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Linear Regression

 Linear regression is concerned with 
estimating relationships between a

response variable, Y
and an

explanatory/predictor variable, X

 The simple linear (straight-line) relation-
ship is

Y = β0 + β1X
where β1 is the slope (“rise-over-run”) and 
β0 is the Y-intercept.
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Data model

In practice, we observe data pairs (Xi,Yi), 
i = 1,…, n, usually with observational/experi-
mental error. Model this as

Yi = (β0 + β1Xi) + εi (1.1)

i.e., observed Y = 
(simple linear model) + random error term

Can think of this as Y = (signal) + noise.



Historical Note

 As the text indicates, the originator of the 
term “regression” was Sir Francis Galton

 He plotted X = ‘Mid-Parent’ height (as the 
vertical axis), and Y = Adult child height 
(as the horizontal axis), and found that as 
adults, the offspring “regressed” to more 
central heights.

 Galton published the data in 1886 (in the 
J. Anthropol. Inst. Gr. Brit. & Ireland).



Galton’s 1886 “Plate X”
Galton’s original plot:



Model Assumptions

 For our simple linear model, we assume
• Xi is a known constant
• β0 and β1 are unknown parameters
• E[εi] = 0  for all i
• σ2[εi] = σ2 (constant) for all i
• σ[εi,εj] = 0   (zero!) for all i≠j

 Notice: εi is a random variable, thus so 
is Yi.



Model Impact on Yi

We find
• E[Yi] = E[β0 + β1Xi + εi]  =  E[β0 + β1Xi] + E[εi]

=  β0 + β1Xi + E[εi]  =  β0 + β1Xi + 0
= β0 + β1Xi

(since β0 + β1Xi is nonrandom).
We say E[Yi] = β0 + β1Xi is the mean response.

• σ2[Yi] = σ2[β0 + β1Xi + εi]  =  σ2[εi]  =  σ2

(again, since β0 + β1Xi is nonrandom).
• σ[Yi,Yj] = … = 0  for all i≠j



Probability Model
 Graphically, there is some probability 

function for Yi resting at each Xi:

 Notice that each prob. function has the 
same variance!



Alternative Formulations

 Alternative (but, essentially equivalent) 
formulations for the simple linear model 
include:
•

• Yi = β0X0i + β1X1i + εi
where  X0i = 1  and  X1i = Xi for all i.

 These can be useful in select cases.

      Yi = β0* + β1(Xi – 
_
X) + εi 

(so β0* = β0 + β1

_
X)   for 

_
X = 1

n∑i=1
n Xi 



Data Generation Mechanisms

 Note that we can observe the data pairs 
in two fundamentally different ways:
• Observational study: data are recorded 

without strict experimental controls
 harder to relate cause & effect

• Experimental study: data from controlled 
experiments
 inference is truer but conduct is more 
expensive

 We consider both forms in our data 
examples.



Least Squares (LS)
 Given data pairs (Xi,Yi), i = 1,…, n, we 

estimate β0 and β1 using the method of 
least squares (LS) (from Appendix A.5).

 Denote these as b0 and b1, resp. (Equa-
tions will follow.)





Then, the fitted value is Ŷi = b0 + b1Xi. Find 
these by minimizing Q = ∑(Yi – Ŷi)2. 

The corresp. residual is ei = Yi – Ŷi. We 
want Ŷi to be as close to Yi as possible. 



LS Line and Residuals

 Graphically, 
the idea is 
something 
like this  →

 Points are 
data pairs; 
line is 
b0 + b1X



‘Normal’ Equations

 To minimize Q with resp. to b0 and b1, via 
calculus (see pp.17-18), we find the LS 
estimators solve the system of equations

∑Yi = nb0 + b1∑Xi

∑XiYi = b0∑Xi + b1∑Xi
2

 These are called the normal equations for 
the LS estimators.



Gauss-Markov Theorem

 A result known as the Gauss-Markov 
Theorem motivates use of the LS estima-
tors:  under model (1.1), the LS solutions 
for b0 and b1 are (a) unbiased and (b) have 
min. variance among all unbiased linear 
estimators.

 (a) says that E[bj] = βj for j=0,1

 (b) says σ2[b0] and σ2[b1] are minimized.



LS Solutions: Slope
The LS solution has, in fact, a closed form.  
First, the slope parameter is 

or also

b1 = 
∑i=1

n (Xi – 
—
X)(Yi – 

—
Y)

∑i=1
n (Xi – 

—
X)2

  b1 = 
∑i=1

n (Xi – 
—
X)Yi

∑m=1
n (Xm – 

—
X)2 = ∑i=1

n kiYi 

for  ki = (Xi – 
—
X)

∑m=1
n (Xm – 

—
X)2 



LS Solutions: Intercept

Then, the intercept is expressed 
conveniently as 

Indeed, b0 can also be written in the form 
b0 = ∑i=1

n kiYi  (...for a different set of kis) 

b0 = 
—
Y – b1

—
X 



Example CH01TA01 (p. 19)

X = lot size of refrig. parts production
Y = hours worked (labor)
at the Toluca Manufacturing Co.

The data are in Table 1.1. We could just ‘do 
the math’: 
∑i=1

n (Xi – 
—
X)Yi = 70690  &  ∑i=1

n (Xi – 
—
X)2 = 19800

so b1 = 
∑i=1

n (Xi – 
—
X)Yi

∑i=1
n (Xi – 

—
X)2  = 70690

19800 = 3.5702 



Example CH01TA01 (cont’d)

But, it’s so much easier in R  →

Also, 
—
Y = 312.28 and 

—
X = 70, so 

b0 = 
—
Y – b1

—
X = 312.28 – (3.5702)(70)  

 = 62.37. 
 
The prediction equation for Ŷi = b0 + b1Xi  
is then Ŷi = 62.37 + 3.5702Xi. 



Example CH01TA01 (cont’d)

Toluca Co. example:  LS fit for simple 
linear model via R:

> X = c(80, 30, ... , 70)

> Y = c(399, 121, ... , 323)

> CH01TA01.lm = lm( Y ~ X )

> summary( CH01TA01.lm )



summary() output for 
Toluca example

Call:
lm(formula = Y ~ X)

Residuals:
Min      1Q  Median      3Q     Max 

-83.876 -34.088  -5.982  38.826 103.528 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  62.366 26.177   2.382   0.0259 *  
X            3.570 0.347  10.290 4.45e-10 ***

LS estimates of the regr. parameters highlighted in red here.



Example CH01TA01 (cont’d)

ALWAYS PLOT THE DATA!
Toluca example.  Scatterplot plot in R:

> plot( Y ~ X )

> abline( CH01TA01.lm )

abline() command overlays line from LS fit



LS line

Toluca Data Scatterplot



Example CH01TA01 (p.22)

 What about predicting the fitted value at 
a given Xi?

 For instance, at X1 = 80 we see
Ŷ1 = b0 + b1(80) = 62.37 + (3.5702)(80)  
 = 347.98 
 
The corresp. residual is  
e1 = Y1 – Ŷ1 =  399 – 347.98 = 51.02. 
(See Table 1.2.)



Consequences of the LS Fit

The LS estimators produce the following, 
interesting, mathematical consequences:

• ∑ei = 0       (always!)
• ∑ei

2 is a minimum  (since it’s LS)
• ∑Yi = ∑
• ∑eiXi = 0    (weighted sum of ei’s is zero)
• ∑ei = 0
•

Ŷi

Ŷi 

Ŷ(
—
X)  =  b0 + b1

—
X  =  

—
Y 



Estimating σ2

 How to estimate a variance?

 Think of the single-sample case.  For 
Y1,…,Yn, we use the sample variance:

 Now do the same thing with the simple 
linear model, but replace     with      →

S2 = 
∑i=1

n (Yi – 
—
Y)2

n–1  
 

     ↔
(dissection)

  a “sum of squares”
degrees of freedom 

—
Y Ŷi



SSE

The resulting sum of squares is called the 
Sum of Squared Errors, or SSE:

(Notice that it’s just the sum of squared 
residuals, so it’s also called the Residual 
Sum of Squares.)

This has d.f. = n – 2.  (Why?  Think of it as 
“# observations” – “# fitted components”) 

SSE = ∑i=1
n (Yi – Ŷi)2 = ∑i=1

n ei
2 



MSE

Now, divide SSE by its d.f.:

We call this the Mean Squared Error, or MSE.

Under (1.1), can show that E[MSE] = σ2

(unbiased!).

To estimate σ, use the root mean squared 
error: 

MSE = SSE
d.f.  = 

∑i=1
n (Yi – Ŷi)2

n–2  

MSE



Normal Error Model

 Let’s add one last model component: 
impose a formal distribution on the error 
terms in εi.

 Recall:  Yi = (β0 + β1Xi) + εi.

 Now, let εi ~ i.i.d. N( E[εi], σ2[εi] ).  Since we 
already specified E[εi] = 0 and σ2[εi] = σ2, 
this yields 

εi ~ i.i.d. N(0,σ2). 



Maximum Likelihood

 The combination of the simple linear model 
in (1.1) with normal errors is called a 
Simple Linear Regression (SLR) model.

 By imposing a formal probability distribu-
tion into the model, a form of estimation 
known as Maximum Likelihood is available.

 We use ML occasionally.  For now, know 
that ML estimators and LS estimators for 
the SLR model actually coincide (i.e., 
they’re identical).


