STAT 571A - Advanced Statistical Regression Analysis

Chapter 2 NOTES

Inferences in Regression and Correlation Analysis

© 2017 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means - electronic, online, mechanical, photoreproduction, recording, or scanning - without the prior written consent of the course instructor.

Normal SLR Model

■ Continuing with the normal SLR model, we have

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \tag{2.1}
\end{equation*}
$$

with $\varepsilon_{i} \sim$ i.i.d. $N\left(0, \sigma^{2}\right), i=1, \ldots, n$.

- This produces Y_{i} ~ indep. $N\left(E\left[Y_{i}\right], \sigma^{2}\right)$, with mean response

$$
E\left[Y_{i}\right]=\beta_{0}+\beta_{1} X_{i}+E\left[\varepsilon_{i}\right]=\beta_{0}+\beta_{1} X_{i}
$$

$$
\beta_{1}=0
$$

- It is natural to focus on the slope parameter β_{1}. Why? Look at what happens to $E\left[Y_{i}\right]$ if, say, $\beta_{1}=0$:

$$
\begin{aligned}
E\left[Y_{i}\right] & =\beta_{0}+(0) X_{i}+E\left[\varepsilon_{i}\right] \\
& =\beta_{0}+0+0=\beta_{0} .
\end{aligned}
$$

- That is, when $\beta_{1}=0, E\left[Y_{i}\right]$ is independent of X_{i}. There is no "regression" of Y on X.

Sampling Distribution of \mathbf{b}_{1}

- We use the LS estimator b_{1} to estimate β_{1}.
- Recall that b_{1} can be written in the form

$$
\begin{aligned}
& \qquad b_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{m=1}^{n}\left(X_{m}-\bar{X}\right)^{2}}=\sum_{i=1}^{n} k_{i} Y_{i} \\
& \text { for } k_{i}=\frac{\left(X_{i}-\bar{X}\right)}{\sum_{m=1}^{n}\left(X_{m}-\bar{X}\right)^{2}}
\end{aligned}
$$

i.e., a linear combination of the Y_{i} 's.

Distribution of \mathbf{b}_{1} (cont'd)

- So if $b_{1}=\sum k_{i} Y_{i}$, then we know from Equ. (A.40) that

$$
\sum k_{i} Y_{i} \sim N\left(\sum k_{i} E\left[Y_{i}\right], \sum k_{i}^{2} \sigma^{2}\right)
$$

- But $\sum k_{i} E\left[Y_{i}\right]=\sum k_{i}\left(\beta_{0}+\beta_{1} X_{i}\right)$

$$
=\sum \mathbf{k}_{i} \beta_{0}+\sum \mathbf{k}_{i} \beta_{1} \mathbf{x}_{\mathrm{i}}=\boldsymbol{\beta}_{0} \sum \mathbf{k}_{\mathrm{i}}+\beta_{1} \sum \mathbf{k}_{\mathrm{i}} \mathbf{X}_{\mathrm{i}}
$$

- While $\sum k_{i}{ }^{2} \sigma^{2}=\sigma^{2} \sum k_{i}{ }^{2}$
- So, what are $\sum k_{i}, \sum k_{i} X_{i}$, and $\sum k_{i}{ }^{2}$?

Distribution of \mathbf{b}_{1} (cont'd)

- Since $k_{i}=\frac{\left(X_{i}-\bar{X}\right)}{\sum_{m=1}^{n}\left(X_{m}-\bar{X}\right)^{2}}$
we need to find $\sum k_{i}, \sum k_{i} X_{i}$, and $\sum k_{i}{ }^{2}$.
- (See handwritten PDF notes at
http://math.arizona.edu/~piegorsch/571A/sumKnotes.pdf)
- We find:

$$
\begin{gathered}
\sum k_{i}=0 \quad \sum k_{i} X_{i}=1 \text { and } \\
\sum k_{i}^{2}=\frac{1}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
\end{gathered}
$$

Distribution of b_{1} (cont'd)

■ Thus we see:

- $E\left[b_{1}\right]=\beta_{0} \sum k_{i}+\beta_{1} \sum k_{i} X_{i}=\beta_{0}(0)+\beta_{1}(1)=\beta_{1}$ (unbiased!)
- $\sigma^{2}\left[b_{1}\right]=\sigma^{2} \sum k_{i}^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$

■ So, we can write

$$
b_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Distribution of b_{1} (cont'd)

- Now, $\sigma^{\mathbf{2}}$ is unknown, so to estimate the variance of $b_{1}, \sigma^{2}\left\{b_{1}\right\}$, recall that

$$
M S E=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2} /(n-2)
$$

is unbiased for σ^{2}.

- Use this to estimate $\sigma^{2}\left\{b_{1}\right\}$ with

$$
s^{2}\left\{b_{1}\right\}=\operatorname{MSE} / \Sigma_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

- The standard error of b_{1} is then

$$
s\left\{b_{1}\right\}=\sqrt{M S E / \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

Distribution of b_{1} (cont'd)

In addition, we can show that

$$
\mathrm{U}=\frac{(\mathrm{n}-2) \mathrm{MSE}}{\sigma^{2}} \sim \chi^{2}(\mathrm{n}-2)
$$

is independent of

$$
b_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

and therefore of

$$
Z=\frac{b_{1}-\beta_{1}}{\sigma / \sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}} \sim N(0,1)
$$

Distribution of b_{1} (cont'd)

Use these in the def'n of a t random variable from (A.44):

$$
\mathbf{T}=\frac{\mathbf{Z}}{\sqrt{\mathbf{U} / v}}
$$

using Z and U from the b_{1} construction. Need to 'do the math,' a good exercise: try to algebraically show this $T=\left(b_{1}-\beta_{1}\right) / s\left\{b_{1}\right\}$, so that $T \sim t(n-2)$, where $s\left\{b_{1}\right\}$ is the std. error of b_{1} :

$$
s\left\{b_{1}\right\}=\sqrt{M S E / \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

Confidence Interval on $\boldsymbol{\beta}_{1}$

- The t sampling distribution for b_{1} allows for convenient inferences on β_{1}.
- For instance, a 1- α conf. int. is based on

$$
1-\alpha=P\left[t\left(\frac{\alpha}{2} ; n-2\right)<T<t\left(1-\frac{\alpha}{2} ; n-2\right)\right]
$$

- In this, use T = $\left(b_{1}-\beta_{1}\right) / s\left\{b_{1}\right\}:$

$$
\begin{aligned}
1-\alpha=P\left[t\left(\frac{\alpha}{2} ; n-2\right)<\right. & \left(b_{1}-\beta_{1}\right) / s\left\{b_{1}\right\} \\
& \left.<t\left(1-\frac{\alpha}{2} ; n-2\right)\right]
\end{aligned}
$$

Confidence Interval on β_{1} (cont'd)

The $1-\alpha$ probability statement simplifies, as

$$
\begin{aligned}
& 1-\alpha=P\left[t\left(\frac{\alpha}{2} ; n-2\right) s\left\{b_{1}\right\}<\left(b_{1}-\beta_{1}\right)\right. \\
&\left.<t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{b_{1}\right\}\right] \\
&=P\left[-b_{1}-t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{b_{1}\right\}<\right. \\
&\left.\quad-\beta_{1}<-b_{1}+t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{b_{1}\right\}\right] \\
&= P\left[b_{1}+t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{b_{1}\right\}>\right. \\
&\left.\quad \beta_{1}>b_{1}-t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{b_{1}\right\}\right]
\end{aligned}
$$

Confidence Interval on β_{1} (cont'd)

By rearranging terms from left-to-right, the 1-a probability statement collapses to
$1-\alpha=P\left[b_{1}-t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{b_{1}\right\}<\beta_{1}\right.$

$$
\left.<b_{1}+t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{b_{1}\right\}\right]
$$

or just $b_{1} \pm t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{b_{1}\right\}$

Example CH01TA01 (p. 19)

Recall from Ch. 1 (Table 1.1) the Toluca Co. example. To find LS fit for simple linear regression in R use:
$>X=c(80,30, \ldots, 70)$
$>Y=c(399,121, \ldots, 323)$
$>$ CH01TA01.lm $=\operatorname{lm}(Y \sim X)$
> summary (CH01TA01.lm)

summary () output for Toluca example

Call:
lm(formula $=\mathrm{Y} \sim \mathrm{X}$)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-83.876	-34.088	-5.982	38.826	103.528

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

(Std. errors of the regr. parameters highlighted in red here.)

Ex. CH01TA01 (cont'd): Conf. Int. on $\boldsymbol{\beta}_{1}$

There are many ways to find a 95% Conf. Interval on the slope parameter, β_{1}, in R. Fastest is with confint():
> confint(CH01TA01.lm)

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) $8.213711 \quad 116.518006$ X
2.8524354 .287969

Ex. CH01TA01 (cont'd): Conf. Int. on β_{1}

Or, manipulate the various components of the CH01TA01.lm object:

The LS estimate is
> coef(CH01TA01.lm)[2] X
3.570202

The std. error $s\left\{b_{1}\right\}$ is
> summary(CH01TA01.lm)\$coefficients[2,2]
[1] 0.3469722

Ex. CH01TA01 (cont'd): Conf. Int. on β_{1}

The 95% two-sided t^{*} critical point is
> qt(0.975, df=cн01TA01.lm\$df)
[1] 2.068658
So the 95% conf. int. is
> b1 = coef(CH01TA01.lm)[2]
> se1 = summary(CH01TA01.lm)\$coefficients[2,2]
> tcrit = qt(0.975, df=CH01TA01.lm\$df)
> c(b1-tcrit*se1, b1+tcrit*se1)
2.8524354 .287969

Hypothesis tests on $\boldsymbol{\beta}_{1}$

- Or, to test $H_{0}: \beta_{1}=\beta_{10}$ vs. $H_{a}: \beta_{1} \neq \beta_{10}$ (twosided!), appeal to the t-reference distribution and build the test statistic

$$
\mathbf{t}^{*}=\frac{b_{1}-\beta_{10}}{s\left\{b_{1}\right\}}
$$

- Under $\mathrm{H}_{0}, \mathrm{t}^{*} \sim \mathrm{t}(\mathrm{n}-2)$, so reject H_{0} when $\left|t^{*}\right|>t\left(1-\frac{\alpha}{2} ; n-2\right)$
- Special (why?) case: $\beta_{10}=0$.
- One-sided: reject H_{o} vs. (say) $H_{a}: \beta_{1}>\beta_{10}$ when $\mathrm{t}^{*}>\mathrm{t}(1-\alpha ; n-2)$, etc.

Ex. CH01TA01 (cont'd): Hypoth. tests on $\boldsymbol{\beta}_{1}$

To test $H_{0}: \beta_{1}=0$ vs. $H_{a}: \beta_{1} \neq 0$ just refer back to the summary () output:
call:
$\operatorname{lm}($ formula $=Y \sim X)$!
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{lrrrr}\text { (Intercept) } & 62.366 & 26.177 & 2.382 & 0.0259 \\ \mathrm{X} & 3.570 & 0.347 & 10.290 & 4.45 \mathrm{e}-10\end{array}$
$t^{*}=10.29$, with $P=4.45 \times 10^{-10}<\alpha=0.05$, so reject H_{o} and conclude
"x=lot size significantly affects $Y=$ work hrs."

Distribution of \mathbf{b}_{0}

- Since we saw that the LS estimator, b_{0}, for β_{0} also has the form $b_{0}=\sum k_{i} Y_{i}$ (not the same k_{i} 's...), we can build similar sorts of t-based inferences for $\boldsymbol{\beta}_{0}$.
- We find $b_{0} \sim N\left(\beta_{0}, \sigma^{2}\left\{b_{0}\right\}\right)$, where the variance of b_{0} is

$$
\sigma^{2}\left\{b_{0}\right\}=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
$$

Distribution of \mathbf{b}_{0}

- Can show that

$$
Z=\left(b_{0}-\beta_{0}\right) / \sigma\left\{b_{0}\right\} \sim N(0,1)
$$

is independent of

$$
\mathrm{U}=(\mathbf{n}-\mathbf{2}) \mathrm{MSE} / \boldsymbol{\sigma}^{2} \sim \chi^{2}(\mathbf{n}-\mathbf{2})
$$

- From these, find the std. error of b_{0} :

$$
s\left\{b_{0}\right\}=\sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)}
$$

Inferences on $\boldsymbol{\beta}_{0}$

- Use these various components to build the t -dist'n random variable

$$
T=\frac{b_{0}-\beta_{0}}{s\left\{b_{0}\right\}} \sim t(n-2)
$$

- From this, t-test and conf. int's follow in similar form as with β_{1}.
- For instance, a 1 - α conf. int. on β_{0} is (no surprise):

$$
b_{0} \pm t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{b_{0}\right\}
$$

Extrapolation

- The textbook gives an example of a conf. int. for β_{0} using the Toluca data; however, even they note that it's a silly exercise: who has a "lot size" of $X=0$?!?
- The X values for these data are all well above $X=0$, so the conf. int. is an extrapolation away from the core of the data.
- In general, extrapolation is tricky and can lead to trouble: try to avoid it!

Robustness

- Note that all these inferences are built under a normal assumption on ε_{i}. Deviations or departures from this will invalidate the inferences.
- But(!), slight departures from normality will not have a major effect: the conf. int's and hypoth. tests are fairly robust to (symmetric) departures from normality.
- They are much less robust to departures from the common variance assumption, however.

Power Analysis

- Recall that the power of a hypoth. test is

$$
\begin{aligned}
1-\beta & =1-P\left[\text { accept } H_{o} \mid H_{o} \text { false }\right] \\
& =P\left[\text { reject } H_{o} \mid H_{0} \text { false }\right]
\end{aligned}
$$

- For the t-test of $H_{0}: \beta_{1}=\beta_{10}$ vs. $H_{a}: \beta_{1} \neq \beta_{10}$, the power will depend on β_{10} via the test's noncentrality parameter:

$$
\delta=\frac{\left|\beta_{1}-\beta_{10}\right|}{\sigma\left\{b_{1}\right\}}
$$

Power Analysis (cont'd)

- In particular,

$$
\begin{aligned}
\operatorname{Power}(\delta) & \left.=\text { P[reject } H_{0} \mid H_{0} \text { false }\right] \\
& \left.=\operatorname{P[|t} t^{*}\left|>t\left(1-\frac{\alpha}{2} ; n-2\right)\right| \delta\right]
\end{aligned}
$$

which depends upon an extension of the t-dist'n known as the noncentral t-dist'n.

- For known δ, the power can be tabulated from Table B.5.
\square (δ depends on β_{1} and σ, so it can't be "known." But, it can be approximated.)

Ex. CH01TA01 (p. 51): Power analysis for $\boldsymbol{\beta}_{1}$

- Consider again the Toluca data and focus on testing $\mathrm{H}_{0}: \boldsymbol{\beta}_{1}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \boldsymbol{\beta}_{1} \neq 0$ (so $\beta_{10}=0$.) Set $\alpha=0.05$.
- We found MSE $=2384$ for these data, so a rough value for σ^{2} here is $\sigma^{2} \approx 2500$. Then $\sigma^{2}\left\{\mathrm{~b}_{1}\right\} \approx 2500 / 19800=0.1263$.
- Now, say we want to examine the power when $\beta_{1}=1.5(\neq 0)$. Then

$$
\delta=\frac{\left|\beta_{1}-\beta_{10}\right|}{\sigma\left\{b_{1}\right\}} \approx \frac{|1.5-0|}{\sqrt{0.1263}}=4.22
$$

Toluca Power analysis (cont'd)

- Now, enter Table B. 5 with:

$$
\begin{aligned}
& \delta=4.0 \\
& \alpha=0.05 \\
& \mathrm{df}=\mathrm{n}-2=23 \\
& \delta=5.0 \\
& \begin{array}{l}
\alpha=0.05 \\
\mathrm{df}=n-2=23
\end{array} \quad \rightarrow \quad \text { Power }=0.97 \\
&
\end{aligned} \quad \begin{aligned}
& \text { Power }=1.0
\end{aligned}
$$

- (Textbook uses linear interpolation at $\delta=4.22$ to find Power ≈ 0.9766.)
- One-sided calculations are similar.

Toluca Power analysis (cont'd)

- In R, it's a little tricky (trust us...), but for

$$
\delta=4.22, \alpha=0.05, d f=n-2=23
$$

can use
> delta=4.22
$>\mathrm{a}=0.05$
$>\mathrm{nu}=23$
> pt(qt(1-(a/2),df=nu), df=nu, ncp=delta, low=F) $+p t(-q t(1-(a / 2), d f=n u)$, df=nu, ncp=delta, low=T)

This gives power $=0.98115$, which is slightly larger than that found by interpolation.

Inference on the Mean Response

- Suppose we wish to estimate the mean response $E\left\{Y_{h}\right\}$ at some given predictor $X=X_{h}$ (doesn't have to be one of the orig. X_{i} 's).
- The LS estimator is $\hat{Y}_{h}=b_{0}+b_{1} X_{h}$
- This is (again!) of the form $\sum k_{i} Y_{i}$, so the same sorts of operations we used for b_{0} and b_{1} can be applied here.
- (Details are left to the adventurous reader.)

The Mean Response $E\left\{Y_{h}\right\}$

We find:

$E\left\{\hat{Y}_{h}\right\}=\beta_{0}+\beta_{1} X_{h} \quad$ (unbiased!)
$\sigma^{2}\left\{\hat{Y}_{h}\right\}=\sigma^{2}\left(\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)$
$s\left\{\hat{Y}_{h}\right\}=\sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)}$
(so the variance and the std. error both \uparrow as X_{h} departs from $\overline{\mathrm{X}}$.)

The Mean Response $E\left\{Y_{h}\right\}$

Also: $\hat{Y}_{h} \sim N\left(\beta_{0}+\beta_{1} X_{h}, \sigma^{2}\left\{\hat{Y}_{h}\right\}\right)$
From this, we can construct the t random variable

$$
T=\frac{\hat{Y}_{h}-\left(\beta_{0}+\beta_{1} X_{h}\right)}{s\left\{\hat{Y}_{h}\right\}} \sim \mathfrak{t}(\mathrm{n}-2)
$$

Hypoth. tests and conf. ints. can be built from this reference distribution. E.g., a 1- α conf. int. for $E\left\{Y_{h}\right\}$ is

$$
\hat{Y}_{h} \pm t\left(1-\frac{\alpha}{2} ; n-2\right) s\left\{\hat{Y}_{h}\right\}
$$

(but, it's valid at only a single X_{h} !!)

Ex. CH01TA01 (cont'd): Conf. Interval on $E\left\{Y_{h}\right\}$

For the LS estimate of $E\left\{Y_{h}\right\}$ at any $X=X_{h}$, use predict(). E.g., at $\mathrm{X}_{\mathrm{h}}=100$:

> predict(CH01TA01.lm,

newdata=data.frame($\mathrm{X}=100$),
interval="conf", level=.90)

$$
\begin{array}{rrrr}
& \text { fit } & \text { lwr } & \text { upr } \\
1 & 419.3861 & 394.9251 & 443.847
\end{array}
$$

First value ('fit') is \hat{Y}_{h} at $X_{h}=100$; next two ('lwr','upr') are 90% conf. limits.

Prediction of Y_{h}

We use \hat{Y}_{h} to estimate the mean response $\mathrm{E}\left\{\mathrm{Y}_{\mathrm{h}}\right\}$. But, what about predicting a future observed Y ?
Call this $Y_{h(\text { new })}$ at at $X=X_{h(n e w)}$.
The predictor itself isn't hard, just tricky:
$Y_{h(\text { new })}=E\left\{Y_{h(n e w)}\right\}+\varepsilon_{h}$
so: (1) estimate $E\left\{Y_{h(n e w)}\right\}$ with $\hat{Y}_{h(n e w)}$
and (2) estimate ε_{h} with, well, $\mathrm{E}\left\{\varepsilon_{\mathrm{h}}\right\}=0$.

Prediction (cont'd)

This gives the predicted value as

$$
\hat{Y}_{\mathrm{h}(\text { new })}+0
$$

or simply

$$
\hat{Y}_{h(\text { new })}=b_{0}+b_{1} X_{h(n e w)}
$$

(as might be expected).

But (!) the std. error is trickier \rightarrow

Prediction Error

The std. error of prediction requires us to account for variation in ε_{h} :

Denote the prediction variance as $\sigma^{2}\{$ pred $\}$.
This is $\sigma^{2}\{$ pred $\}=\sigma^{2}\left\{\hat{Y}_{h(\text { new })}+\varepsilon_{h}\right\}$

$$
\begin{aligned}
& =\sigma^{2}\left\{\hat{Y}_{h(\text { new })}\right\}+\sigma^{2}\left\{\varepsilon_{h}\right\} \\
& =\sigma^{2}\left\{b_{0}+b_{1} X_{h(\text { new })}\right\}+\sigma^{2}\left\{\varepsilon_{h}\right\}
\end{aligned}
$$

(assuming the two terms are indep.)

Prediction Error (cont'd)

Now,

$$
\begin{aligned}
\sigma^{2}\{\text { pred }\} & =\sigma^{2}\left(\frac{1}{n}+\frac{\left(X_{h(n e w)}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)+\sigma^{2} \\
& =\sigma^{2}\left(1+\frac{1}{n}+\frac{\left(X_{n(n e w)}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
\end{aligned}
$$

The associated std. error of prediction is
$s\{$ pred $\left.\}=\sqrt{\operatorname{MSE}\left(1+\frac{1}{n}+\frac{\left(X_{n(n e w)}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right.}\right)$

Prediction Interval

We can show that

$$
T=\frac{\mathbf{Y}_{h(\text { new })}-\hat{\mathbf{Y}}_{\mathrm{h}(\text { new })}}{\mathrm{s}\{\text { pred }\}} \mathrm{t}(\mathrm{n}-2)
$$

so a 1- α prediction interval for $Y_{h(n e w)}$ is

$$
\hat{Y}_{h(\text { new })} \pm t\left(1-\frac{\alpha}{2} ; n-2\right) s\{\text { pred }\}
$$

(Notice that $\mathbf{s}\{$ pred $\}>s\left\{\hat{\mathbf{Y}}_{\mathrm{h}}\right\}$: prediction involves added variation/uncertainty.)

Ex. CH01TA01 (cont'd): Prediction Interval on $\mathbf{Y}_{\mathbf{h}}$

For a prediction of a future Y_{h} at any $X=X_{h}$, again use predict (). E.g., at $X_{h}=100$:
> predict(CH01TA01.lm, newdata=data.frame($\mathrm{X}=100$), interval="pred", level=.90)

$$
\begin{array}{rrrr}
& \text { fit } & \text { lwr } & \text { upr } \\
1 & 419.3861 & 332.2072 & 506.5649
\end{array}
$$

First value ('fit') is $\hat{Y}_{h(n e w)}$ at $X_{h}=100$; next two ('lwr','upr') are 90\% prediction limits.

Prediction Caveats

Some caveats about prediction intervals:

- They only apply for a single $X_{h(n e w)}$ ("pointwise")
- Normality matters: robustness here is poor!
(Also see p. 60)

Confidence Bands

To build confidence statements at more than just a single X, we turn to simultaneous inferences.

A simultaneous confidence band is a confidence statement on the mean response

$$
E\{Y\}=\beta_{0}+\beta_{1} X
$$

at all possible values of X. (That is, it is valid for every X .)

WHS Band

A confidence band for $\mathrm{E}\{\mathrm{Y}\}$ was given by Working \& Hotelling (1929) and Scheffé (1953):

$$
\hat{Y}_{h} \pm W_{a} s\left\{\hat{Y}_{h}\right\}
$$

where

$$
\mathbf{W}_{\alpha}=\sqrt{2 \mathrm{~F}(1-\alpha ; 2, \mathbf{n}-2)}
$$

is the WHS upper- α critical point. (Pretty simple!)

Ex. CH01TA01 (cont'd): 1 - a confidence band on $E\{Y\}$

> alpha = .10; n = length(Y)
> W = sqrt(2*qf(1-alpha,2,CH01TA01.lm\$df))
> Xh = seq(from=0, to=max(X), length=100)
> Yhat $=$ coef(CH01TA01.lm)[1] +
coef(CH01TA01.lm)[2]*Xh
> se $=$ sqrt(summary(CH01TA01.lm)\$sigma^2 *((1/n) + ((Xh-mean(X))^2)/((n-1)*var(X))))
> WHSlwr = Yhat - W*se
> WHSupr = Yhat + W*se
> plot(WHSlwr ~ Xh, type='l', xlim=c(0,max(X)), ylim=c(0,600), xlab='', ylab='')
> par(new = T)
> plot(WHSupr ~ Xh, type='l', xlim=c(0,max(X)), ylim=c(0,600), xlab='X', ylab='E[Y]')

Ex. CH01TA01 (cont'd): 1 - a confidence band on $E\{Y\}$

Total Sum of Squares

The secret of statistics: to understand the mean (response), analyze the variability...

Consider the following decomposition of how Y_{i} varies: at the core, Y_{i} varies from its mean $\overline{\mathrm{Y}}: \quad \mathrm{Y}_{\mathrm{i}}-\overline{\mathbf{Y}}$

Squaring and summing these deviations gives the Total Sum of Squares:

$$
\text { SSTO }=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Error Sum of Squares

Next, posit some model (say, the SLR) and find the predicted value $\hat{\mathbf{Y}}_{\mathrm{i}}$. This is another form of variation: $\mathbf{Y}_{i}-\hat{Y}_{i}$
with its own sum of squares

$$
S S E=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

(we already saw this as the error sum of squares, a.k.a. residual sum of squares)

SSTO vs. SSE

Now, if the model estimates in \hat{Y}_{i} are no better (in terms of squared deviations) than $\overline{\mathrm{Y}}$, we expect SSTO \approx SSE.

But if the model improves upon the fit, SSTO > SSE. (Fig. 2.7 gives a nice visual.)

What makes up this difference??

SS Decomposition

$$
\begin{aligned}
\text { SSTO }= & \sum\left\{Y_{i}-\bar{Y}\right\}^{2}=\sum\left\{\left(Y_{i}-\hat{Y}_{i}\right)+\left(\hat{Y}_{i}-\bar{Y}\right)\right\}^{2} \\
= & \sum\left\{\left(Y_{i}-\hat{Y}_{i}\right)^{2}\right. \\
& \left.+2\left(\hat{Y}_{i}-\hat{Y}_{i}\right)\left(\hat{Y}_{i}-\bar{Y}\right)+\left(\hat{Y}_{i}-\bar{Y}\right)^{2}\right\} \\
= & \sum\left(Y_{i}-\hat{Y}_{i}\right)^{2} \\
& +2 \sum\left(Y_{i}-\hat{Y}_{i}\right)\left(\hat{Y}_{i}-\bar{Y}\right)+\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
\end{aligned}
$$

SS Decomposition (cont'd)

But now,

$$
\begin{aligned}
& \sum\left(Y_{i}-\hat{Y}_{i}\right)\left(\hat{Y}_{i}-\bar{Y}\right) \\
& \quad=\sum e_{i}\left(\hat{Y}_{i}-\bar{Y}\right) \\
& \quad=\sum e_{i} \hat{Y}_{i}-\sum e_{i} \bar{Y} \\
& =\sum e_{i} \hat{Y}_{i}-\bar{Y} \sum e_{i} \\
& =(0)-\bar{Y}(0)=0
\end{aligned}
$$

(from relationships seen in Ch. 1)

Regression Sum of Squares

So, we find

$$
\begin{aligned}
\text { SSTO } & =\Sigma\left(\mathbf{Y}_{i}-\hat{Y}_{i}\right)^{2}+(2)(0)+\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \\
& =S S E+\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
\end{aligned}
$$

The latter term is what separates SSE from SSTO.

We call this the Model Sum of Squares, or for an SLR model, the Regression Sum of Squares:
SSR $=\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2} \Rightarrow S S T O=S S R+S S E$.

Degrees of Freedom

As with the sample variance, each of these SS terms is associated with a set of d.f.:

- We saw df $\mathrm{E}_{\mathrm{E}}=\mathrm{n}-2$
- From \mathbf{S}^{2}, we know dffoon $=\mathbf{n - 1}$
- For SSR, it turns out that $\mathrm{df}_{\mathrm{R}}=2$ - $1=1$

Conveniently, $\mathrm{df}_{\mathrm{TO}}=\mathrm{df}_{\mathrm{R}}+\mathrm{df}_{\mathrm{E}}$

Mean Squares

With these, divide the SS terms by their d.f.'s to produce Mean Squares:

$$
\begin{aligned}
& \text { MSTO }=\frac{S S T O}{d f_{\text {TO }}}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{n-1} \\
& \text { MSR }=\frac{\text { SSR }}{{d f_{R}}^{n}}=\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{1} \\
& \text { MSE }=\frac{\text { SSE }}{{d f_{E}}^{2}}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}
\end{aligned}
$$

Expected Mean Squares

We can show (p. 69) that

$$
\mathrm{E}[\mathrm{MSR}]=\sigma^{2}+\beta_{1}^{2} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}
$$

and we know

$$
\left.E[M S E]=\sigma^{2} \quad \text { (unbiased for } \sigma^{2}\right)
$$

Notice that if $\beta_{1}=0$, MSR is another unbiased estimator of σ^{2}; but if not, its expectation always exceeds σ^{2}.

ANOVA Table

We collect all these terms together into an Analysis of Variance (ANOVA) Table:

Source d.f. SS MS E\{MS\}
Regr. 1 SSR MSR $\sigma^{2}+\beta_{1}{ }^{2} \Sigma\left(X_{i}-\bar{X}\right)^{2}$
Error $\mathrm{n}-2$ SSE MSE $\boldsymbol{\sigma}^{\mathbf{2}}$
Total n-1 SSTO

F-Statistic

What makes the ANOVA Table so handy is its layout of the pertinent statistics for inferences on β_{1}.
In partic., to test $\mathrm{H}_{0}: \boldsymbol{\beta}_{1}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \boldsymbol{\beta}_{1} \neq 0$, construct the F -statistic $\mathrm{F}^{*}=\mathrm{MSR} / \mathrm{MSE}$.

Notice that if H_{o} is true, $F^{*} \approx 1$, but if H_{a} is true, $F^{*}>1$. This suggests a use for F^{*} in testing H_{0}.

Cochran's Theorem

We employ F^{*} based on a famous result: Cochran's Thm.: Given $Y_{i} \sim \operatorname{indep} . N\left(\mu_{i}, \sigma^{2}\right)$, $\mathrm{i}=1, \ldots, \mathrm{n}$, where $\mu_{\mathrm{i}}=\mathrm{E}\left[Y_{\mathrm{i}}\right]$. Let

$$
\text { SSTO }=\text { SS }_{1}+\text { SS }_{2}+\cdots+\text { SS }_{\mathrm{k}-1}
$$

where each SS $_{r}$ has d.f. $=$ dfr $_{r}$. Then if $\mu_{i}=\mu=$ const., the terms SS $_{r} / \sigma^{2} \sim$ indep. $\chi^{2}\left(\right.$ df $\left._{r}\right)$ are indep. of SSE/ $\sigma^{2} \sim \chi^{2}(\mathbf{n}-2)$ when

$$
\sum \mathrm{df}_{\mathrm{r}}+\mathrm{df} \mathrm{f}_{\mathrm{E}}=\mathrm{n}-1 .
$$

F-Reference Dist'n

From Cochran's Thm., we find for the LSR model that

$$
F^{*}=\frac{\frac{\operatorname{SSR}}{\sigma^{2}} / 1}{\frac{\operatorname{SSE}}{\sigma^{2}} /(n-2)}=\frac{\text { MSR }}{M S E} \sim F(1, n-2)
$$

whenever $E\left\{Y_{i}\right\}$ is constant. But, a constant mean equates to $\beta_{1}=0$, i.e., H_{o} is true. This gives the reference dist'n for F^{*}.

F-Test

So, when H_{o} is true, the null reference dist'n for F^{*} is $F^{*} \sim F(1, n-2)$.
(When H_{o} is false, F^{*} has a noncentral F-dist'n.)
We reject H_{0} at signif. level α when

$$
F^{*}>F(1-\alpha ; 1, n-2) .
$$

This is called the 'full' F-test from the ANOVA table.

Ex. CH01TA01 (cont'd): ANOVA table

Recall the Toluca data. For the ANOVA table, use anova():
> anova(CH01TA01.lm)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
X $1252378 \quad 252378$ 105.88 4.45e-10
Residuals 23548252384

Ex. CH01TA01 (cont'd): F-test

For the Toluca data, the ANOVA shows

$$
F^{*}=252378 / 2384=105.9
$$

Reject $\mathrm{H}_{0}: \beta_{1}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \beta_{1} \neq 0$ when $F^{*}>F(1-\alpha ; 1, n-2)$. At $\alpha=0.05$ this is $F^{*}>F(.95 ; 1,23)$. Find the critical point in R :
> qf(0.95,df1=1,df2=CH01TA01.lm\$df) [1] 4.279344

Clearly, $F^{*}=105.9>F(.95 ; 1,23)=4.28$, so we reject H_{o}.

Ex. CH01TA01 (cont'd): F vs. t

Note the equivalence between the F-test and the t-test for $\mathrm{H}_{0}: \beta_{1}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \beta_{1} \neq 0$. P-values are the same ($P=4.45 \mathrm{e}-10$). And, can show $\mathrm{F}^{*}=\left(\mathbf{t}^{\star}\right)^{2}$:
> anova(CH01TA01.lm)[1,4] [1] 105.8757
> summary(CH01TA01.lm)\$coef[2,3]^2 [1] 105.8757

Reduction Sum of Squares (1)

We can extend the ANOVA F-test to any form of statistical model, via 3 basic steps:
(1) Define a FULL MODEL (FM) with all desired components. For the SLR this is $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}$. From the FM, find the $\operatorname{SSE}: \operatorname{SSE}(F)=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}$, with \hat{Y}_{i} found under the FM via LS.

Reduction Sum of Squares (2)

(2) For a given H_{o}, determine how the constraint reduces the model. (The REDUCED MODEL (RM) holds under H_{0}.) Then find the SSE under the RM, say $\operatorname{SSE}(R)=\sum\left\{Y_{i}-\hat{Y}_{i}(R)\right\}^{2}$.
For instance, with SLR, under $H_{0}: \beta_{1}=0$ the RM is $Y_{i}=\beta_{0}+\varepsilon_{i}$ and $\operatorname{SSE}(R)=$
$\Sigma\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2}$ (which happens to $=\mathbf{S S T O}$.)

Reduction Sum of Squares (3)

(3) If $\operatorname{SSE}(\mathrm{F}) \ll \operatorname{SSE}(\mathrm{R})$, the reduction in SS is "significant." An F-statistic to quantify the discrepancy is

$$
\mathrm{F}^{*}=\frac{\operatorname{SSE}(\mathrm{R})-\operatorname{SSE}(\mathrm{F})}{\mathrm{df}_{\mathrm{ER}}-\mathrm{df}_{\mathrm{EF}}} / \frac{\operatorname{SSE}(\mathrm{F})}{\mathrm{df}_{\mathrm{EF}}}
$$

Under appropriate conditions, $F^{*} \sim F\left(d f_{E R}-d f_{E F}, d f_{E F}\right)$ so reject H_{o} when $F^{*}>F\left(1-\alpha ; d f_{E R}-d f_{E F}, d f_{E F}\right)$ as in the ANOVA Table.

Linear Association

Besides the slope parameter β_{1}, we can measure the linear association between Y and X using the SS terms from the ANOVA.

The reduction SS for the SLR model is SSE(R) - SSE(F) = SSTO - SSE = SSR. So, consider the ratio

$$
\frac{\text { SSR }}{\text { SSTO }}=1-\frac{\text { SSE }}{\text { SSTO }}
$$

Linear Association (cont'd)

Since $\operatorname{SSE}(R)$ is always $\geq \operatorname{SSE}(F)$, that says
SSTO \geq SSE. But then $1 \geq$ SSE/SSTO, i.e.

$$
0 \leq 1-\frac{\text { SSE }}{\text { SSTO }}
$$

And, since SSE/SSTO ≥ 0, we have

$$
\begin{aligned}
& 1-\frac{\text { SSE }}{\text { SSTO }} \leq 1 \\
\Rightarrow & 0 \leq 1-\frac{\text { SSE }}{\text { SSTO }} \leq 1
\end{aligned}
$$

$\mathbf{R}^{\mathbf{2}}$

We denote this as

$$
R^{2}=1-\frac{\text { SSE }}{\text { SSTO }}=\frac{\text { SSR }}{\text { SSTO }}
$$

and call it the Coefficient of Determination.

Interpretation: $\mathbf{R}^{\mathbf{2}}=$ SSR/SSTO is the \% of total variation in the $\mathrm{Y}_{\mathrm{i}} \mathrm{s}$ explained by the regression model.

$\mathbf{R}^{\mathbf{2}}$ (cont'd)

R^{2} is easy to understand, but also easy to overuse!! (So, employ with care.)

Some features:
(a) $R^{2}=1$ when every point sits on the (straight) line.
(b) $\mathbf{R}^{2}=\mathbf{0}$ when the data are an amorphous cloud (i.e., $\beta_{1}=0$)
(c) $R^{2} \rightarrow 1$ is good, but "how big is big" depends on the subject matter.

Ex. CH01TA01 (cont'd): \mathbf{R}^{2}

The coeff. of determination (R^{2}) is in the summary () output
(near bottom; previously suppressed):
> summary(CH01TA01.lm) Call:
$\operatorname{lm}($ formula $=\mathrm{Y} \sim \mathrm{X})$
:
Residual std error: 48.82 on 23 degr. of freedom Multiple R-squared: 0.8215;
Adjusted K -squared: 0.8138
F-stat.: 105.9 on 1 and 23 DF, p-value: 4.449e-10
> summary(CH01TA01.lm)\$r.squared
[1] 0.8215335

$\mathbf{R}^{\mathbf{2}}$ Limitations

Some limitations:
(a) $R^{2} \rightarrow 1$ indicates strong linear association, but it may be a poor fit. See Fig. 2.9(a).
(b) $\mathrm{R}^{\mathbf{2}} \rightarrow \mathbf{0}$ indicates weak linear association, but it may be a good nonlinear fit.
See Fig. 2.9(b).

Comments on the SLR Model

(1) If using $\hat{\mathbf{Y}}_{\mathrm{h}}$ for future estimation or prediction at $\mathrm{X}=\mathrm{X}_{\mathrm{h}}$, the model assumptions must continue to hold.
(2) If using $\hat{\mathrm{Y}}_{\mathrm{h}}$ for future estimation or prediction at $\mathrm{X}=\mathrm{X}_{\mathrm{h}}$, and if X_{h} is also predicted, the inferences are conditional on that X_{h} value.
(3) If X_{h} falls outside the range of the orig. $\mathrm{X}_{\mathrm{i}} \mathrm{s}$, watch for extrapolation errors.

Comments (cont'd)

(4) If we reject $H_{0}: \beta_{1}=0$, we don't necess. establish a causal relationship between X and Y. (Don't do lazy statistics!)
(5) Except for the WHS conf. band, every inference we've described is pointwise and valid only once. (Adjust this with "multiplicity corrections" as in Ch. 4.)
(6) If X is itself random, the inferences are approximate (or, can be "conditional").

Correlation Analysis

- Analysis of data pairs can also be performed via measures of correlation.
- Similar to the SLR model on the surface, and sharing many calculations, correlation is actually a totally different model built using two random variables, Y_{1} and Y_{2}.
- If the paired components are both random and prediction is not an issue, the correlation model is more appropriate.

Correlation Model

Assume Y_{1} and Y_{2} have a joint probability function of the form
$f\left(y_{1}, y_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho_{12}^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho_{12}^{2}\right)}\left[\left(\frac{y_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}\right.\right.$

$$
\left.\left.-\mathbf{2} \boldsymbol{\rho}_{12}\left(\frac{y_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{\mathbf{y}_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{\mathbf{y}_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right]\right\}
$$

This is the Bivariate Normal model, denoted
as $\left[\begin{array}{l}\mathbf{Y}_{1} \\ \mathbf{Y}_{2}\end{array}\right] \sim \mathbf{N}_{2}\left(\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]\left[\begin{array}{cc}\sigma_{1}{ }^{2} & \rho_{12} \sigma_{1} \sigma_{2} \\ \rho_{12} \sigma_{1} \sigma_{2} & \sigma_{2}{ }^{2}\end{array}\right]\right)$.

Correlation Model (cont'd)

Marginally, we have $E\left\{Y_{j}\right\}=\mu_{j}$ and $\sigma^{2}\left\{Y_{j}\right\}=\sigma_{j}^{2}$, with $Y_{j} \sim N\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$.
The correlation coefficient between Y_{1} and Y_{2} is $\rho_{12}=\sigma\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}\right\} / \sigma\left\{\mathrm{Y}_{1}\right\} \sigma\left\{\mathrm{Y}_{2}\right\}$.

If Y_{1} and Y_{2} are indep., then $\rho_{12}=0$. The reverse isn't always true; however for the bivariate normal it is:
Y_{1} and Y_{2} are indep. $\Leftrightarrow \rho_{12}=0$

Conditional Distribution (1|2)

Under the bivariate normal model, the conditional distributions are intriguing:
Use $f\left(y_{1} \mid y_{2}\right)=\frac{f\left(y_{1}, y_{2}\right)}{f\left(y_{2}\right)}$ to find

$$
Y_{1} \mid Y_{2}=y_{2} \sim N\left(\alpha_{1 \mid 2}+\beta_{12} y_{2}, \sigma_{1 \mid 2}{ }^{2}\right),
$$

where $\alpha_{1 \mid 2}=\mu_{1}-\mu_{2} \rho_{12} \sigma_{1} / \sigma_{2}$

$$
\begin{aligned}
& \beta_{12}=\rho_{12} \sigma_{1} / \sigma_{2} \\
& \sigma_{1 \mid 2}{ }^{2}=\sigma_{1}{ }^{2}\left(1-\rho_{12}{ }^{2}\right) .
\end{aligned}
$$

Conditional Distribution (2|1)

Similarly, $Y_{2} \mid Y_{1}=y_{1} \sim N\left(\alpha_{2 \mid 1}+\beta_{21} y_{1}, \sigma_{2 \mid 1}{ }^{2}\right)$,
where $\quad \alpha_{2 \mid 1}=\mu_{2}-\mu_{1} \rho_{12} \sigma_{2} / \sigma_{1}$

$$
\begin{aligned}
& \beta_{21}=\rho_{12} \sigma_{2} / \sigma_{1} \\
& \sigma_{2 \mid 1}{ }^{2}=\sigma_{2}^{2}\left(1-\rho_{12}{ }^{2}\right) .
\end{aligned}
$$

Notice that $E\left\{Y_{2} \mid Y_{1}=y_{1}\right\}=\alpha_{2 \mid 1}+\beta_{21} y_{1}$ is a linear relationship. This is often described as a "regression" of Y_{2} on y_{1}. (Same holds for $E\left\{Y_{1} \mid Y_{2}=y_{2}\right\}$.)

Lots of Confusion...

- The linear relation apparent in the conditional models means that given $Y_{1}=y_{1}, \alpha_{2 \mid 1}$ and β_{21} can be computed using the SLR normal equs.
- But that doesn't mean the models are the same! It's just a convenient computational coincidence.
- This leads to lots of confusion between correlation and regression. Bottom line: they are two different models.

PPMCC

The goal in correlation analysis is determination of the (strength of) association between Y_{1} and Y_{2}, using the ρ_{12} measure.

Estimate ρ_{12} with the (sample) Pearson Product-Moment Correlation Coefficient:

$$
r_{12}=\frac{\sum_{i=1}^{n}\left(Y_{i 1}-\bar{Y}_{1}\right)\left(Y_{i 2}-\bar{Y}_{2}\right)}{\sqrt{\sum_{i=1}^{n}\left(Y_{i 1}-\bar{Y}_{1}\right)^{2} \Sigma_{i=1}^{n}\left(Y_{i 2}-\bar{Y}_{2}\right)^{2}}}
$$

(a slightly biased, ML estimator).

r_{12}

The sample correlation coeff. r_{12} satisfies

$$
-1 \leq r_{12} \leq 1,
$$

where
$r_{12} \rightarrow-1$ if Y_{1}, Y_{2} are negatively associated
$r_{12} \rightarrow+1$ if Y_{1}, Y_{2} are positively associated
$r_{12} \rightarrow 0$ if Y_{1}, Y_{2} are not associated.
(Oh, by the way: $\mathrm{r}_{12}{ }^{2}=\mathrm{R}^{2}$.)

Hypothesis Test of $\boldsymbol{\rho}_{12}$

The natural null hypoth. here is $\mathrm{H}_{0}: \boldsymbol{\rho}_{12}=\mathbf{0}$, vs. $\mathrm{H}_{\mathrm{a}}: \rho_{12} \neq 0$. Under the bivariate normal model,

$$
t^{*}=\frac{r_{12} \sqrt{n-2}}{\sqrt{1-r_{12}{ }^{2}}} \sim t(n-2)
$$

so reject H_{0} when $\left|t^{*}\right|>t\left(1-\frac{\alpha}{2} ; n-2\right)$.
The P-value is $2 P\left[t(n-2)>\left|t^{*}\right|\right]$.
\mathbf{t}^{*} is numerically identical to the \mathbf{t}^{*} in (2.20) for testing $\beta_{1}=0 \Rightarrow$ tends to create confusion.

Example p. 84: Correlation

Oil Co. sales example:
study $\mathrm{n}=23$ gas stations and record
$Y_{1}=\{$ gasoline sales $\}$
and
$Y_{2}=$ \{auxiliary product sales $\}$.
We are given $\mathrm{r}_{12}=0.52$.
Wish to test if ρ_{12} is positive. Set $\alpha=$ 0.05 .

Can do this in $\mathbf{R} \rightarrow$

Example p.84: Correlation

For the Oil Co. sales example, with $\mathrm{r}_{12}=0.52$ we can find $\mathrm{t}^{*}=2.79$ on 21 df .

To test $H_{0}: \rho_{12} \leq 0$ vs. $H_{a}: \rho_{12}>0$, the one-sided P -value is $\mathrm{P}[\mathrm{t}(21)>2.79]$. Find this in R via:
> pt(2.79, df=21, lower.tail=F) [1] 0.005486405

At $\alpha=0.05$ we see $P<\alpha$, so reject H_{0}.

Confidence Limits on $\boldsymbol{\rho}_{12}$

Conf. limits on ρ_{12} are trickier (since, e.g., ρ_{12} doesn't appear in t^{*}).

We use the Fisher z -Transform:

$$
z^{\prime}=\frac{1}{2} \ln \left(\frac{1+r_{12}}{1-r_{12}}\right)
$$

For $\mathrm{n} \geq 8, \mathrm{z}^{\prime} \dot{\sim} \mathrm{N}\left(\zeta, \sigma^{2}\left\{\mathrm{z}^{\prime}\right\}\right)$ where
$\zeta=\frac{1}{2} \ln \left(\frac{1+\rho_{12}}{1-\rho_{12}}\right)$ and $\sigma^{2}\left\{z^{\prime}\right\}=1 /(n-3)$.

Conf. Limits on ρ_{12} (cont'd)

Notice that $\left(z^{\prime}-\zeta\right) / \sigma\left\{z^{\prime}\right\} \dot{\sim}(0,1)$. So, an approx. $1-\alpha$ conf. int. for ζ is clearly

$$
z^{\prime} \pm z\left(1-\frac{\alpha}{2}\right) \frac{1}{\sqrt{n-3}}
$$

[Use the ∞ row of Table B. 2 to find $z\left(1-\frac{\alpha}{2}\right)$.]
Now, reverse-transform to the ρ-scale:

$$
r_{12}=\frac{e^{2 z^{\prime}}-1}{e^{2 z^{\prime}}+1}
$$

(Table B. 8 gives selected values of both transforms.)

Conf. Limits on ρ_{12} (cont'd)

So, if the \mathbf{z}-transform produces $1-\alpha$ limits on ζ of, say,

$$
z_{\mathrm{L}}^{\prime}<\zeta<\mathrm{z}_{\mathrm{U}}^{\prime},
$$

the corresp. 1- α limits on ρ_{12} are

$$
\frac{e^{2 z_{L}^{\prime}}-1}{e^{2 z_{L}^{\prime}}+1}<\rho_{12}<\frac{e^{2 z_{U}^{\prime}}-1}{e^{2 z_{U}^{\prime}}+1}
$$

Example p. 86: Correlation

Grocery purchase example:
study $\mathbf{n}=200$ households and record
$Y_{1}=\{$ beef purchases $\}$
and
$Y_{2}=$ \{poultry purchases $\}$.
We are given $r_{12}=-0.61$.
Wish to find a 95\% conf. int. on the true correlation coeff. ρ_{12}.

Can do this in $R \rightarrow$

Ex. p. 86: 1- α conf. limits on ρ_{12}

Direct R code for Fisher z'-transform:

> r12 = -0.61
$>$ alpha $=.05$
> n = 200
> zprime $=0.5^{*}(\log (1+r 12)-\log (1-r 12)$)
$>$ se $=1 /$ sqrt($n-3$)
> zlwr = zprime - qnorm(1-alpha/2)*se
> zupr = zprime + qnorm(1-alpha/2)*se
$>$ rholwr $=\left(\exp \left(2^{*} z l w r\right)-1\right) /\left(\exp \left(2^{*} z l w r\right)+1\right)$
$>$ rhoupr $=(\exp (2 * z u p r)-1) /(\exp (2 * z u p r)+1)$
> c(rholwr, rhoupr)
[1] -0.6903180 -0.5148301

Ex. p. 86: 1- α conf. limits on ρ_{12}

Even faster, for Fisher z'-transform, are the hyperbolic tangent functions:
$>$ r12 = -0.61
$>$ alpha $=.05$
> $\mathrm{n}=200$
> zprime = atanh(r12)
$>$ se $=1 /$ sqrt($n-3$)
> zlwr = zprime - qnorm(1-alpha/2)*se
> zupr = zprime + qnorm(1-alpha/2)*se
> c(tanh(zlwr), tanh(zupr))
[1] -0.6903180 -0.5148301

1- α conf. limits on ρ_{12}

In R, can also use

- CIr () from psychometric package
- fisherz() suite in psych package
- cor. test () (in base stats) if original data pairs are available; see help(cor.test)

Testing $H_{o}: \rho_{12}=\rho_{0}$

The t-test for $H_{0}: \rho_{12}=0$ doesn't naturally extend to testing any $H_{0}: \rho_{12}=\rho_{0}$.

Fastest solution is to build a Fisher
z-transform conf. int. for ρ_{12} (as above) and reject H_{o} if the interval fails to contain ρ_{o}.
(Appeal here is to the tautology between hypoth. tests and conf. int's)

Spearman's Rank Correlation

- If the bivariate normal model doesn't hold (and a transformation of the Y_{j} 's can't help), there is a rank-based form available, known as Spearman's rank correlation.

■ Basic idea: replace the observations with their ranks, and then perform the corrl'n calculations on the ranks.

Rank Correlation

Step 1: Find all the $Y_{i 1}$'s and rank them from min. to max. Call these $R_{i 1}$.
Step 2: Repeat Step 1 for $Y_{i 2}$ to find $R_{i 2}$. (If ties exist, give each tied value the average of the tied ranks.)
Step 3: Calculate

$$
r_{s}=\frac{\sum_{i=1}^{n}\left(R_{i 1}-\bar{R}_{1}\right)\left(R_{i 2}-\bar{R}_{2}\right)}{\sqrt{\Sigma_{i=1}^{n}\left(R_{i 1}-\bar{R}_{1}\right)^{2} \sum_{i=1}^{n}\left(R_{i 2}-\bar{R}_{2}\right)^{2}}}
$$

Notice that $-1 \leq r_{s} \leq 1$.

Rank Correlation (cont'd)

Step 4: For $\mathrm{n} \geq 10$, calculate appox. t -
statistic $t^{*}=\frac{r_{s} \sqrt{n-2}}{\sqrt{1-r_{s}^{2}}} \dot{\sim}(\mathbf{n}-2)$.
Step 5: Set
H_{0} : \{no assoc. between $\left.Y_{1} \& Y_{2}\right\}$
vs.
H_{a} : \{some assoc. between $\left.Y_{1} \& Y_{2}\right\}$
Step 6: Reject H_{o} when $\left|\mathrm{t}^{\star}\right|>\mathrm{t}\left(1-\frac{\alpha}{2} ; \mathbf{n} \mathbf{- 2}\right)$.

Example p. 88: Rank Correlation

New Food Marketing example:
study $\mathrm{n}=12$ test markets and record
$Y_{1}=\{p o p l ' n$ of market $\}$ and
$Y_{2}=\{p e r$ cap. spending on new food product $\}$.

Data are in Table 2.4.
Wish to test for association between Y_{1} and Y_{2} but can't appeal to normality
\Rightarrow use Spearman's rank corrl'n.
Can do this in $\mathbf{R} \rightarrow$

Example CH02TA04:

Spearman Rank Correlation

The New Food Marketing data from Table 2.4 are
> Y1 = c(29, 435, ... , 89)
> Y2 = c(127, 214, ... , 103)
We can find r_{s} in R :
> cor(Y1, Y2, method="spearman") [1] 0.8951049

Ex. CH02TA04 (cont'd): Spearman Corrl'n Testing

To test H_{0} :No Y_{1}-vs. Y_{2} association against H_{a} :Some Y_{1}-vs. $-\mathrm{Y}_{2}$ association via t^{*} statistic in R , use:
> cor.test(Y1, Y2, method="spearman", exact=F)
Spearman's rank correlation rho
data: Y1 and Y2
$\mathrm{s}=30$, p -value $=8.367 \mathrm{e}-05$
alternative hypothesis: true rhp is not equal to 0 At $\alpha=0.01$ we see $P=8.37 \times 10^{-5}<\alpha$, so reject H_{0}. (For an 'exact' test, use exact=T option.)

