

STAT 571A — Advanced Statistical Regression Analysis

<u>Chapter 2 NOTES</u> Inferences in Regression and Correlation Analysis

© 2017 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, photoreproduction, recording, or scanning — without the prior written consent of the course instructor.

Normal SLR Model

Continuing with the normal SLR model, we have

$$\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathbf{X}_{i} + \boldsymbol{\varepsilon}_{i}$$
 (2.1)

with $\epsilon_i \sim i.i.d. N(0,\sigma^2)$, i = 1,...,n.

■ This produces Y_i ~ indep. N(E[Y_i],σ²), with mean response E[Y_i] = β₀ + β₁X_i + E[ε_i] = β₀ + β₁X_i

$$\beta_1 = 0$$

- It is natural to focus on the slope parameter β₁. Why? Look at what happens to E[Y_i] if, say, β₁ = 0: E[Y_i] = β₀ + (0)X_i + E[ε_i] = β₀ + 0 + 0 = β₀.
- That is, when β₁ = 0, E[Y_i] is <u>independent of</u>
 X_i. There is no "regression" of Y on X.

Sampling Distribution of b₁

- We use the LS estimator b_1 to estimate β_1 .
- Recall that b₁ can be written in the form

$$b_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})Y_{i}}{\sum_{m=1}^{n} (X_{m} - \overline{X})^{2}} = \sum_{i=1}^{n} k_{i}Y_{i}$$

for $k_{i} = \frac{(X_{i} - \overline{X})}{\sum_{m=1}^{n} (X_{m} - \overline{X})^{2}}$

i.e., a linear combination of the Y_i's.

So if b₁ = ∑k_iY_i, then we know from Equ. (A.40) that

$$\sum \mathbf{k}_{i} \mathbf{Y}_{i} \sim \mathbf{N} (\sum \mathbf{k}_{i} \mathbf{E} [\mathbf{Y}_{i}], \sum \mathbf{k}_{i}^{2} \sigma^{2})$$

■ But $\sum \mathbf{k}_i \mathbf{E}[\mathbf{Y}_i] = \sum \mathbf{k}_i (\beta_0 + \beta_1 \mathbf{X}_i)$ = $\sum \mathbf{k}_i \beta_0 + \sum \mathbf{k}_i \beta_1 \mathbf{X}_i = \beta_0 \sum \mathbf{k}_i + \beta_1 \sum \mathbf{k}_i \mathbf{X}_i$

• While
$$\sum k_i^2 \sigma^2 = \sigma^2 \sum k_i^2$$

So, what are $\sum k_i$, $\sum k_i X_i$, and $\sum k_i^2$?

Thus we see:

• E[b₁] = $\beta_0 \sum k_i + \beta_1 \sum k_i X_i = \beta_0(0) + \beta_1(1) = \beta_1$ (unbiased!)

•
$$\sigma^2[b_1] = \sigma^2 \sum k_i^2 = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

■ So, we can write

$$b_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right)$$

- Now, σ^2 is unknown, so to estimate the variance of b_1 , $\sigma^2 \{b_1\}$, recall that $MSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 / (n-2)$ is unbiased for σ^2 .
- Use this to estimate $\sigma^2 \{b_1\}$ with $s^2 \{b_1\} = MSE / \sum_{i=1}^n (X_i - \overline{X})^2$ ■ The standard error of b_1 is then $s\{b_1\} = \sqrt{MSE / \sum_{i=1}^n (X_i - \overline{X})^2}$

In addition, we can show that

$$U = \frac{(n-2)MSE}{\sigma^2} \sim \chi^2(n-2)$$

is independent of

$$\mathbf{b}_1 \sim \mathbf{N}\left(\boldsymbol{\beta}_1, \frac{\boldsymbol{\sigma}^2}{\boldsymbol{\Sigma}_{i=1}^n (\mathbf{X}_i - \overline{\mathbf{X}})^2}\right)$$

and therefore of

$$\mathsf{Z} = \frac{\mathsf{b}_1 - \mathsf{\beta}_1}{\sigma \big/ \sqrt{\sum_{i=1}^n (\mathsf{X}_i - \overline{\mathsf{X}})^2}} \sim \mathsf{N}(0, 1)$$

Use these in the def'n of a t random variable from (A.44):

$$\mathbf{T} = \frac{\mathbf{Z}}{\sqrt{\mathbf{U}/\mathbf{v}}}$$

using Z and U from the b_1 construction. Need to 'do the math,' a <u>good exercise</u>: try to algebraically show this T = $(b_1 - \beta_1)/s\{b_1\}$, so that T ~ t(n-2), where $s\{b_1\}$ is the std. error of b_1 :

s{b₁} =
$$\sqrt{MSE} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Confidence Interval on β_1

- The t sampling distribution for b₁ allows for convenient inferences on β₁.
- **•** For instance, a 1– α conf. int. is based on

$$1 - \alpha = P[t(\frac{\alpha}{2}; n-2) < T < t(1 - \frac{\alpha}{2}; n-2)]$$

■ In this, use T = (b₁ – β₁)/s{b₁}:

cont'd \rightarrow

Confidence Interval on β_1 (cont'd) The 1– α probability statement simplifies, as $1 - \alpha = P[t(\frac{\alpha}{2}; n-2)s\{b_1\} < (b_1 - \beta_1)$ < t(1 – $\frac{\alpha}{2}$; n–2)s{b₁} = $P[-b_1 - t(1 - \frac{\alpha}{2}; n-2)s\{b_1\} <$ $-\beta_1 < -b_1 + t(1 - \frac{\alpha}{2}; n-2)s\{b_1\}$ = $P[b_1 + t(1 - \frac{\alpha}{2}; n-2)s\{b_1\} >$ $\beta_1 > b_1 - t(1 - \frac{\alpha}{2}; n-2)s\{b_1\}$

cont'd \rightarrow

Confidence Interval on β_1 (cont'd)

By rearranging terms from left-to-right, the 1– α probability statement collapses to

Example CH01TA01 (p. 19)

Recall from Ch. 1 (Table 1.1) the Toluca Co. example. To find LS fit for simple linear regression in R use:

> X = c(80, 30, ..., 70)

> Y = c(399, 121, ..., 323)

> CH01TA01.lm = lm($Y \sim X$)

> summary(CH01TA01.lm)

summary() output for Toluca example

```
Call:
lm(formula = Y \sim X)
Residuals:
   Min 1Q Median 3Q
                                   Max
-83.876 -34.088 -5.982 38.826 103.528
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.366 26.177 2.382 0.0259
                       0.347 10.290 4.45e-10
             3.570
X
(Std. errors of the regr. parameters highlighted in red here.)
```

Ex. CH01TA01 (cont'd): Conf. Int. on β_1

There are many ways to find a 95% Conf. Interval on the slope parameter, β_1 , in R. Fastest is with confint():

Ex. CH01TA01 (cont'd): Conf. Int. on β_1

Or, manipulate the various components of the CH01TA01.lm **object**:

The std. error s{b₁} is

> summary(CH01TA01.lm)\$coefficients[2,2]
[1] 0.3469722

Ex. CH01TA01 (cont'd): Conf. Int. on β_1

- The 95% two-sided t* critical point is
- > qt(0.975, df=CH01TA01.lm\$df)
- [1] 2.068658

So the 95% conf. int. is

- > b1 = coef(CH01TA01.lm)[2]
- > se1 = summary(CH01TA01.lm)\$coefficients[2,2]
- > tcrit = qt(0.975, df=CH01TA01.lm\$df)
- > c(b1-tcrit*se1, b1+tcrit*se1)
 - 2.852435 4.287969

Hypothesis tests on β_1

• Or, to test $H_0:\beta_1 = \beta_{10}$ vs. $H_a:\beta_1 \neq \beta_{10}$ (two-sided!), appeal to the t-reference distribution and build the test statistic

$$t^* = \frac{b_1 - \beta_{1o}}{s\{b_1\}}$$

- Under H_o, t* ~ t(n–2), so reject H_o when |t*| > t(1-^α/₂; n–2)
- Special (why?) case: $\beta_{1o} = 0$.
- One-sided: reject H_o vs. (say) H_a:β₁ > β_{1o} when t* > t(1 – α; n–2), etc.

Ex. CH01TA01 (cont'd): Hypoth. tests on β_1

To test $H_0:\beta_1 = 0$ vs. $H_a:\beta_1 \neq 0$ just refer back to the summary() output:

```
Call:

lm(formula = Y ~ X)

i

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.366 26.177 2.382 0.0259

X 3.570 0.347 10.290 4.45e-10
```

 $t^* = 10.29$, with $P = 4.45 \times 10^{-10} < \alpha = 0.05$, so <u>reject</u> H_o and conclude "x=lot size significantly affects Y=work hrs."

Distribution of b₀

- Since we saw that the LS estimator, b₀, for β₀ also has the form b₀ = ∑k_iY_i (not the same k_i's...), we can build similar sorts of t-based inferences for β₀.
- We find b₀ ~ N(β₀, σ²{b₀}), where the variance of b₀ is

$$\sigma^{2} \{ \mathbf{b}_{0} \} = \sigma^{2} \left(\frac{1}{n} + \frac{\overline{\mathbf{X}}^{2}}{\sum_{i=1}^{n} (\mathbf{X}_{i} - \overline{\mathbf{X}})^{2}} \right)$$

Distribution of b₀

• Can show that $Z = (b_0 - \beta_0)/\sigma\{b_0\} \sim N(0,1)$ is independent of $U = (n-2)MSE/\sigma^2 \sim \chi^2(n-2)$

■ From these, find the std. error of b₀:

$$s\{b_0\} = \sqrt{MSE\left(\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right)}$$

Inferences on β_0

Use these various components to build the t-dist'n random variable

$$T = \frac{b_0 - \beta_0}{s\{b_0\}} \sim t(n-2)$$

- From this, t-test and conf. int's follow in similar form as with β₁.
- For instance, a 1 α conf. int. on β₀ is (no surprise):

$$b_0 \pm t(1 - \frac{\alpha}{2}; n-2)s\{b_0\}$$

Extrapolation

- The textbook gives an example of a conf. int. for β₀ using the Toluca data; however, even they note that it's a <u>silly exercise</u>: who has a "lot size" of X = 0 ?!?
- The X values for these data are all well above X = 0, so the conf. int. is an extrapolation away from the core of the data.
- In general, extrapolation is tricky and can lead to trouble: try to avoid it!

Robustness

- Note that all these inferences are built under a normal assumption on ε_i. Deviations or departures from this will invalidate the inferences.
- But(!), slight departures from normality will not have a major effect: the conf. int's and hypoth. tests are fairly robust to (symmetric) departures from normality.
- They are much less robust to departures from the common variance assumption, however.

Power Analysis

Recall that the power of a hypoth. test is

$$1 - \beta = 1 - P[accept H_o | H_o false]$$

= P[reject H_o | H_o false]

■ For the t-test of H_0 : $\beta_1 = \beta_{10}$ vs. H_a : $\beta_1 \neq \beta_{10}$, the power will depend on β_{10} via the test's noncentrality parameter:

$$\delta = \frac{|\beta_1 - \beta_{1o}|}{\sigma\{b_1\}}$$

Power Analysis (cont'd)

In particular,

Power(δ) = P[reject H_o | H_o false] = P[|t*| > t(1 - $\frac{\alpha}{2}$; n-2) | δ]

which depends upon an extension of the t-dist'n known as the noncentral t-dist'n.

- For known δ, the power can be tabulated from Table B.5.
- (δ depends on β_1 and σ , so it can't be "known." But, it can be approximated.)

Ex. CH01TA01 (p. 51): Power analysis for β_1

- Consider again the Toluca data and focus on testing $H_o:\beta_1 = 0$ vs. $H_a:\beta_1 \neq 0$ (so $\beta_{1o} = 0$.) Set $\alpha = 0.05$.
- We found MSE = 2384 for these data, so a rough value for σ^2 here is $\sigma^2 \approx 2500$. Then σ^2 {b₁} ≈ 2500/19800 = 0.1263.
- Now, say we want to examine the power when $\beta_1 = 1.5$ (≠ 0). Then

$$\delta = \frac{|\beta_1 - \beta_{10}|}{\sigma\{b_1\}} \approx \frac{|1.5 - 0|}{\sqrt{0.1263}} = 4.22$$

■ (Textbook uses linear interpolation at δ = 4.22 to find Power ≈ 0.9766.)

One-sided calculations are similar.

```
Toluca Power analysis (cont'd)
In R, it's a little tricky (trust us...), but for
     δ = 4.22, α = 0.05, df = n–2 = 23
 can use
> delta=4.22
> a = 0.05
> nu = 23
> pt( qt(1-(a/2), df=nu), df=nu,
                  ncp=delta, low=F )
    + pt(-qt(1-(a/2),df=nu)),
                 df=nu, ncp=delta, low=T )
```

This gives power = 0.98115, which is slightly larger than that found by interpolation.

Inference on the Mean Response

- Suppose we wish to estimate the mean response E{Y_h} at some given predictor X = X_h (doesn't have to be one of the orig. X_i's).
- The LS estimator is $\hat{\mathbf{Y}}_h = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_h$
- This is (again!) of the form ∑k_iY_i, so the same sorts of operations we used for b₀ and b₁ can be applied here.
- (Details are left to the adventurous reader.)

The Mean Response $E{Y_h}$ We find: $E{Y_h} = \beta_0 + \beta_1 X_h$ (unbiased!) $\sigma^{2}\{\hat{\mathbf{Y}}_{h}\} = \sigma^{2}\left(\frac{1}{n} + \frac{(\mathbf{X}_{h} - \overline{\mathbf{X}})^{2}}{\sum_{i=1}^{n}(\mathbf{X}_{i} - \overline{\mathbf{X}})^{2}}\right)$ $s{\hat{Y}_h} = \sqrt{MSE\left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right)}$

(so the variance and the std. error both \uparrow as X_h departs from \overline{X} .)

The Mean Response E{Y_h}

Also: $\hat{\mathbf{Y}}_{h} \sim N(\beta_{0} + \beta_{1}\mathbf{X}_{h}, \sigma^{2}\{\hat{\mathbf{Y}}_{h}\})$

From this, we can construct the t random variable $\hat{Y}_{h} = (\beta_{0} + \beta_{1}X_{h})$

$$T = \frac{\hat{\mathbf{Y}}_h - (\hat{\mathbf{\beta}}_0 + \hat{\mathbf{\beta}}_1 \mathbf{X}_h)}{s\{\hat{\mathbf{Y}}_h\}} \sim t(n-2)$$

Hypoth. tests and conf. ints. can be built from this reference distribution. E.g., a 1– α conf. int. for E{Y_h} is $\hat{Y}_h \pm t(1-\frac{\alpha}{2}; n-2)s\{\hat{Y}_h\}$ (but, it's valid at only a single X_h !!)

interval="conf", level=.90)

fit lwr upr 1 419.3861 394.9251 443.847

First value ('fit') is \hat{Y}_h at X_h = 100; next two ('lwr','upr') are 90% conf. limits.

Prediction of Y_h

We use \hat{Y}_h to estimate the mean response $E{Y_h}$. But, what about predicting a <u>future</u> observed Y?

Call this $Y_{h(new)}$ at at $X = X_{h(new)}$.

The predictor itself isn't hard, just tricky:

 $\mathbf{Y}_{h(new)} = \mathbf{E}\{\mathbf{Y}_{h(new)}\} + \boldsymbol{\varepsilon}_{h}$

so: (1) estimate $E{Y_{h(new)}}$ with $\hat{Y}_{h(new)}$

and (2) estimate ε_h with, well, E{ ε_h } = 0.

But (!) the std. error is trickier \rightarrow

Prediction Error

The std. error of prediction requires us to account for variation in ε_h :

Denote the prediction variance as σ^{2} {pred}.

This is σ^2 {pred} = σ^2 { $\hat{Y}_{h(new)}$ + ϵ_h } = σ^2 { $\hat{Y}_{h(new)}$ } + σ^2 { ϵ_h } = σ^2 { b_0 + $b_1X_{h(new)}$ } + σ^2 { ϵ_h }

(assuming the two terms are indep.)

Prediction Error (cont'd)

Now,

$$\sigma^{2}\{\text{pred}\} = \sigma^{2} \left(\frac{1}{n} + \frac{(X_{h(\text{new})} - \overline{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \right) + \sigma^{2}$$
$$= \sigma^{2} \left(1 + \frac{1}{n} + \frac{(X_{h(\text{new})} - \overline{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \right)$$

The associated std. error of prediction is

s{pred} =
$$\sqrt{MSE\left(1 + \frac{1}{n} + \frac{(X_{h(new)} - \overline{X})^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right)}$$

Ex. CH01TA01 (cont'd): Prediction Interval on Y_h

For a prediction of a future Y_h at any $X = X_h$, again use predict(). E.g., at $X_h = 100$:

> predict(CH01TA01.lm, newdata=data.frame(X=100), interval="pred", level=.90) fit lwr upr 1 419.3861 332.2072 506.5649

First value ('fit') is $\hat{Y}_{h(new)}$ at $X_h = 100$; next two ('lwr','upr') are 90% prediction limits.

Prediction Caveats

Some caveats about prediction intervals:

- They only apply for a single X_{h(new)}
 ("pointwise")
- Normality matters: robustness here is poor!

(Also see p. 60)

Confidence Bands

To build confidence statements at more than just a single X, we turn to simultaneous inferences.

A simultaneous confidence band is a confidence statement on the mean response $E{Y} = \beta_0 + \beta_1 X$ at all possible values of X. (That is, it is valid for every X.)

WHS Band

A confidence band for E{Y} was given by Working & Hotelling (1929) and Scheffé (1953):

$$\hat{\mathbf{Y}}_{h} \pm \mathbf{W}_{\alpha} \mathbf{s} \{ \hat{\mathbf{Y}}_{h} \}$$

where

$$W_{\alpha} = \sqrt{2 F(1-\alpha; 2, n-2)}$$

is the WHS upper- α critical point.

(Pretty simple!)

Ex. CH01TA01 (cont'd): 1 – α confidence band on E{Y}

```
> alpha = .10; n = length(Y)
> W = sqrt(2*qf(1-alpha,2,CH01TA01.lm$df))
> Xh = seq(from=0, to=max(X), length=100)
> Yhat = coef( CH01TA01.lm )[1] +
                         coef( CH01TA01.lm )[2]*Xh
> se = sqrt( summary(CH01TA01.lm)sigma^2 *((1/n) +
                 ((Xh-mean(X))^2)/((n-1)*var(X)))
> WHSlwr = Yhat - W*se
> WHSupr = Yhat + W*se
> plot( WHSlwr ~ Xh, type='l', xlim=c(0,max(X)),
                ylim=c(0,600), xlab='', ylab='' )
> par(new = T)
> plot( WHSupr ~ Xh, type='l', xlim=c(0,max(X)),
            ylim=c(0,600), xlab='X', ylab='E[Y]')
```


Total Sum of Squares

The <u>secret of statistics</u>: to understand the mean (response), analyze the variability...

Consider the following <u>decomposition</u> of how Y_i varies: at the core, Y_i varies from its mean \overline{Y} : $Y_i - \overline{Y}$

Squaring and summing these deviations gives the Total Sum of Squares:

SSTO = $\sum_{i=1}^{n} (\mathbf{Y}_i - \overline{\mathbf{Y}})^2$

Error Sum of Squares

Next, posit some model (say, the SLR) and find the predicted value \hat{Y}_i . This is another form of variation: $Y_i - \hat{Y}_i$

with its own sum of squares

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

(we already saw this as the error sum of squares, a.k.a. residual sum of squares)

SSTO vs. SSE

Now, if the model estimates in \hat{Y}_i are no better (in terms of squared deviations) than \overline{Y} , we expect SSTO \approx SSE.

But <u>if</u> the model improves upon the fit, SSTO > SSE. (Fig. 2.7 gives a nice visual.)

What makes up this difference??

SS Decomposition

$$SSTO = \sum \{Y_i - \overline{Y}\}^2 = \sum \{(Y_i - \hat{Y}_i) + (\hat{Y}_i - \overline{Y})\}^2$$
$$= \sum \{(Y_i - \hat{Y}_i)^2$$
$$+ 2(Y_i - \hat{Y}_i)(\hat{Y}_i - \overline{Y}) + (\hat{Y}_i - \overline{Y})^2\}$$
$$= \sum (Y_i - \hat{Y}_i)^2$$
$$+ 2\sum (Y_i - \hat{Y}_i)(\hat{Y}_i - \overline{Y}) + \sum (\hat{Y}_i - \overline{Y})^2$$

 $\textbf{cont'd} \rightarrow$

Regression Sum of Squares So, we find SSTO = $\sum (Y_i - \hat{Y}_i)^2 + (2)(0) + \sum (\hat{Y}_i - \overline{Y})^2$ = SSE + $\sum (\hat{Y}_i - \overline{Y})^2$

The latter term is what separates SSE from SSTO.

We call this the Model Sum of Squares, or for an SLR model, the **Regression Sum of Squares**:

 $SSR = \sum (\hat{Y}_i - \overline{Y})^2 \implies SSTO = SSR + SSE.$

Degrees of Freedom

As with the sample variance, each of these SS terms is associated with a set of d.f.:

- We saw $df_E = n 2$
- From S^2 , we know $df_{TO} = n 1$
- For SSR, it turns out that $df_R = 2 1 = 1$

Conveniently,
$$df_{TO} = df_{R} + df_{E}$$

Mean Squares

With these, divide the SS terms by their d.f.'s to produce Mean Squares:

 $MSTO = \frac{SSTO}{df_{TO}} = \frac{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}{n-1}$ $MSR = \frac{SSR}{df_R} = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2}{1}$ $MSE = \frac{SSE}{df_E} = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}$

Expected Mean Squares We can show (p. 69) that $E[MSR] = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2$ and we know $E[MSE] = \sigma^2$ (unbiased for σ^2) Notice that if $\beta_1 = 0$, MSR is another unbiased estimator of σ^2 ; but if not, its expectation always exceeds σ^2 .

ANOVA Table

We collect all these terms together into an **Analysis of Variance (ANOVA) Table**:

Source	d.f.	SS	MS	E{MS}
Regr.	1	SSR	MSR	$\sigma^2 + \beta_1^2 \sum (X_i - \overline{X})^2$
Error	n–2	SSE	MSE	σ^2
Total	n–1	SSTO		

F-Statistic

What makes the ANOVA Table so handy is its layout of the pertinent statistics for inferences on β_1 .

In partic., to test $H_o:\beta_1 = 0$ vs. $H_a:\beta_1 \neq 0$, construct the **F-statistic** $F^* = MSR/MSE$. Notice that if H_o is true, $F^* \approx 1$, but if H_a is true, $F^* > 1$. This suggests a use for F^* in testing H_o .

Cochran's Theorem

We employ F* based on a famous result:

<u>Cochran's Thm.</u>: Given $Y_i \sim indep.N(\mu_i,\sigma^2)$,

$$i = 1,...,n$$
, where $\mu_i = E[Y_i]$. Let

 $SSTO = SS_1 + SS_2 + \dots + SS_{k-1}$

where each SS_r has d.f.=df_r. Then if $\mu_i = \mu = const.$, the terms SS_r/ $\sigma^2 \sim indep. \chi^2(df_r)$ are <u>indep</u>. of SSE/ $\sigma^2 \sim \chi^2(n-2)$ when $\sum df_r + df_E = n-1.$

F-Reference Dist'n

From Cochran's Thm., we find for the LSR model that

$$F^* = \frac{\frac{SSR}{\sigma^2}/1}{\frac{SSE}{\sigma^2}/(n-2)} = \frac{MSR}{MSE} \sim F(1, n-2)$$

whenever E{Y_i} is constant. But, a constant mean equates to $\beta_1 = 0$, i.e., H_o is true. This gives the reference dist'n for F*.

F-Test

So, when H_o is true, the null reference dist'n for F* is F* ~ F(1, n–2).

(When H_o is false, F* has a <u>noncentral</u> F-dist'n.)

We reject H_o at signif. level α when F* > F(1- α ; 1, n-2).

This is called the 'full' **F-test** from the ANOVA table.

Ex. CH01TA01 (cont'd): ANOVA table

Recall the Toluca data. For the ANOVA table, use anova():

> anova(CH01TA01.lm)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F) X 1 252378 252378 105.88 4.45e-10 Residuals 23 54825 2384

Ex. CH01TA01 (cont'd): F-test For the Toluca data, the ANOVA shows $F^* = 252378/2384 = 105.9$ Reject H_{α} : $\beta_1 = 0$ vs. H_{α} : $\beta_1 \neq 0$ when $F^* > F(1 - \alpha; 1, n-2)$. At $\alpha = 0.05$ this is $F^* > F(.95; 1, 23)$. Find the critical point in R: > qf(0.95, df1=1, df2=CH01TA01.lm\$df)[1] 4.279344

Clearly, $F^* = 105.9 > F(.95; 1, 23) = 4.28$, so we reject H_o .

Ex. CH01TA01 (cont'd): F vs. t

Note the equivalence between the F-test and the t-test for $H_o:\beta_1 = 0$ vs. $H_a:\beta_1 \neq 0$.

P-values are the same (P = 4.45e-10). And, can show F* = $(t^*)^2$:

> anova(CH01TA01.lm)[1,4]
[1] 105.8757

> summary(CH01TA01.lm)\$coef[2,3]^2
[1] 105.8757

Reduction Sum of Squares (1)

We can extend the ANOVA F-test to any form of statistical model, via 3 basic steps:

(1) Define a FULL MODEL (FM) with all desired components. For the SLR this is $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$. From the FM, find the SSE: SSE(F) = $\sum (Y_i - \hat{Y}_i)^2$, with \hat{Y}_i found under the FM via LS.

Reduction Sum of Squares (2)

(2) For a given H_o, determine how the constraint *reduces* the model. (The **REDUCED MODEL** (RM) holds under H_o.) Then find the SSE under the RM, say SSE(R) = $\sum \{Y_i - \hat{Y}_i(R)\}^2$.

For instance, with SLR, under H_o: β_1 =0 the RM is Y_i = β_0 + ϵ_i and SSE(R) = $\sum (Y_i - \overline{Y})^2$ (which happens to = SSTO.)

Reduction Sum of Squares (3)

(3) If SSE(F) << SSE(R), the reduction in SS is "significant." An F-statistic to quantify the discrepancy is

$$F^* = \frac{SSE(R) - SSE(F)}{df_{ER} - df_{EF}} / \frac{SSE(F)}{df_{EF}}$$

Under appropriate conditions, $F^* \sim F(df_{ER}-df_{EF}, df_{EF})$ so reject H_o when $F^* > F(1-\alpha; df_{ER}-df_{EF}, df_{EF})$ as in the ANOVA Table.

Linear Association

Besides the slope parameter β_1 , we can measure the linear association between Y and X using the SS terms from the ANOVA.

The reduction SS for the SLR model is SSE(R) – SSE(F) = SSTO – SSE = SSR. So, consider the ratio

$$\frac{\text{SSR}}{\text{SSTO}} = 1 - \frac{\text{SSE}}{\text{SSTO}}$$

Linear Association (cont'd)

Since SSE(R) is always \geq SSE(F), that says SSTO \geq SSE. But then 1 \geq SSE/SSTO, i.e. $0 \leq 1 - \frac{SSE}{SSTO}$

And, since SSE/SSTO \geq 0, we have

$$1 - \frac{SSE}{SSTO} \le 1$$

$$0 \le 1 - \frac{SSE}{SSTO} \le 1$$

We denote this as

$$R^2 = 1 - \frac{SSE}{SSTO} = \frac{SSR}{SSTO}$$

and call it the Coefficient of Determination.

Interpretation: $R^2 = SSR/SSTO$ is the % of total variation in the Y_is explained by the regression model.

R² (cont'd)

R² is easy to understand, but also <u>easy to</u> <u>overuse</u>!! (So, employ with care.)

Some features:

- (a) R² = 1 when every point sits <u>on</u> the (straight) line.
- (b) $R^2 = 0$ when the data are an amorphous cloud (i.e., $\beta_1 = 0$)
- (c) $R^2 \rightarrow 1$ is good, but "how big is big" depends on the subject matter.

Ex. CH01TA01 (cont'd): R²

```
The coeff. of determination (R<sup>2</sup>) is in the summary() output
```

(near bottom; previously suppressed):

R² Limitations

Some limitations:

(a) $R^2 \rightarrow 1$ indicates strong <u>linear</u> association, but it may be a poor fit. See Fig. 2.9(a).

(b) $R^2 \rightarrow 0$ indicates weak <u>linear</u> association, but it may be a good nonlinear fit.

See Fig. 2.9(b).

Comments on the SLR Model

- (1) If using \hat{Y}_h for future estimation or prediction at X = X_h, the model assumptions must continue to hold.
- (2) If using \hat{Y}_h for future estimation or prediction at X = X_h, and if X_h is also predicted, the inferences are conditional on that X_h value.
- (3) If X_h falls outside the range of the orig.
 X_is, watch for extrapolation errors.

Comments (cont'd)

- (4) If we reject $H_o:\beta_1 = 0$, we <u>don't</u> necess. establish a causal relationship between X and Y. (Don't do lazy statistics!)
- (5) Except for the WHS conf. band, every inference we've described is <u>pointwise</u> and valid only once. (Adjust this with "multiplicity corrections" as in Ch. 4.)
- (6) If X is itself random, the inferences are approximate (or, can be "conditional").

Correlation Analysis

- Analysis of data pairs can also be performed via measures of correlation.
- Similar to the SLR model on the surface, and sharing many calculations, correlation is actually a totally different model built using two random variables, Y₁ and Y₂.
- If the paired components are both random and prediction is not an issue, the correlation model is more appropriate.

Correlation Model

Assume Y₁ and Y₂ have a joint probability function of the form

$$f(\mathbf{y}_{1},\mathbf{y}_{2}) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho_{12}^{2}}} \exp\left\{-\frac{1}{2(1-\rho_{12}^{2})} \left[\left(\frac{\mathbf{y}_{1}-\boldsymbol{\mu}_{1}}{\sigma_{1}}\right)^{2} - 2\rho_{12} \left(\frac{\mathbf{y}_{1}-\boldsymbol{\mu}_{1}}{\sigma_{1}}\right) \left[\frac{\mathbf{y}_{2}-\boldsymbol{\mu}_{2}}{\sigma_{2}} + \left(\frac{\mathbf{y}_{2}-\boldsymbol{\mu}_{2}}{\sigma_{2}}\right)^{2} \right]\right\}$$

This is the Bivariate Normal model, denoted as $\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \sim N_2 \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}$.

Correlation Model (cont'd)

Marginally, we have $E{Y_j} = \mu_j$ and $\sigma^2{Y_j} = \sigma_j^2$, with $Y_j \sim N(\mu_j, \sigma_j^2)$, j = 1, 2.

The correlation coefficient between Y_1 and Y_2 is $\rho_{12} = \sigma \{Y_1, Y_2\} / \sigma \{Y_1\} \sigma \{Y_2\}$.

If Y_1 and Y_2 are indep., then $\rho_{12} = 0$. The reverse isn't always true; however for the bivariate normal it *is*:

 Y_1 and Y_2 are indep. $\Leftrightarrow \rho_{12} = 0$

Conditional Distribution (1|2) Under the bivariate normal model, the conditional distributions are intriguing: Use $f(y_1|y_2) = \frac{f(y_1,y_2)}{f(y_2)}$ to find $Y_1|Y_2=y_2 \sim N(\alpha_{1|2} + \beta_{12}y_2, \sigma_{1|2}^2),$ where $\alpha_{1|2} = \mu_1 - \mu_2 \rho_{12} \sigma_1 / \sigma_2$ $\beta_{12} = \rho_{12}\sigma_1/\sigma_2$ $\sigma_{1|2}^{2} = \sigma_{1}^{2}(1-\rho_{12}^{2}).$

Conditional Distribution (2|1)
Similarly,
$$Y_2|Y_1=y_1 \sim N(\alpha_{2|1} + \beta_{21}y_1, \sigma_{2|1}^{2})$$
,
where $\alpha_{2|1} = \mu_2 - \mu_1\rho_{12}\sigma_2/\sigma_1$
 $\beta_{21} = \rho_{12}\sigma_2/\sigma_1$
 $\sigma_{2|1}^{2} = \sigma_2^{2}(1-\rho_{12}^{2})$.
Notice that $E\{Y_2|Y_1=y_1\} = \alpha_{2|1} + \beta_{21}y_1$ is a
linear relationship. This is often described
as a "regression" of Y_2 on y_1 . (Same holds
for $E\{Y_1|Y_2=y_2\}$.)

Lots of Confusion...

- The linear relation apparent in the conditional models means that given $Y_1 = y_1$, $\alpha_{2|1}$ and β_{21} can be computed using the SLR normal equs.
- But that doesn't mean the models are the same! It's just a convenient computational coincidence.
- This leads to lots of confusion between correlation and regression. Bottom line: they are two different models.

PPMCC

The goal in correlation analysis is determination of the (strength of) association between Y_1 and Y_2 , using the ρ_{12} measure. Estimate ρ_{12} with the (sample) Pearson Product-Moment Correlation Coefficient:

$$\mathbf{r}_{12} = \frac{\sum_{i=1}^{n} (\mathbf{Y}_{i1} - \overline{\mathbf{Y}}_{1}) (\mathbf{Y}_{i2} - \overline{\mathbf{Y}}_{2})}{\sqrt{\sum_{i=1}^{n} (\mathbf{Y}_{i1} - \overline{\mathbf{Y}}_{1})^{2} \sum_{i=1}^{n} (\mathbf{Y}_{i2} - \overline{\mathbf{Y}}_{2})^{2}}}$$

(a slightly biased, ML estimator).

The sample correlation coeff. r_{12} satisfies $-1 \le r_{12} \le 1$,

where

 $r_{12} \rightarrow -1$ if Y_1, Y_2 are negatively associated $r_{12} \rightarrow +1$ if Y_1, Y_2 are positively associated

 $\mathbf{r}_{12} \rightarrow \mathbf{0}$ if $\mathbf{Y}_1, \mathbf{Y}_2$ are not associated.

(Oh, by the way: $r_{12}^2 = R^2$.)

Hypothesis Test of ρ_{12}

The natural null hypoth. here is H_o : $\rho_{12} = 0$, vs. H_a : $\rho_{12} \neq 0$. Under the bivariate normal model,

$$t^* = \frac{r_{12}\sqrt{n-2}}{\sqrt{1-r_{12}^2}} \sim t(n-2)$$

so reject H_o when $|t^*| > t(1 - \frac{\alpha}{2}; n-2)$. The P-value is 2P[t(n-2) > $|t^*|$].

t* is numerically identical to the t* in (2.20) for testing $\beta_1 = 0 \Rightarrow$ tends to create confusion.

Example p. 84: Correlation

Oil Co. sales example: study n = 23 gas stations and record $Y_1 = \{gasoline sales\}$ and $Y_2 = \{auxiliary product sales\}.$ We are given $r_{12} = 0.52$. Wish to test if ρ_{12} is positive. Set $\alpha =$ 0.05.

Can do this in R \rightarrow

Example p.84: Correlation

For the Oil Co. sales example, with $r_{12} = 0.52$ we can find t* = 2.79 on 21 df.

To test $H_o:\rho_{12} \le 0$ vs. $H_a:\rho_{12} > 0$, the one-sided P-value is P[t(21) > 2.79]. Find this in R via: > pt(2.79, df=21, lower.tail=F) [11 0.005486405

At α = 0.05 we see *P* < α , so <u>reject</u> H_o.

Confidence Limits on ρ_{12}

Conf. limits on ρ_{12} are trickier (since, e.g., ρ_{12} doesn't appear in t*).

We use the Fisher z-Transform:

$$z' = \frac{1}{2} ln \left(\frac{1 + r_{12}}{1 - r_{12}} \right)$$

For $n \ge 8$, $z' \stackrel{\sim}{\sim} N(\zeta, \sigma^2 \{z'\})$ where $\zeta = \frac{1}{2} ln \left(\frac{1 + \rho_{12}}{1 - \rho_{12}} \right) \text{ and } \sigma^2 \{z'\} = 1/(n-3).$

Conf. Limits on ρ_{12} (cont'd)

Notice that $(z' - \zeta)/\sigma\{z'\} \sim N(0,1)$. So, an approx. 1– α conf. int. for ζ is clearly $z' \pm z(1 - \frac{\alpha}{2}) \frac{1}{\sqrt{n-3}}$

[Use the ∞ row of Table B.2 to find $z(1 - \frac{\alpha}{2})$.]

Now, reverse-transform to the ρ -scale: $r_{12} = \frac{e^{2z'} - 1}{e^{2z'} + 1}$

(Table B.8 gives selected values of both transforms.)

Conf. Limits on ρ_{12} (cont'd)

So, if the z-transform produces $1-\alpha$ limits on ζ of, say,

 $\mathbf{z}_{\mathsf{L}}' < \zeta < \mathbf{z}_{\mathsf{U}}',$

the corresp. $1-\alpha$ limits on ρ_{12} are

$$\frac{e^{2z'_{L}} - 1}{e^{2z'_{L}} + 1} < \rho_{12} < \frac{e^{2z'_{U}} - 1}{e^{2z'_{U}} + 1}$$

Example p. 86: Correlation

<u>Grocery purchase example</u>: study n = 200 households and record $Y_1 = \{\text{beef purchases}\}\$ and $Y_2 = \{\text{poultry purchases}\}.$ We are given $r_{12} = -0.61$. Wish to find a 95% conf. int. on the true

correlation coeff. ρ_{12} .

Can do this in R \rightarrow

Ex. p. 86: 1– α conf. limits on ρ_{12}

Direct R code for Fisher z'-transform:

- > r12 = -0.61
- > alpha = .05
- > n = 200
- > zprime = 0.5*(log(1+r12) log(1-r12))
 > se = 1/sqrt(n-3)
- > zlwr = zprime qnorm(1-alpha/2)*se
- > zupr = zprime + qnorm(1-alpha/2)*se
- > rholwr = $(\exp(2*zlwr)-1)/(\exp(2*zlwr)+1)$
- > rhoupr = $(\exp(2*zupr)-1)/(\exp(2*zupr)+1)$
- > c(rholwr, rhoupr)

[1] -0.6903180 -0.5148301

Ex. p. 86: 1– α conf. limits on ρ_{12}

Even faster, for Fisher z'-transform, are the hyperbolic tangent functions:

```
> r12 = -0.61
> alpha = .05
> n = 200
> zprime = atanh( r12 )
> se = 1/sqrt( n-3 )
> zlwr = zprime - qnorm( 1-alpha/2 )*se
> zupr = zprime + qnorm( 1-alpha/2 )*se
> c( tanh( zlwr ), tanh( zupr ) )
[1] -0.6903180 -0.5148301
```

1– α conf. limits on ρ_{12}

In R, can also use

- CIr() from *psychometric* package
- fisherz() suite in psych package
- cor.test() (in base stats) if original data pairs are available; see help(cor.test)

Testing $H_0: \rho_{12} = \rho_0$

The t-test for H_o : $\rho_{12} = 0$ doesn't naturally extend to testing any H_o : $\rho_{12} = \rho_o$.

Fastest solution is to build a Fisher z-transform conf. int. for ρ_{12} (as above) and reject H_o if the interval fails to contain ρ_o .

(Appeal here is to the tautology between hypoth. tests and conf. int's)

Spearman's Rank Correlation

- If the bivariate normal model doesn't hold (and a transformation of the Y_j's can't help), there is a <u>rank-based</u> form available, known as Spearman's rank correlation.
- Basic idea: replace the observations with their ranks, and then perform the corrl'n calculations on the ranks.

Rank Correlation

- Step 1: Find all the Y_{i1}'s and rank them from min. to max. Call these R_{i1}.
- Step 2: Repeat Step 1 for Y_{i2} to find R_{i2}. (If <u>ties</u> exist, give each tied value the average of the tied ranks.)
- Step 3: Calculate $r_{s} = \frac{\sum_{i=1}^{n} (R_{i1} - \overline{R}_{1})(R_{i2} - \overline{R}_{2})}{\sqrt{\sum_{i=1}^{n} (R_{i1} - \overline{R}_{1})^{2} \sum_{i=1}^{n} (R_{i2} - \overline{R}_{2})^{2}}}$ Notice that $-1 \le r_{s} \le 1$.

Rank Correlation (cont'd)

Step 4: For n ≥ 10, calculate appox. tstatistic t* = $\frac{r_s \sqrt{n-2}}{\sqrt{1-r_s^2}}$ ~ t(n-2).

Step 5: Set H_o : {no assoc. between $Y_1 \& Y_2$ } vs. H_a : {some assoc. between $Y_1 \& Y_2$ }

Step 6: Reject H_o when $|t^*| > t(1 - \frac{\alpha}{2}; n-2)$.

Example p. 88: Rank Correlation

<u>New Food Marketing example</u>: study n = 12 test markets and record

- Y₁ = {popl'n of market} and
- Y₂ = {per cap. spending on new food product}.

Data are in Table 2.4.

Wish to test for association between Y_1 and Y_2 but can't appeal to normality \Rightarrow use Spearman's rank corrl'n.

Can do this in R \rightarrow

Example CH02TA04: Spearman Rank Correlation

The New Food Marketing data from Table 2.4 are

> Y1 = $c(29, 435, \ldots, 89)$

> Y2 = c(127, 214, ..., 103)

We can find r_s in R:
> cor(Y1, Y2, method="spearman")
[1] 0.8951049

Ex. CH02TA04 (cont'd): Spearman Corrl'n Testing

To test H_0 :No Y_1 -vs.- Y_2 association against H_a :Some Y_1 -vs.- Y_2 association via t* statistic in R, use:

> cor.test(Y1, Y2, method="spearman", exact=F)

Spearman's rank correlation rho

data: Y1 and Y2

S = 30, p-value = 8.367e-05

alternative hypothesis: true rho is not equal to 0

At $\alpha = 0.01$ we see $P = 8.37 \times 10^{-5} < \alpha$, so <u>reject</u> H_o. (For an 'exact' test, use <u>exact=T</u> option.)