STAT 571A - Advanced Statistical Regression Analysis

Chapter 1 NOTES Linear Regression with One Predictor Variable

© 2014 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means - electronic, online, mechanical, photoreproduction, recording, or scanning - without the prior written consent of the course instructor.

Linear Regression

■ Linear regression is concerned with estimating relationships between a response variable, Y and an

explanatory/predictor variable, X

■ The simple linear (straight-line) relationship is

$$
Y=\beta_{0}+\beta_{1} X
$$

where β_{1} is the slope ("rise-over-run") and β_{0} is the Y -intercept.

Data model

In practice, we observe data pairs (X_{i}, Y_{i}), $\mathrm{i}=1, \ldots, \mathrm{n}$, usually with observational/experimental error. Model this as
i.e., observed $\mathbf{Y}=$

$$
\begin{equation*}
Y_{i}=\left(\beta_{0}+\beta_{1} X_{i}\right)+\varepsilon_{i} \tag{1.1}
\end{equation*}
$$

(simple linear model) + random error term
Can think of this as $\mathbf{Y}=($ signal $)+$ noise.

Historical Note

- As the text indicates, the originator of the term "regression" was Sir Francis Galton
- He plotted $\mathrm{X}=$ ' Mid -Parent' height (as the vertical axis), and $Y=$ Adult child height (as the horizontal axis), and found that as adults, the offspring "regressed" to more central heights.
- Galton published the data in 1886 (in the J. Anthropol. Inst. Gr. Brit. \& Ireland).

Galton's 1886 "Plate X"

Galton's original plot:

Model Assumptions

- For our simple linear model, we assume
- X_{i} is a known constant
- β_{0} and β_{1} are unknown parameters
- $\mathrm{E}\left[\varepsilon_{\mathrm{i}}\right]=0$ for all i
- $\sigma^{2}\left[\varepsilon_{i}\right]=\sigma^{2}$ (constant) for all i
- $\sigma\left[\varepsilon_{i}, \varepsilon_{j}\right]=0 \quad$ (zero!) for all $i \neq j$
- Notice: ε_{i} is a random variable, thus so is Y_{i}.

Model Impact on \mathbf{Y}_{i}

We find

- $E\left[Y_{i}\right]=E\left[\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}\right]=E\left[\beta_{0}+\beta_{1} X_{i}\right]+E\left[\varepsilon_{i}\right]$

$$
=\beta_{0}+\beta_{1} X_{i}+E\left[\varepsilon_{i}\right]=\beta_{0}+\beta_{1} X_{i}+0
$$

$$
=\beta_{0}+\beta_{1} X_{i}
$$

(since $\beta_{0}+\beta_{1} X_{i}$ is nonrandom).
We say $E\left[Y_{i}\right]=\beta_{0}+\beta_{1} X_{i}$ is the mean response.

- $\sigma^{2}\left[Y_{i}\right]=\sigma^{2}\left[\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}\right]=\sigma^{2}\left[\varepsilon_{i}\right]=\sigma^{2}$
(again, since $\beta_{0}+\beta_{1} X_{i}$ is nonrandom).
- $\sigma\left[\mathrm{Y}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{j}}\right]=\cdots=0$ for all $\mathrm{i} \neq \mathrm{j}$

Probability Model

- Graphically, there is some probability function for \mathbf{Y}_{i} resting at each X_{i} :

- Notice that each prob. function has the same variance!

Alternative Formulations

- Alternative (but, essentially equivalent) formulations for the simple linear model include:
- $Y_{i}=\beta_{0}{ }^{*}+\beta_{1}\left(X_{i}-\bar{X}\right)+\varepsilon_{i}$
(so $\beta_{0}{ }^{*}=\beta_{0}+\beta_{1} \bar{X}$) for $\bar{X}=\frac{1}{n} \Sigma_{i=1}^{n} X_{i}$
- $Y_{i}=\beta_{0} X_{0 i}+\beta_{1} X_{1 i}+\varepsilon_{i}$
where $X_{0 i}=1$ and $X_{1 i}=X_{i}$ for all i.
- These can be useful in select cases.

Data Generation Mechanisms

■ Note that we can observe the data pairs in two fundamentally different ways:

- Observational study: data are recorded without strict experimental controls \Rightarrow harder to relate cause \& effect
- Experimental study: data from controlled experiments
\Rightarrow inference is truer but conduct is more expensive
- We consider both forms in our data examples.

Least Squares (LS)

■ Given data pairs (X_{i}, Y_{i}), $i=1, \ldots, n$, we estimate β_{0} and β_{1} using the method of least squares (LS) (from Appendix A.5).
$■$ Denote these as b_{0} and b_{1}, resp. (Equations will follow.)

- Then, the fitted value is $\hat{Y}_{i}=b_{0}+b_{1} X_{i}$. Find these by minimizing $Q=\Sigma\left(Y_{i}-\hat{Y}_{i}\right)^{2}$.
- The corresp. residual is $e_{i}=Y_{i}-\hat{Y}_{i}$. We want \hat{Y}_{i} to be as close to Y_{i} as possible.

LS Line and Residuals

■ Graphically, the idea is something
like this \rightarrow

- Points are data pairs; line is
$b_{0}+b_{1} X$

‘Normal’ Equations

- To minimize Q with resp. to b_{0} and b_{1}, via calculus (see pp.17-18), we find the LS estimators solve the system of equations

$$
\begin{gathered}
\Sigma Y_{i}=n b_{0}+b_{1} \Sigma X_{i} \\
\Sigma X_{i} Y_{i}=b_{0} \Sigma X_{i}+b_{1} \Sigma X_{i}^{2}
\end{gathered}
$$

- These are called the normal equations for the LS estimators.

Gauss-Markov Theorem

- A result known as the Gauss-Markov Theorem motivates use of the LS estimators: under model (1.1), the LS solutions for b_{0} and b_{1} are (a) unbiased and (b) have min. variance among all unbiased linear estimators.
- (a) says that $E\left[b_{j}\right]=\beta_{j}$ for $j=0,1$
- (b) says $\boldsymbol{\sigma}^{2}\left[b_{0}\right]$ and $\boldsymbol{\sigma}^{2}\left[b_{1}\right]$ are minimized.

LS Solutions: Slope

The LS solution has, in fact, a closed form. First, the slope parameter is

$$
b_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

or also

$$
\begin{aligned}
& \qquad b_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{m=1}^{n}\left(X_{m}-\bar{X}\right)^{2}}=\sum_{i=1}^{n} k_{i} Y_{i} \\
& \text { for } k_{i}=\frac{\left(X_{i}-\bar{X}\right)}{\sum_{m=1}^{n}\left(X_{m}-\bar{X}\right)^{2}}
\end{aligned}
$$

LS Solutions: Intercept

Then, the intercept is expressed conveniently as

$$
b_{0}=\bar{Y}-b_{1} \bar{X}
$$

Indeed, b_{0} can also be written in the form $b_{0}=\sum_{i=1}^{n} k_{i} Y_{i} \quad$ (...for a different set of $k_{i} s$)

Example CH01TA01 (p. 19)

$X=$ lot size of refrig. parts production
$\mathrm{Y}=$ hours worked (labor) at the Toluca Manufacturing Co.

The data are in Table 1.1. We could just 'do the math':
$\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}=70690 \& \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=19800$
so $b_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{70690}{19800}=3.5702$

Example CH01TA01 (cont'd)

$$
\begin{aligned}
& \text { Also, } \bar{Y}=312.28 \text { and } \bar{X}=70 \text {, so } \\
& \begin{aligned}
\mathrm{b}_{0} & =\bar{Y}-b_{1} \bar{X}=312.28-(3.5702)(70) \\
& =62.37 .
\end{aligned}
\end{aligned}
$$

The prediction equation for $\hat{Y}_{i}=b_{0}+b_{1} X_{i}$ is then $\hat{\mathrm{Y}}_{\mathrm{i}}=\mathbf{6 2 . 3 7}+\mathbf{3 . 5 7 0 2} \mathrm{X}_{\mathrm{i}}$.

But, it's so much easier in $\mathbf{R} \rightarrow$

Example CH01TA01 (cont'd)

Toluca Co. example: LS fit for simple linear model via R:
$>X=c(80,30, \ldots, 70)$
$>Y=c(399,121, \ldots, 323)$
$>$ CH01TA01.lm $=\operatorname{lm}(Y \sim X)$
> summary (CH01TA01.lm)

summary () output for Toluca example

Call:
lm(formula $=\mathrm{Y} \sim \mathrm{X}$)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-83.876	-34.088	-5.982	38.826	103.528

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) 62.366
3.570
0.34710 .290

LS estimates of the regr. parameters highlighted in red here.

Example CH01TA01 (cont'd)

ALWAYS PLOT THE DATA!
Toluca example. Scatterplot plot in R:
> plot (Y ~ X)
> abline(CH01TA01.lm) 1
abline() command overlays line from LS fit

Toluca Data Scatterplot

Example CH01TA01 (p.22)

- What about predicting the fitted value at a given X_{i} ?
- For instance, at $X_{1}=80$ we see

$$
\begin{aligned}
\hat{Y}_{1} & =b_{0}+b_{1}(80)=62.37+(3.5702)(80) \\
& =347.98
\end{aligned}
$$

The corresp. residual is $e_{1}=Y_{1}-\hat{Y}_{1}=399-347.98=51.02$. (See Table 1.2.)

Consequences of the LS Fit

The LS estimators produce the following, interesting, mathematical consequences:

- $\sum e_{i}=0 \quad$ (always!)
- $\sum e_{i}{ }^{2}$ is a minimum (since it's LS)
- $\sum \mathbf{Y}_{i}=\sum \hat{Y}_{i}$
- $\sum e_{i} X_{i}=0$ (weighted sum of e_{i} 's is zero)
- $\sum e_{i} \hat{Y}_{i}=0$
- $\hat{Y}(\bar{X})=b_{0}+b_{1} \bar{X}=\bar{Y}$

Estimating $\boldsymbol{\sigma}^{\mathbf{2}}$

- How to estimate a variance?
- Think of the single-sample case. For Y_{1}, \ldots, Y_{n}, we use the sample variance:

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{n-1}
$$

(dissection)
a "sum of squares" degrees of freedom

- Now do the same thing with the simple linear model, but replace $\overline{\mathbf{Y}}$ with $\hat{Y}_{i} \rightarrow$

SSE

The resulting sum of squares is called the Sum of Squared Errors, or SSE:

$$
S S E=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n} e_{i}^{2}
$$

(Notice that it's just the sum of squared residuals, so it's also called the Residual Sum of Squares.)

This has d.f. $=n-2$. (Why? Think of it as "\# observations" - "\# fitted components")

MSE

Now, divide SSE by its d.f.:

$$
\text { MSE }=\frac{\text { SSE }}{\text { d.f. }}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}
$$

We call this the Mean Squared Error, or MSE.
Under (1.1), can show that $\mathrm{E}[\mathrm{MSE}]=\boldsymbol{\sigma}^{\mathbf{2}}$ (unbiased!).

To estimate σ, use the root mean squared error: $\sqrt{\text { MSE }}$

Normal Error Model

- Let's add one last model component: impose a formal distribution on the error terms in ε_{i}.
- Recall: $\mathrm{Y}_{\mathrm{i}}=\left(\boldsymbol{\beta}_{0}+\beta_{1} \mathrm{X}_{\mathrm{i}}\right)+\varepsilon_{\mathrm{i}}$.
- Now, let $\varepsilon_{i} \sim$ i.i.d. $N\left(E\left[\varepsilon_{i}\right], \sigma^{2}\left[\varepsilon_{i}\right]\right)$. Since we already specified $\mathrm{E}\left[\varepsilon_{\mathrm{i}}\right]=0$ and $\boldsymbol{\sigma}^{2}\left[\varepsilon_{\mathrm{i}}\right]=\boldsymbol{\sigma}^{2}$, this yields

$$
\varepsilon_{\mathrm{i}} \sim \text { i.i.d. } N\left(0, \sigma^{2}\right) .
$$

Maximum Likelihood

- The combination of the simple linear model in (1.1) with normal errors is called a Simple Linear Regression (SLR) model.
■ By imposing a formal probability distribution into the model, a form of estimation known as Maximum Likelihood is available.
■ We use ML occasionally. For now, know that ML estimators and LS estimators for the SLR model actually coincide (i.e., they're identical).

