extend inferences on
variances to the two-sample case, to
find a confidence interval on the ratio

0,%l0,% or to test hypotheses such as
H,: 0.2=0,°

m The reference dist’'n becomes F(n,—1,
n,—1). See Appendix A.9 for details.




