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Linear Regression

 Linear regression is concerned with 
estimating relationships between a

response variable, Y
and an

explanatory/predictor variable, X

 The simple linear (straight-line) relation-
ship is

Y = β0 + β1X
where β1 is the slope (“rise-over-run”) and 
β0 is the Y-intercept.
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Data model

In practice, we observe data pairs (Xi,Yi), 
i = 1,…, n, usually with observational/experi-
mental error. Model this as

Yi = (β0 + β1Xi) + εi (1.1)

i.e., observed Y = 
(simple linear model) + random error term

Can think of this as Y = (signal) + noise.



Historical Note

 As the text indicates, the originator of the 
term “regression” was Sir Francis Galton

 He plotted X = ‘Mid-Parent’ height (as the 
vertical axis), and Y = Adult child height 
(as the horizontal axis), and found that as 
adults, the offspring “regressed” to more 
central heights.

 Galton published the data in 1886 (in the 
J. Anthropol. Inst. Gr. Brit. & Ireland).



Galton’s 1886 “Plate X”
Galton’s original plot:



Model Assumptions

 For our simple linear model, we assume
• Xi is a known constant
• β0 and β1 are unknown parameters
• E[εi] = 0  for all i
• σ2[εi] = σ2 (constant) for all i
• σ[εi,εj] = 0   (zero!) for all i≠j

 Notice: εi is a random variable, thus so 
is Yi.



Model Impact on Yi

We find
• E[Yi] = E[β0 + β1Xi + εi]  =  E[β0 + β1Xi] + E[εi]

=  β0 + β1Xi + E[εi]  =  β0 + β1Xi + 0
= β0 + β1Xi

(since β0 + β1Xi is nonrandom).
We say E[Yi] = β0 + β1Xi is the mean response.

• σ2[Yi] = σ2[β0 + β1Xi + εi]  =  σ2[εi]  =  σ2

(again, since β0 + β1Xi is nonrandom).
• σ[Yi,Yj] = … = 0  for all i≠j



Probability Model
 Graphically, there is some probability 

function for Yi resting at each Xi:

 Notice that each prob. function has the 
same variance!



Alternative Formulations

 Alternative (but, essentially equivalent) 
formulations for the simple linear model 
include:
•

• Yi = β0X0i + β1X1i + εi
where  X0i = 1  and  X1i = Xi for all i.

 These can be useful in select cases.

      Yi = β0* + β1(Xi – 
_
X) + εi 

(so β0* = β0 + β1

_
X)   for 

_
X = 1

n∑i=1
n Xi 



Data Generation Mechanisms

 Note that we can observe the data pairs 
in two fundamentally different ways:
• Observational study: data are recorded 

without strict experimental controls
 harder to relate cause & effect

• Experimental study: data from controlled 
experiments
 inference is truer but conduct is more 
expensive

 We consider both forms in our data 
examples.



Least Squares (LS)
 Given data pairs (Xi,Yi), i = 1,…, n, we 

estimate β0 and β1 using the method of 
least squares (LS) (from Appendix A.5).

 Denote these as b0 and b1, resp. (Equa-
tions will follow.)





Then, the fitted value is Ŷi = b0 + b1Xi. Find 
these by minimizing Q = ∑(Yi – Ŷi)2. 

The corresp. residual is ei = Yi – Ŷi. We 
want Ŷi to be as close to Yi as possible. 



LS Line and Residuals

 Graphically, 
the idea is 
something 
like this  →

 Points are 
data pairs; 
line is 
b0 + b1X



‘Normal’ Equations

 To minimize Q with resp. to b0 and b1, via 
calculus (see pp.17-18), we find the LS 
estimators solve the system of equations

∑Yi = nb0 + b1∑Xi

∑XiYi = b0∑Xi + b1∑Xi
2

 These are called the normal equations for 
the LS estimators.



Gauss-Markov Theorem

 A result known as the Gauss-Markov 
Theorem motivates use of the LS estima-
tors:  under model (1.1), the LS solutions 
for b0 and b1 are (a) unbiased and (b) have 
min. variance among all unbiased linear 
estimators.

 (a) says that E[bj] = βj for j=0,1

 (b) says σ2[b0] and σ2[b1] are minimized.



LS Solutions: Slope
The LS solution has, in fact, a closed form.  
First, the slope parameter is 

or also

b1 = 
∑i=1

n (Xi – 
—
X)(Yi – 

—
Y)

∑i=1
n (Xi – 

—
X)2

  b1 = 
∑i=1

n (Xi – 
—
X)Yi

∑m=1
n (Xm – 

—
X)2 = ∑i=1

n kiYi 

for  ki = (Xi – 
—
X)

∑m=1
n (Xm – 

—
X)2 



LS Solutions: Intercept

Then, the intercept is expressed 
conveniently as 

Indeed, b0 can also be written in the form 
b0 = ∑i=1

n kiYi  (...for a different set of kis) 

b0 = 
—
Y – b1

—
X 



Example CH01TA01 (p. 19)

X = lot size of refrig. parts production
Y = hours worked (labor)
at the Toluca Manufacturing Co.

The data are in Table 1.1. We could just ‘do 
the math’: 
∑i=1

n (Xi – 
—
X)Yi = 70690  &  ∑i=1

n (Xi – 
—
X)2 = 19800

so b1 = 
∑i=1

n (Xi – 
—
X)Yi

∑i=1
n (Xi – 

—
X)2  = 70690

19800 = 3.5702 



Example CH01TA01 (cont’d)

But, it’s so much easier in R  →

Also, 
—
Y = 312.28 and 

—
X = 70, so 

b0 = 
—
Y – b1

—
X = 312.28 – (3.5702)(70)  

 = 62.37. 
 
The prediction equation for Ŷi = b0 + b1Xi  
is then Ŷi = 62.37 + 3.5702Xi. 



Example CH01TA01 (cont’d)

Toluca Co. example:  LS fit for simple 
linear model via R:

> X = c(80, 30, ... , 70)

> Y = c(399, 121, ... , 323)

> CH01TA01.lm = lm( Y ~ X )

> summary( CH01TA01.lm )



summary() output for 
Toluca example

Call:
lm(formula = Y ~ X)

Residuals:
Min      1Q  Median      3Q     Max 

-83.876 -34.088  -5.982  38.826 103.528 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  62.366 26.177   2.382   0.0259 *  
X            3.570 0.347  10.290 4.45e-10 ***

LS estimates of the regr. parameters highlighted in red here.



Example CH01TA01 (cont’d)

ALWAYS PLOT THE DATA!
Toluca example.  Scatterplot plot in R:

> plot( Y ~ X )

> abline( CH01TA01.lm )

abline() command overlays line from LS fit



LS line

Toluca Data Scatterplot



Example CH01TA01 (p.22)

 What about predicting the fitted value at 
a given Xi?

 For instance, at X1 = 80 we see
Ŷ1 = b0 + b1(80) = 62.37 + (3.5702)(80)  
 = 347.98 
 
The corresp. residual is  
e1 = Y1 – Ŷ1 =  399 – 347.98 = 51.02. 
(See Table 1.2.)



Consequences of the LS Fit

The LS estimators produce the following, 
interesting, mathematical consequences:

• ∑ei = 0       (always!)
• ∑ei

2 is a minimum  (since it’s LS)
• ∑Yi = ∑
• ∑eiXi = 0    (weighted sum of ei’s is zero)
• ∑ei = 0
•

Ŷi

Ŷi 

Ŷ(
—
X)  =  b0 + b1

—
X  =  

—
Y 



Estimating σ2

 How to estimate a variance?

 Think of the single-sample case.  For 
Y1,…,Yn, we use the sample variance:

 Now do the same thing with the simple 
linear model, but replace     with      →

S2 = 
∑i=1

n (Yi – 
—
Y)2

n–1  
 

     ↔
(dissection)

  a “sum of squares”
degrees of freedom 

—
Y Ŷi



SSE

The resulting sum of squares is called the 
Sum of Squared Errors, or SSE:

(Notice that it’s just the sum of squared 
residuals, so it’s also called the Residual 
Sum of Squares.)

This has d.f. = n – 2.  (Why?  Think of it as 
“# observations” – “# fitted components”) 

SSE = ∑i=1
n (Yi – Ŷi)2 = ∑i=1

n ei
2 



MSE

Now, divide SSE by its d.f.:

We call this the Mean Squared Error, or MSE.

Under (1.1), can show that E[MSE] = σ2

(unbiased!).

To estimate σ, use the root mean squared 
error: 

MSE = SSE
d.f.  = 

∑i=1
n (Yi – Ŷi)2

n–2  

MSE



Normal Error Model

 Let’s add one last model component: 
impose a formal distribution on the error 
terms in εi.

 Recall:  Yi = (β0 + β1Xi) + εi.

 Now, let εi ~ i.i.d. N( E[εi], σ2[εi] ).  Since we 
already specified E[εi] = 0 and σ2[εi] = σ2, 
this yields 

εi ~ i.i.d. N(0,σ2). 



Maximum Likelihood

 The combination of the simple linear model 
in (1.1) with normal errors is called a 
Simple Linear Regression (SLR) model.

 By imposing a formal probability distribu-
tion into the model, a form of estimation 
known as Maximum Likelihood is available.

 We use ML occasionally.  For now, know 
that ML estimators and LS estimators for 
the SLR model actually coincide (i.e., 
they’re identical).


