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Fair Warning

 The material presented from Appendix A is 
meant completely as a review to establish 
notation and to act as a refresher.

 Students should have learned this 
Appendix’s material previously and be 
immediately familiar with it.  If not, a 
previous course in statistics or matrix 
algebra is needed before undertaking STAT 
571A.



§A.1:  Sums and Products

Observations: Y1, Y2, …, Yn 

Summation: Y1+Y2+ … +Yn = ∑i=1
n Yi  

 Consequences: 
 ·  ∑i=1

n k = nk 
 ·  ∑i=1

n (Yi + Zi) = ∑i=1
n Yi + ∑i=1

n Zi 
 ·  ∑i=1

n (k + cYi) = nk + c∑i=1
n Yi 



Sums and Products (cont’d)

Double sum:  ∑i=1
n ∑j=1

m Yij  
      = ∑i=1

n (Yi1+Yi2
 … +Yim) 

      = (Y11+Y12+  … +Y1m) 
       + … + (Yn1+Yn2+  … +Ynm)
      = ∑j=1

m ∑i=1
n Yij 

 
Product:  (Y1)(Y2) … (Yn) = ∏i=1

n Yi 



§A.2:  Probability Rules

Events:  A1, A2, …, An 

Probability of union: 
P(Ai  Aj) = P(Ai) + P(Aj) – P(Ai  Aj)

Multiplication rule:
P(Ai  Aj) = P(Ai)P(Aj|Ai) = P(Aj)P(Ai|Aj)

P(A|B) is a conditional probability



Probability Rules (cont’d)

Complementary event: 
—
Aj = {not Aj} 

 
Complement rule: P(

—
Aj) = 1 – P(Aj) 

 So, e.g., P( 
————
AiAj ) = P(

—
Ai  

—
Aj) 

 



§A.3:  Random Variables

 A random variable is a numerical outcome 
of some random process.

 Notation: upper-case Latin letter, say, Y.

 If Y takes on discretely many values it is a 
Discrete Random Variable.

 If Y lies in a continuum of values, it is a 
Continuous Random Variable.



Probability Functions

 The Probability Function, fY(y), of Y 
gives the mass or density of probability 
for Y.  For instance, in the discrete 
case write 

fY(ys) = P(Y = ys)  over s = 1,…,k.
 If so, we write Y ~ fY(y).
 The tilde (~) is read “is distributed as”.



Expectation
 The Expected Value of any function of Y, 

g(Y), is 

 The expectation operator, E[•], satisfies
• E[a] = a (for constant a)
• E[aY] = aE[Y]
• E[a + cY] = a + cE[Y]

 The Population Mean of Y is μY = E[Y].

E[g(Y)]  = ∑s=1
k  g(ys) f Y(ys)  (discrete case) 

    = ∫–∞
∞

 g(y) f Y(y)dy   (contin. case) 



Variance

 The Population Variance of Y is 
σ2[Y]  =  E[(Y – μY)2] 

= E[Y2] – E2[Y]  =  E[Y2] – μY
2.

 Thus, 
• σ2[c] = 0 (for constant c)
• σ2[cY] = c2σ2[Y]
• σ2[c + Y] = σ2[Y]
• σ2[c + dY] = d2σ2[Y]

 The Popl’n Standard Deviation is σ[Y].



Mean Squared Error
 Suppose we estimate a parameter ω with a 

statistic W.  The mean of W is E[W] and the 
variance of W is σ2{W} = E{(W – E[W])2}.

 We define the Mean Squared Error of W as 
MSE{W} = E{(W – ω)2}.

 Notice that this is
MSE{W} = E{(W – E[W] + E[W] – ω)2}

= E{[(W – E[W]) + (E[W] – ω)]2}
= E{(W – E[W])2} + E{(E[W] – ω)2} 

+ 2E{(W – E[W])(E[W] – ω)}



Mean Squared Error (cont’d)

 But now
• E{(W – E[W])2} is just σ2{W}
• E[W] – ω has no stochastic features, so 

E{(E[W] – ω)2} = (E[W] – ω)2 = Bias2{W}
• And then, E{(W – E[W])(E[W] – ω)}

= (E[W] – ω) E{W – E[W]}
= (E[W] – ω) (E{W} – E[W])
= (E[W] – ω) (0)  = 0

 So we find MSE{W} = σ2{W} + Bias2{W}, 
i.e., MSE = Variance + Squared Bias.



Joint Probability and Covariance

 The Joint Probability Function of U and V is
fU,V(us,vt) = P( U = us  V = vt )  (discrete case)

 The Covariance of U and V is
σ[U,V] = E{(U – E[U])(V – E[V])}

= E[UV] – E[U]E[V] = E[UV] – μUμV

 The Correlation between U and V is
ρ[U,V] = σ[U,V]/{σ[U]σ[V]}

= σ{ (U – μU)/σ[U] , (V – μV)/σ[V] }
where  –1 ≤ ρ[U,V] ≤ 1.



Covariance (cont’d)

 Notice that if
σ[U,V] = E[UV] – μUμV

then:
• σ[a1 + c1U , a2 + c2V]  =  c1c2σ[U,V] 
• σ[a1 , a2 + c2V]  =  0
• σ[a1 + U , a2 + V]  =  σ[U,V] 
• σ[U,U]  =  σ2[U]

 Also, if σ[U,V] = 0, then ρ[U,V] = 0.



Independence

 Two random variables U and V are 
independent if their joint prob. function 
factors: 

fU,V(us,vt) = fU(us) fV(vt)  for all us,vt

 Then we can show 
σ[U,V] = ρ[U,V] = 0, 

but not vice versa (except in very special 
cases).



Sums of Random Variables

 If Yi ~ fYi
(y) for  i = 1,…,n, then 

• E[ ∑aiYi ] = ∑aiE[Yi] 
• σ2[ ∑aiYi ] = ∑i ∑j ai aj σ[Yi , Yj]

 So, e.g., if n = 2:
• E[a1Y1 + a2Y2] = a1E[Y1] + a2E[Y2]
• σ2[a1Y1+ a2Y2] = a1

2σ2[Y1] 
+ a2

2σ2[Y2] + 2a1a2σ[Y1,Y2] 



Sums of Variables (cont’d)

 If Y1 and Y2 are independent, then 
σ[Y1,Y2] = 0, 

so  
σ2[a1Y1+ a2Y2] = a1

2σ2[Y1] + a2
2σ2[Y2].

 More generally, if the Yi’s are 
(mutually) independent 

σ2[ ∑aiYi ] = ∑ai
2σ2[Yi]



§A.4:  Normal Distribution
 The Normal (Probability) Distribution has 

prob. function 

where “exp” is the base of the natural 
logarithm.

 This has a 
(famous) 
“bell shape”

 f Y(y) = 1
 2π exp







– 

(y – μY)2

22  



Normal Dist’n (cont’d)
 The normal is also called the “Gaussian” 

distribution.

 Notation:  Y ~ N(μ,σ2)

 Here, μ = E[Y] and σ2 = σ2[Y]

 Can show: a + cY ~ N(a + cμ, c2σ2), 
and in particular, Z = (Y – μ)/σ ~ N(0,1).

 Z then has a Standard Normal Distribution



Normal Dist’n (cont’d)

 If Z ~ N(0,1) we call (z) = P(Z ≤ z) the 
cumulative distribution function of Z.  
See Appendix Table B.1

 P(Z ≤ z) has interpretation as the area 
under the normal 
prob. function.  
For instance, 
P(Z ≤ 1.53) = 0.937 



Normal Dist’n (cont’d)
A useful online app for visualizing the std. 
normal is at 
http://davidmlane.com/normal.html



Normal Critical Points
 We can reverse the process and ask, what 

value of z(1–α) gives P[Z > z(1–α)] = α:

 This is called the upper-α critical point of Z.
 Notice, by symmetry, that –z(α) = z(1–α).



Chi-square Distribution

 If Yi ~ indep. N(μi,σi
2)  for i = 1,…,n, then 

∑aiYi ~ N( ∑aiμi , ∑ai
2σi

2 ) (A.40)

 Now, suppose Zi ~ indep.N(0,1) i = 1,…,.  
Then 

U ~ 2()
 We say U is distributed as “chi-square” 

with  degrees of freedom (d.f.).
 Can show: E[U] =  and σ2[U] = 2.

U = ∑i=1
 Zi

2 has a special form: 



 The upper-α critical point of U ~ 2() is  
2(1–α;) such that P[ U > 2(1–α;) ] = α:

 Find these in Appendix Table B.3.

Chi-square Critical Points



t-distribution

 Now, suppose Z ~ N(0,1)  is indep. of 
U ~ 2().  Let

 Then we say T is distributed as 
“Student’s t” with  degrees of freedom: 
T ~ t(). 

 Can show: E[T] = 0 and σ2[T] = /( – 2).

T =  Z
U/ 



t Critical Points
 The upper-α critical point of T ~ t() is  

t(1–α;) such that P[ T > t(1–α;) ] = α:

 By symmetry, –t(α;) = t(1–α;); e.g.,
–t(.975;) = t(.025;)

 Find these in Appendix Table B.2.



F-distribution

 Now, suppose Ui ~ indep. 2(i), i = 1,2. Let

 Then we say F is distributed as, well, ‘F’ 
with 1 numerator d.f. and 2 denominator 
d.f. (order is important): F ~ F(1,2). 

 Can show (sorta’ obvious): 1/F ~ F(2,1)

F = U1/1
U2/2

 



 The upper-α critical point of F ~ F(1,2) 
is F(1–α; 1,2) such that 

P[ F > F(1–α; 1,2) ] = α:

 Find (some of) these in Appendix 
Table B.4.

F Critical Points



Central Limit Theorem

 The Central Limit Theorem states that if 
Yi ~ indep.(μ,σ2)  for i = 1,…,n, then 

where the  • over the  ~  reads 
“is approximately distributed as.”

 The approximation improves as n→∞. 

1
n∑i=1

n Yi – μ
/ n   ~  N(0,1)  



§A.5: Statistical Estimation

 Suppose some parameter of a 
prob. function fY(y), say, θ, is 
unknown.

 A statistical estimator of θ is 
generically denoted by 

 θ̂ is unbiased for θ if E[ θ̂ ] = θ

θ̂ 



Statistical Estimation (cont’d)

 To find an estimator of θ we can employ the 
Method of Least Squares (LS).

 Given Yi ~ indep. fYi
(y)  for i = 1,…,n, with 

E[Yi] = θ.  The LS estimator of θ minimizes 
the objective quantity 

Q = ∑(Yi – θ)2

 We can model θ as a function of other 
parameters to expand the setting.



§A.6: Inference

 Normal sampling: Yi ~ i.i.d.N(μ,σ2)  for i = 
1,…,n, where “i.i.d.” stands for 
“independent and identically distributed.”

 The sample mean is

 The sample variance is

 The sample std. deviation is  S = √S2

_
Y = 1n∑i=1

n Yi  

      S2 = 1
n–1∑i=1

n (Yi – 
_
Y)2  

   = 1
n–1






∑i=1

n Yi
2 – 1

n(∑i=1
n Yi)2   



t-Statistic

 The standard error (of the mean) is

 This is used in the t-statistic

 Here, t ~ t(n–1).

s(
—
Y) = S/ n 

t = (
—
Y – μ)/s(

—
Y)  = 

—
Y – μ
S/ n 



Interval Estimates

 An Interval Estimate for μ is based on the 
t-statistic, and its reference t-dist’n:

 This is called a 1–α Confidence Interval for 
μ.  (Note: confidence is not probability!)

—
Y – t(1 – α2; n–1) S

n < μ < 
—
Y + t(1 – α2; n–1) S

n
or simply 

               
—
Y  ±  t(1 – α2; n–1) S

n 



Statistical Inferences

 Confidence intervals are forms of statis-
tical inference, where a statement about a 
population parameter is constructed using 
probability arguments.

 Another form of such inference is called 
hypothesis testing, where hypotheses 
about an unknown parameter are tested  →



Hypothesis Test for μ

Null hypoth. Altern. hypoth. Rejection Region
------------------ ---------------------- ------------------------
Ho: μ = μo Ha: μ ≠ μo |t*| >

Ho: μ = μo Ha: μ < μo t* < –t(1–α;n–1)

Ho: μ = μo Ha: μ > μo t* >  t(1–α;n–1)

where the test statistic is t* = 

t(1 – α2;n–1) 

—
Y – μo
S/ n  



P-values
 The P-value from an hypoth. test is the 

probability of recovering a test statistic as 
extreme or more extreme than t* under Ho.

 “More extreme” is defined in the direction 
of Ha:
Ho:μ = μo Ha:μ ≠ μo P = 2P[t(n–1) > |t*|]

Ho:μ = μo Ha:μ < μo P = P[t(n–1) < t*]

Ho:μ = μo Ha:μ > μo P = P[t(n–1) > t*]



Significance and Error Rates

 The quantity α here is the significance level
of the test ( 0 < α < 1).  
Can relate this to the P-value: always reject 
Ho in favor of Ha when P < α.

 Interpretation is based on error rates:
• α = P[reject Ho | Ho true] = P[false positive error]
• β = P[accept Ho | Ho false] = P[false neg. error]

We say 1–β is the power of the test (see §2.3).



Error Rates

 Older terminology for a false positive error 
is a Type I error,

while that for a false negative error is a 
Type II error.

 Can think of it this way:



Default is Two-Sided

 In any hypothesis testing scenario, the 
decision to chose a one-sided vs. a two-
sided alternative hypothesis  MUST  be 
made prior to sampling the data.

 If the subject-matter cannot guide this 
decision then use a two-sided alternative 
hypothesis, by default.



Tautology

 There is a tautology between confidence 
intervals and hypothesis tests:  they are 
two forms of the same inference!
• For the “two-sided” case with Ho: μ = μo vs. 

Ha: μ ≠ μo, we reject Ho at signif. level α if 
and only if μo is not contained in the 1 – α
confidence interval

 
—
Y  ±  t(1 – α2; n–1) S

n 



Tautology (cont’d)
• Similarly, for the “one-sided” case with

Ho: μ = μo vs. Ha: μ > μo, reject Ho at signif. 
level α if and only if μo exceeds the (one-
sided) 1 – α confidence bound

• For Ho: μ = μo vs. Ha: μ < μo, reject Ho at 
signif. level α if and only if μo lies below the 
(one-sided) 1 – α confidence bound

 
—
Y  +  t(1–α; n–1)S/ n

 
—
Y  –  t(1–α; n–1)S/ n



§A.7: Two-Sample Inference

 Yi ~ i.i.d.N(μ1,σ2)  for i = 1,…,n1, indep. of 
Uj ~ i.i.d.N(μ2,σ2)  for j = 1,…,n2.



 The pooled variance estimates the 
common σ2.

Find sample means 
_
Y and 

_
U, and 

pooled sample variance 

  Spool
2  = 

(n1 – 1)S1
2 + (n2 – 1)S2

2

n1 + n2 – 2  



Two-Sample Inference (cont’d)

Then, find the test statistic
    T12 = (

_
Y – 

_
U)/s{

_
Y – 

_
U} 

where s{
_
Y – 

_
U} = Spool

1
n1

 + 1
n2

 is the std. 
error of 

_
Y – 

_
U

A 1–α conf. int. for the difference μ1 – μ2 is 
then 
  (

_
Y – 

_
U) ± t(1 – α2; n1+n2–2)s{

_
Y – 

_
U} 



Hypothesis Test for μ1–μ2

Null hypoth. Altern. hypoth. Rejection Region
------------------ ---------------------- -------------------------
Ho: μ1 = μ2 Ha: μ1 ≠ μ2 |t*| >

Ho: μ1 = μ2 Ha: μ1 < μ2 t* < –t(1–α;df)

Ho: μ1 = μ2 Ha: μ1 > μ2 t* >  t(1–α;df)

where df = n1 + n2 – 2  and the test statistic is

t(1 – α2;df) 

t* = (
_
Y – 

_
U)/s{

_
Y – 

_
U} 



P-values for μ1–μ2

Null hypoth. Altern. hypoth. P-value
------------------ ---------------------- --------------------------
Ho: μ1 = μ2 Ha: μ1 ≠ μ2 P = 2P[t(df) > |t*|]

Ho: μ1 = μ2 Ha: μ1 < μ2 P = P[t(df) < t*]

Ho: μ1 = μ2 Ha: μ1 > μ2 P = P[t(df) > t*]

where df = n1 + n2 – 2  and the test statistic is
t* = (

_
Y – 

_
U)/s{

_
Y – 

_
U} 



Unequal Variances

 If Yi ~ i.i.d.N(μ1,σ1
2)  for i = 1,…,n1, indep. of 

Uj ~ i.i.d.N(μ2,σ2
2)  for j = 1,…,n2, the 

variances are heterogeneous.  Do NOT use 
the pooled variance estimator.

 Instead, apply the “Welch-Satterthwaite 
correction” which uses the individual 
samples variances and adjusts the t-dist’n 
d.f.  (See your intro. stat. textbook.)



§A.8: Inferences on σ2

 Let Yi ~ i.i.d.N(μ,σ2)  for i = 1,…,n. 

 Estimate σ2 with the sample variance S2.

 In fact, E[S2] = σ2 (unbiased!)

 Also, (n–1)S2/σ2 ~ 2(n–1).  So, a 1–α conf. 
int. for σ2 is 

 (But, it’s not optimal...)

(n–1)S2

2(1– α2; n–1) < σ2 < (n–1)S2

2( α2; n–1) 



Hypothesis Tests for σ2

Null hypoth. Altern. hypoth. Rejection Region
------------------ ---------------------- ------------------------------
Ho: σ = σo Ha: σ≠ σo X2* >

or X2* <

Ho: σ = σo Ha: σ < σo X2* < 2(α; n–1)

Ho: σ = σo Ha: σ > σo X2* > 2 (1–α; n–1)

where the test statistic is

2(1– α2; n–1) 
2( α2; n–1) 

X2* = (n–1)S2

σo
2



§A.9: Two Variances

 We can also extend inferences on 
variances to the two-sample case, to 
find a confidence interval on the ratio 
σ1

2/σ2
2 or to test hypotheses such as 

Ho: σ1
2 = σ2

2.  

 The reference dist’n becomes F(n1–1,
n2–1).  See Appendix A.9 for details.


