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Linear Regression

m Linear regression is concerned with
estimating relationships between a
response variable, Y
and an
explanatory/predictor variable, X

m The simple linear (straight-line) relation-
ship is
Y =By + B4X
where B, is the slope (“rise-over-run”) and
B, is the Y-intercept.







Data model

In practice, we observe data pairs (X,,Y:),
i =1,..., n, usually with observational/experi-
mental error. Model this as

Y; = (Bo + B4 X)) *+ & (1.1)

_ "\
i.e., observed Y = ) \

(simple linear model) + random error term

Can think of this as Y = (signal) + noise.




Historical Note

m As the text indicates, the originator of the
term “regression” was Sir Francis Galton

m He plotted X = ‘Mid-Parent’ height (as the
vertical axis), and Y = Adult child height

(as the horizontal axis), and found that as
adults, the offspring “regressed” to more
central heights.

m Galton published the data in 1886 (in the
J. Anthropol. Inst. Gr. Brit. & Ireland).




Galton’s 1886 “Plate X”

Galton’s original plot:

DIAGRAM BASED ON TABLE |,
(all female heights are multiplied by 1'08)

MID-PARENTS ADULT CHILDREN
T their Heights , and Deviations from 68%inches.

Heaghts| Deviates
_in in
inches | inches
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Model Assumptions

m For our simple linear model, we assume
e X. is a known constant
* B, and 3, are unknown parameters
 E[e.]=0 foralli
« 0%[¢;] = 02 (constant) for all i
* o[g;,g] =0 (zero!) for all i#

m Notice: g is a random variable, thus so
is Y..




Model Impact on Y,

We find
* E[Y] = E[B, *+ B4 X; + €] = E[B, + B4X;] + E[g]
= By + B X, +E[g] = By +B4X;+0
= Bo + B4 X;
(since B, + B4X; is nonrandom).
We say E[Y,] = B, + B4X; is the mean response.
« o?[Y] = 0*[By + B4X; + &] = o%[g] = 0?
(again, since B, + B,X; is nonrandom).

* o[Y,Y;] = =0 forall i#




Probability Model

m Graphically, there is some probability
function for Y, resting at each X::

=
o
"
=
o
Q

m Notice that ea‘ch prob. function has the
same variance!




Alternative Formulations

m Alternative (but, essentially equivalent)
formulations for the simple linear model
include:

o Yi=Bo*+ Bi(Xi—X) +

(SO Bo* =P T 612) for X — %Z:LX.

* Y= BoXg + BiXy; + &
where X, =1 and X,, =X, for all i.

m These can be useful in select cases.




Data Generation Mechanisms

m Note that we can observe the data pairs
in two fundamentally different ways:
 Observational study: data are recorded

without strict experimental controls
= harder to relate cause & effect

 Experimental study: data from controlled
experiments
= inference is truer but conduct is more
expensive

m We consider both forms in our data
examples.




Least Squares (LS)

m Given data pairs (X,,Y;),i=1,..., n, we
estimate 3, and 3, using the method of
least squares (LS) (from Appendix A.5).

m Denote these as b, and b,, resp. (Equa-
tions will follow.)

= Then, the fitted value is Y; = by + b;X;. Find
these by minimizing Q = 3 (Y; - Y))>

n

B The corresp. residual is e¢;=Y; - Y;. We
want Y, to be as close to Y; as possible.




LS Line and Residuals

m Graphically,
the idea iIs
something

like this —

m Points are
data pairs;
line is
b, + b, X




‘Normal’ Equations

m To minimize Q with resp. to b, and b,, via
calculus (see pp.17-18), we find the LS
estimators solve the system of equations

2Y; =nby+b )X
XY =bgd X; + b, X2

m These are called the normal equations for
the LS estimators.




Gauss-Markov Theorem

m A result known as the Gauss-Markov
Theorem motivates use of the LS estima-
tors: under model (1.1), the LS solutions
for b, and b, are (a) unbiased and (b) have
min. variance among all unbiased linear
estimators.

m (a) says that E[b;] = B, for j=0,1

m (b) says o?[b,] and o?[b,] are minimized.




LS Solutions: Slope

The LS solution has, in fact, a closed form.
First, the slope parameter is

S (X = X)(Yi - Y)
Z?=1 (Xi - )_()2

1=

or also

zin=1(xi - )_()YI _ h

b1 = Zi=1 kiYi

5h o (Xm = X)2
(Xi — X)
zrr:n=1(xm - )_()2

for k;=




LS Solutions: Intercept

Then, the intercept is expressed
conveniently as

bo=Y—b1X

Indeed, b, can also be written in the form
bo=3._.kiY; (...for a different set of k;s)




Example CHO1TAO1 (p. 19)

X = lot size of refrig. parts production
Y = hours worked (labor)
at the Toluca Manufacturing Co.

The data are in Table 1.1. We could just ‘do
the math’:

>T.(Xi = X)Y; = 70690 & 3..(X;— X)*=19800

" (X — X)Y;
z';f( _) , = Zgggg = 3.5702
2i=1(Xi — X)

so b=




Example CHO1TAO01 (cont’d)

Also, Y = 312.28 and X = 70, so

bo =Y — b;X = 312.28 — (3.5702)(70)
= 62.37.

The prediction equation for ?i = by + b X
is then Y; = 62.37 + 3.5702X.

But, it’'s so much easierinR —




Example CHO1TAO01 (cont’d)

Toluca Co. example: LS fit for simple
linear model via R:

X =c(80, 30, ... , 70)
Y = c(399, 121, ... , 323)
CHO1TAOl1.Im = ImC Y ~ X )
summary( CHO1TAO1.Im )




summary () output for
Toluca example

Call:
Im(formula = Y ~ X)

Residuals:
MiIn 10 Median 30 Max
-83.876 -34.088 -5.982 38.826 103.528

Coefficients:
Estimate
(Intercept) 62.366

X 3.570
—

LS estimates of the regr. parameters highlighted in red here.




Example CHO1TAO01 (cont’d)

ALWAYS PLOT THE DATA!
Toluca example. Scatterplot plot in R:

> plot( Y ~ X )
> abline( CHO1TAO1.0Im )

abline() command overlays line from LS fit




Toluca Data Scatterplot

LS line




Example CHO1TAO01 (p.22)

m What about predicting the fitted value at
a given X.?

m For instance, at X, = 80 we see

Y, = b, + b4(80) = 62.37 + (3.5702)(80)
= 347.98

The corresp. residual is
e = Y1 — Y1 = 399 — 347.98 = 51.02.
(See Table 1.2.)




Consequences of the LS Fit

The LS estimators produce the following,
interesting, mathematical consequences:

e >e; =0 (always!)

e >e2 is a minimum (since it’s LS)

+ YY; =YY,

e YeX.=0 (weighted sum of e/’s is zero)
e YeY; =0

*Y(X) = bp+b X = Y




Estimating o2

m How to estimate a variance?

m Think of the single-sample case. For
Y,,...,Y,,, Wwe use the sample variance:

a “sum of squares”

degrees of freedom
(dissection)

m Now do the same thing with the S|mple
linear model, but replace Y with Y —




SSE

The resulting sum of squares is called the
Sum of Squared Errors, or SSE:

SSE =3, (Yi-Y)* =36

(Notice that it’s just the sum of squared
residuals, so it’s also called the Residual
Sum of Squares.)

This has d.f.=n-2. (Why? Think of it as
“# observations” — “# fitted components”)




MSE

Now, divide SSE by its d.f.:

~ SSE z. 1(Y Y)>

We call this the Mean Squared Error, or MSE.

Under (1.1), can show that E[MSE] =
(unbiased]!).

To estimate o, use the root mean squared

error:~/MSE




Normal Error Model

m Let’s add one last model component:
impose a formal distribution on the error
terms in g,

m Recall: Y, = (B, +BX) + &,

m Now, let € ~ i.i.d. N( E[g], 0%[¢] ). Since we
already specified E[¢,] = 0 and 0?[¢] = 07,
this yields

g ~ i.i.d. N(0,02).




Maximum Likelihood

m The combination of the simple linear model
in (1.1) with normal errors is called a
Simple Linear Regression (SLR) model.

m By imposing a formal probability distribu-

tion into the model, a form of estimation
known as Maximum Likelihood is available.

m We use ML occasionally. For now, know
that ML estimators and LS estimators for
the SLR model actually coincide (i.e.,
they’re identical).




