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Normal SLR Model

 Continuing with the normal SLR model, 
we have 

Yi = β0 + β1Xi + εi (2.1)

with εi ~ i.i.d. N(0,σ2), i = 1,…,n.

 This produces Yi ~ indep. N( E[Yi],σ2 ), 
with mean response

E[Yi] = β0 + β1Xi + E[εi] = β0 + β1Xi



β1 = 0

 It is natural to focus on the slope parameter 
β1.  Why? Look at what happens to E[Yi] if, 
say, β1 = 0:  

E[Yi] = β0 + (0)Xi + E[εi] 
= β0 + 0 + 0  =  β0.

 That is, when β1 = 0, E[Yi] is independent of 
Xi. There is no “regression” of Y on X.



Sampling Distribution of b1

 We use the LS estimator b1 to estimate β1.

 Recall that b1 can be written in the form

i.e., a linear combination of the Yi’s.

  b1 = 
∑i=1

n (Xi – 
—
X)Yi

∑m=1
n (Xm – 

—
X)2 = ∑i=1

n kiYi 

for  ki = (Xi – 
—
X)

∑m=1
n (Xm – 

—
X)2 



Distribution of b1 (cont’d)

 So if b1 = ∑kiYi, then we know from Equ. 
(A.40) that 

∑kiYi ~ N( ∑kiE[Yi], ∑ki
2σ2 )

 But ∑kiE[Yi]  =  ∑ki(β0 + β1Xi)  
= ∑kiβ0 + ∑kiβ1Xi = β0∑ki + β1∑kiXi

 While ∑ki
2σ2 = σ2∑ki

2

 So, what are ∑ki, ∑kiXi, and ∑ki
2?



Distribution of b1 (cont’d)

 Since 

we need to find ∑ki, ∑kiXi, and ∑ki
2.

 (See handwritten PDF notes at 
http://math.arizona.edu/~piegorsch/571A/sumKnotes.pdf)

 We find:
∑ki = 0 ∑ kiXi = 1 and 

ki = (Xi – 
—
X)

∑m=1
n (Xm – 

—
X)2

∑ki
2

 = 1
∑i=1

n (Xi – 
—
X)2 



Distribution of b1 (cont’d)

 Thus we see:
• E[b1] = β0∑ki + β1∑kiXi = β0(0) + β1(1) = β1

(unbiased!)
• σ2[b1] = σ2 ∑ki

2 = 

 So, we can write 

σ2

∑i=1
n (Xi – 

—
X)2

 

b1 ~ N










β1 ‚ 
σ2

∑i=1
n (Xi – 

—
X)2

 



Distribution of b1 (cont’d)

 Now, σ2 is unknown, so to estimate the 
variance of b1, σ2{b1}, recall that

MSE = 
is unbiased for σ2.

 Use this to estimate σ2{b1} with
s2{b1} = 

 The standard error of b1 is then

∑i=1
n (Yi – Ŷi)2/(n–2) 

MSE/∑i=1
n (Xi – 

—
X)2 

s{b1} = MSE/∑i=1
n (Xi – 

—
X)2 



Distribution of b1 (cont’d)

In addition, we can show that 

is independent of 

and therefore of

U = (n–2)MSE
σ2  ~ 2(n–2) 

b1 ~ N










β1 ‚ 
σ2

∑i=1
n (Xi – 

—
X)2

 

Z = b1 – β1

σ/ ∑i=1
n (Xi – 

—
X)2

 ~ N(0,1) 



Distribution of b1 (cont’d)
Use these in the def’n of a t random 
variable from (A.44):

using Z and U from the b1 construction.  
Need to ‘do the math,’ a good exercise: try 
to algebraically show this T = (b1–β1)/s{b1}, 
so that T ~ t(n–2), where s{b1} is the std. 
error of b1:

T =  Z
U/ 

s{b1} = MSE/∑i=1
n (Xi – 

—
X)2 



Confidence Interval on β1

 The t sampling distribution for b1 allows for 
convenient inferences on β1.

 For instance, a 1–α conf. int. is based on

 In this, use T = (b1 – β1)/s{b1}:

cont’d →

1 – α = P[t(α2; n–2) < T < t(1 – α2; n–2)] 

1 – α = P[t(α2; n–2) < (b1 – β1)/s{b1}  
         < t(1 – α2; n–2)] 



Confidence Interval on β1 (cont’d) 
The 1–α probability statement simplifies, as

cont’d →

1 – α = P[t(α2; n–2)s{b1} < (b1 – β1)  
       < t(1 – α2; n–2)s{b1}] 
  = P[–b1 – t(1 – α2; n–2)s{b1} <  
     –β1 < –b1 + t(1 – α2; n–2)s{b1}]
  =  P[b1 + t(1 – α2; n–2)s{b1} >  
         β1 > b1 – t(1 – α2; n–2)s{b1}]



Confidence Interval on β1 (cont’d) 

By rearranging terms from left-to-right, 
the 1–α probability statement collapses 
to

1 – α = P[b1 – t(1 – α2; n–2)s{b1} < β1  
     < b1 + t(1 – α2; n–2)s{b1}] 
or just  b1 ±  t(1 – α2; n–2)s{b1}  



Example CH01TA01 (p. 19)

Recall from Ch. 1 (Table 1.1) the Toluca 
Co. example.  To find LS fit for simple 
linear regression in R use:

> X = c(80, 30, ... , 70)

> Y = c(399, 121, ... , 323)

> CH01TA01.lm = lm( Y ~ X )

> summary( CH01TA01.lm )



summary() output for 
Toluca example

Call:
lm(formula = Y ~ X)

Residuals:
Min      1Q  Median      3Q     Max 

-83.876 -34.088  -5.982  38.826 103.528 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  62.366     26.177 2.382   0.0259  
X            3.570      0.347 10.290 4.45e-10

(Std. errors of the regr. parameters highlighted in red here.)



There are many ways to find a 95% Conf. 
Interval on the slope parameter, β1, in R.  
Fastest is with confint():

> confint( CH01TA01.lm )
2.5 % 97.5 %

(Intercept) 8.213711 116.518006
X          2.852435  4.287969

Ex. CH01TA01 (cont’d): Conf. Int. on β1



Or, manipulate the various components of the  
CH01TA01.lm object: 

The LS estimate is
> coef( CH01TA01.lm )[2]

X 
3.570202 

The std. error s{b1} is
> summary( CH01TA01.lm )$coefficients[2,2]

[1] 0.3469722

Ex. CH01TA01 (cont’d): Conf. Int. on β1



Ex. CH01TA01 (cont’d): Conf. Int. on β1

The 95% two-sided t* critical point is
> qt( 0.975, df=CH01TA01.lm$df )

[1] 2.068658 

So the 95% conf. int. is
> b1 = coef( CH01TA01.lm )[2]

> se1 = summary( CH01TA01.lm )$coefficients[2,2]

> tcrit = qt( 0.975, df=CH01TA01.lm$df )

> c( b1-tcrit*se1, b1+tcrit*se1 )

2.852435  4.287969



Hypothesis tests on β1

 Or, to test Ho:β1 = β1o vs. Ha:β1 ≠ β1o (two-
sided!), appeal to the t-reference 
distribution and build the test statistic

 Under Ho, t* ~ t(n–2), so reject Ho when 
|t*| > 

 Special (why?) case: β1o = 0.
 One-sided: reject Ho vs. (say) Ha:β1 > β1o

when t* > t(1 – α; n–2), etc.

t* = b1 – β1o
s{b1}  

t(1 – α2; n–2) 



Ex. CH01TA01 (cont’d): 
Hypoth. tests on β1

To test Ho:β1 = 0 vs. Ha:β1 ≠ 0  just refer back to 
the summary() output:
Call:

lm(formula = Y ~ X)
⁞

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  62.366     26.177   2.382 0.0259 
X            3.570      0.347  10.290 4.45e-10

t* = 10.29, with P = 4.45×10-10 < α = 0.05, so reject Ho
and conclude 
“x=lot size significantly affects Y=work hrs.”



Distribution of b0

 Since we saw that the LS estimator, b0, for 
β0 also has the form b0 = ∑kiYi (not the 
same ki’s...), we can build similar sorts of 
t-based inferences for β0.

 We find b0 ~ N( β0, σ2{b0} ), where the 
variance of b0 is

σ2{b0} = σ2 








1

n + 
—
X2

∑i=1
n (Xi – 

—
X)2



Distribution of b0

 Can show that 
Z = (b0 – β0)/σ{b0} ~ N(0,1) 

is independent of 
U = (n–2)MSE/σ2 ~ 2(n–2)

 From these, find the std. error of b0:

s{b0} = MSE 








1

n + 
—
X2

∑i=1
n (Xi – 

—
X)2



Inferences on β0

 Use these various components to build 
the t-dist’n random variable

 From this, t-test and conf. int’s follow in 
similar form as with β1.

 For instance, a 1 – α conf. int. on β0 is (no 
surprise):

T = b0 – β0
s{b0}  ~ t(n–2) 

b0 ±  t(1 – α2; n–2)s{b0}  



Extrapolation

 The textbook gives an example of a conf. 
int. for β0 using the Toluca data; however, 
even they note that it’s a silly exercise:  
who has a “lot size” of X = 0 ?!?

 The X values for these data are all well 
above X = 0, so the conf. int. is an 
extrapolation away from the core of the 
data.

 In general, extrapolation is tricky and can 
lead to trouble: try to avoid it!



Robustness

 Note that all these inferences are built under 
a normal assumption on εi.  Deviations or 
departures from this will invalidate the 
inferences.

 But(!), slight departures from normality will 
not have a major effect: the conf. int’s and 
hypoth. tests are fairly robust to (symmetric) 
departures from normality.

 They are much less robust to departures from 
the common variance assumption, however.



Power Analysis
 Recall that the power of a hypoth. test is 

1 – β = 1 – P[accept Ho | Ho false] 
=  P[reject Ho | Ho false] 

 For the t-test of Ho:β1 = β1o vs. Ha:β1 ≠ β1o, 
the power will depend on β1o via the test’s 
noncentrality parameter:

� = | β1 – β1o |
σ{b1}  



Power Analysis (cont’d)
 In particular,

which depends upon an extension of the   
t-dist’n known as the noncentral t-dist’n.

 For known �, the power can be tabulated 
from Table B.5.

 (� depends on β1 and σ, so it can’t be 
“known.”  But, it can be approximated.)

Power(�) = P[reject Ho | Ho false]  
    = P[|t*| > t(1 – α2; n–2) | �] 



Ex. CH01TA01 (p. 51): 
Power analysis for β1

 Consider again the Toluca data and focus 
on testing Ho:β1 = 0 vs. Ha:β1 ≠ 0 (so β1o = 0.) 
Set α = 0.05.

 We found MSE = 2384 for these data, so a 
rough value for σ2 here is σ2 ≈ 2500.  Then 
σ2{b1} ≈ 2500/19800 = 0.1263.

 Now, say we want to examine the power 
when β1 = 1.5 (≠ 0).  Then 

� = | β1 – β1o |
σ{b1}  ≈ 

|1.5 – 0|
0.1263 = 4.22 



Toluca Power analysis (cont’d)
 Now, enter Table B.5 with:

� = 4.0
α = 0.05 → Power = 0.97
df = n–2 = 23

� = 5.0
α = 0.05 → Power = 1.0
df = n–2 = 23

 (Textbook uses linear interpolation at 
� = 4.22 to find Power ≈ 0.9766.)

 One-sided calculations are similar.



Toluca Power analysis (cont’d)
 In R, it’s a little tricky (trust us...), but for

� = 4.22, α = 0.05, df = n–2 = 23
can use 

> delta=4.22
> a = 0.05
> nu = 23
> pt( qt(1-(a/2),df=nu), df=nu, 

ncp=delta, low=F )
+ pt(-qt(1-(a/2),df=nu), 

df=nu, ncp=delta, low=T )

This gives power = 0.98115, which is slightly 
larger than that found by interpolation.



Inference on the Mean Response

 Suppose we wish to estimate the mean 
response E{Yh} at some given predictor 
X = Xh (doesn’t have to be one of the orig. 
Xi’s).

 The LS estimator is
 This is (again!) of the form ∑kiYi, so the 

same sorts of operations we used for b0
and b1 can be applied here.

 (Details are left to the adventurous reader.)

Ŷh = b0 + b1Xh



The Mean Response E{Yh}

We find:
E{Ŷh} = β0 + β1Xh     (unbiased!) 

σ2{Ŷh} = σ2









1

n + (Xh – 
—
X)2

∑i=1
n (Xi – 

—
X)2  

s{Ŷh} = MSE 








1

n + (Xh – 
—
X)2

∑i=1
n (Xi – 

—
X)2  

(so the variance and the std. error both ↑ as 
 Xh departs from 

—
X.) 



The Mean Response E{Yh}

Also:
From this, we can construct the t random 
variable

Hypoth. tests and conf. ints. can be built 
from this reference distribution.  E.g., a   
1–α conf. int. for E{Yh} is

(but, it’s valid at only a single Xh !!)

Ŷh ~ N( β0 + β1Xh, σ2{Ŷh} ) 

T = 
Ŷh – (β0 + β1Xh)

s{Ŷh}
 ~ t(n–2) 

Ŷh  ±  t(1 – α2; n–2)s{Ŷh}  



Ex. CH01TA01 (cont’d): 
Conf. Interval on E{Yh}

For the LS estimate of E{Yh} at any X = Xh, 
use  predict().  E.g., at Xh = 100:
> predict( CH01TA01.lm, 

newdata=data.frame(X=100), 
interval="conf", level=.90 )

fit       lwr upr
1   419.3861  394.9251 443.847

First value (‘fit’) is Yh at Xh = 100; next 
two (‘lwr’,‘upr’) are 90% conf. limits.

^



Prediction of Yh

We use Ŷh to estimate the mean response 
E{Yh}.  But, what about predicting a future 
observed Y? 

Call this Yh(new) at at X = Xh(new). 

The predictor itself isn’t hard, just tricky: 

Yh(new) = E{Yh(new)} + εh 

so: (1) estimate E{Yh(new)} with Ŷh(new)  

and (2) estimate εh with, well, E{εh} = 0. 



Prediction (cont’d)

 This gives the predicted value as  

      Ŷh(new) + 0 

 or simply  

      Ŷh(new) = b0 + b1Xh(new) 

 (as might be expected). 

 

 But (!) the std. error is trickier  → 



Prediction Error

The std. error of prediction requires us to 
account for variation in εh:   

Denote the prediction variance as σ2{pred}.

This is  σ2{pred} = σ2{Ŷh(new) + εh}  

       = σ2{Ŷh(new)} + σ2{εh} 

       = σ2{b0 + b1Xh(new)} + σ2{εh} 

(assuming the two terms are indep.) 



Prediction Error (cont’d)
Now,  

σ2{pred} = σ2









1

n + (Xh(new) – 
—
X)2

∑i=1
n (Xi – 

—
X)2  + σ2 

     = σ2











1 + 1n + (Xh(new) – 
—
X)2

∑i=1
n (Xi – 

—
X)2  

The associated std. error of prediction is 

s{pred} = MSE 










1 + 1n + (Xh(new) – 
—
X)2

∑i=1
n (Xi – 

—
X)2  



Prediction Interval
We can show that  

  T = Yh(new) – Ŷh(new)
s{pred}  ~ t(n–2) 

so a 1–α prediction interval for Yh(new) is  

    Ŷh(new) ± t(1 – α2; n–2)s{pred}  

 

(Notice that s{pred} > s{Ŷh}: prediction 
involves added variation/uncertainty.) 



Ex. CH01TA01 (cont’d): 
Prediction Interval on Yh

For a prediction of a future Yh at any X = Xh, 
again use predict().  E.g., at Xh = 100:

> predict( CH01TA01.lm, 
newdata=data.frame(X=100), 
interval="pred", level=.90 )

fit       lwr upr
1   419.3861  332.2072 506.5649

First value (‘fit’) is Yh(new) at Xh = 100; next 
two (‘lwr’,‘upr’) are 90% prediction limits.

^



Prediction Caveats

Some caveats about prediction intervals: 

  They only apply for a single Xh(new)  
    (“pointwise”) 

  Normality matters: robustness here is  
   poor! 

 

(Also see p. 60) 



Confidence Bands

To build confidence statements at more 
than just a single X, we turn to  
simultaneous inferences. 

A simultaneous confidence band is a con-
fidence statement on the mean response 
        E{Y} = β0 + β1X   
at all possible values of X.  (That is, it is 
valid for every X.) 



WHS Band

A confidence band for E{Y} was given by 
Working & Hotelling (1929) and Scheffé 
(1953): 
    Ŷh  ±  Wαs{Ŷh}  
where  
   Wα = 2 F(1–α; 2, n–2) 

is the WHS upper-α critical point. 

(Pretty simple!)



> alpha = .10; n = length(Y)
> W = sqrt( 2*qf(1-alpha,2,CH01TA01.lm$df) )
> Xh = seq( from=0, to=max(X), length=100 )
> Yhat = coef( CH01TA01.lm )[1] +

coef( CH01TA01.lm )[2]*Xh
> se = sqrt( summary(CH01TA01.lm)$sigma^2 *( (1/n) +

((Xh-mean(X))^2)/((n-1)*var(X)) ) )
> WHSlwr = Yhat - W*se
> WHSupr = Yhat + W*se
> plot( WHSlwr ~ Xh, type='l', xlim=c(0,max(X)),

ylim=c(0,600), xlab='', ylab='' )
> par(new = T)
> plot( WHSupr ~ Xh, type='l', xlim=c(0,max(X)),

ylim=c(0,600), xlab='X', ylab='E[Y]' )

Ex. CH01TA01 (cont’d):
1 – α confidence band on E{Y}



Ex. CH01TA01 (cont’d):
1 – α confidence band on E{Y}

cf. Figure 2.6



Total Sum of Squares

The secret of statistics: to understand the 
mean (response), analyze the variability...

Consider the following decomposition of 
how Yi varies:  at the core, Yi varies from 
its mean 

—
Y:  Yi – 

—
Y 

Squaring and summing these deviations 
gives the Total Sum of Squares: 

   SSTO = ∑i=1
n  (Yi – 

—
Y)2 



Error Sum of Squares

Next, posit some model (say, the SLR) and 
find the predicted value Ŷi.  This is another 
form of variation: Yi – Ŷi 

with its own sum of squares 

       SSE = ∑i=1
n  (Yi – Ŷi)2 

(we already saw this as the error sum of 
squares, a.k.a. residual sum of squares) 



SSTO vs. SSE

Now, if the model estimates in Ŷi are no 
better (in terms of squared deviations) 
than 

—
Y, we expect SSTO ≈ SSE. 

But if the model improves upon the fit, 
SSTO > SSE. (Fig. 2.7 gives a nice visual.) 

 

What makes up this difference?? 



SS Decomposition

cont’d →

SSTO = ∑{Yi – 
—
Y}2 = ∑{(Yi – Ŷi) + (Ŷi – 

—
Y)}2 

    = ∑{(Yi – Ŷi)2  
    +  2(Yi – Ŷi)(Ŷi – 

—
Y) + (Ŷi – 

—
Y)2} 

    = ∑(Yi – Ŷi)2  
     + 2∑(Yi – Ŷi)(Ŷi – 

—
Y) + ∑(Ŷi – 

—
Y)2 



SS Decomposition (cont’d)

But now,  

 ∑(Yi – Ŷi)(Ŷi – 
—
Y) 

    = ∑ei (Ŷi – 
—
Y)  

    =  ∑eiŶi – ∑ei
—
Y 

    = ∑eiŶi – 
—
Y∑ei  

    =  (0) – 
—
Y(0) = 0 

(from relationships seen in Ch. 1) 



Regression Sum of Squares
So, we find  
SSTO = ∑(Yi – Ŷi)2 + (2)(0) + ∑(Ŷi – 

—
Y)2  

    = SSE + ∑(Ŷi – 
—
Y)2  

The latter term is what separates SSE from 
SSTO.   
We call this the Model Sum of Squares, or 
for an SLR model, the Regression Sum of 
Squares:  
SSR = ∑(Ŷi – 

—
Y)2     SSTO = SSR + SSE. 



Degrees of Freedom

As with the sample variance, each of these 
SS terms is associated with a set of d.f.: 

 We saw dfE = n – 2 

 From S2, we know dfTO = n – 1 

 For SSR, it turns out that dfR = 2 – 1 = 1 

 

Conveniently, dfTO = dfR + dfE  



Mean Squares

With these, divide the SS terms by their d.f.’s  
to produce Mean Squares:   

   MSTO = SSTO
dfTO

 = 
∑i=1

n (Yi – 
—
Y)2

n–1  

   MSR = SSR
dfR

 = 
∑i=1

n (Ŷi – 
—
Y)2

1  

   MSE = SSE
dfE

 = 
∑i=1

n (Yi – Ŷi)2

n–2  



Expected Mean Squares

We can show (p. 69) that  

  E[MSR] = σ2 + β1
2∑i=1

n (Xi – 
—
X)2 

and we know 

  E[MSE] = σ2  (unbiased for σ2) 
 
Notice that if β1

 = 0, MSR is another 
unbiased estimator of σ2; but if not, its 
expectation always exceeds σ2. 



ANOVA Table

We collect all these terms together into an 
Analysis of Variance (ANOVA) Table: 

Source d.f. SS MS      E{MS}  

Regr. 1 SSR MSR σ2 + β1
2∑(Xi–

—
X)2

Error n–2 SSE MSE        σ2 

Total n–1 SSTO 



F-Statistic

What makes the ANOVA Table so handy is 
its layout of the pertinent statistics for 
inferences on β1.   

In partic., to test Ho:β1 = 0 vs. Ha:β1 ≠ 0, 
construct the F-statistic  F* = MSR/MSE. 

Notice that if Ho is true, F* ≈ 1, but if Ha is 
true, F* > 1.  This suggests a use for F* in 
testing Ho. 



Cochran’s Theorem

We employ F* based on a famous result: 

Cochran’s Thm.: Given Yi ~ indep.N(μi,σ2), 
i = 1,...,n, where μi = E[Yi].  Let  

  SSTO = SS1 + SS2 + … + SSk–1  

where each SSr  has d.f.=dfr. Then if μi = μ = 
const., the terms SSr/σ2 ~ indep. 2(dfr) are 
indep. of SSE/σ2 ~ 2(n–2) when  
      ∑dfr + dfE = n–1. 



F-Reference Dist’n
From Cochran’s Thm., we find for the LSR 
model that 

 F* = 

SSR
σ2 /1

SSE
σ2 /(n–2)

 = MSR
MSE ~ F(1, n–2) 

whenever E{Yi} is constant.  But, a con-
stant mean equates to β1 = 0, i.e., Ho is 
true. This gives the reference dist’n for F*. 



F-Test

So, when Ho is true, the null reference 
dist’n for F* is F* ~ F(1, n–2). 

(When Ho is false, F* has a noncentral  
F-dist’n.) 

We reject Ho at signif. level α when  
   F* > F(1–α; 1, n–2).   

This is called the ‘full’ F-test from the 
ANOVA table. 



Ex. CH01TA01 (cont’d): 
ANOVA table

Recall the Toluca data.  For the ANOVA table, 
use anova():

> anova( CH01TA01.lm )

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value   Pr(>F)

X          1 252378  252378  105.88 4.45e-10 

Residuals 23  54825    2384



Ex. CH01TA01 (cont’d):  F-test
For the Toluca data, the ANOVA shows 

F* = 252378/2384 = 105.9.  
Reject Ho:β1 = 0 vs. Ha:β1 ≠ 0 when 
F* > F(1 – α; 1, n–2).  At α=0.05 this is 
F* > F(.95; 1, 23).  Find the critical point in R:

> qf( 0.95,df1=1,df2=CH01TA01.lm$df )
[1] 4.279344

Clearly, F* = 105.9 > F(.95; 1, 23) = 4.28, so we 
reject Ho.



Ex. CH01TA01 (cont’d):  F vs. t

Note the equivalence between the F-test 
and the t-test for Ho:β1 = 0 vs. Ha:β1 ≠ 0.

P-values are the same (P = 4.45e-10).  
And, can show F* = (t*)2:

> anova( CH01TA01.lm )[1,4]
[1] 105.8757

> summary( CH01TA01.lm )$coef[2,3]^2 
[1] 105.8757



Reduction Sum of Squares (1)

We can extend the ANOVA F-test to any 
form of statistical model, via 3 basic steps:

(1) Define a FULL MODEL (FM) with all 
desired components.  For the SLR this 
is Yi = β0 + β1Xi + εi.  From the FM, find 
the SSE: SSE(F) = ∑(Yi – Ŷi)2, with Ŷi  
found under the FM via LS. 



Reduction Sum of Squares (2)

(2) For a given Ho, determine how the 
constraint reduces the model.  (The 
REDUCED MODEL (RM) holds under 
Ho.) Then find the SSE under the RM, 
say SSE(R) = ∑{Yi – Ŷi(R)}2. 

 For instance, with SLR, under Ho:β1=0 
the RM is  Yi = β0 + εi  and SSE(R) =  
∑(Yi – 

—
Y)2  (which happens to = SSTO.) 



Reduction Sum of Squares (3)

(3) If SSE(F) << SSE(R), the reduction in SS
is “significant.” An F-statistic to 
quantify the discrepancy is 

  F* = SSE(R)–SSE(F)
dfER–dfEF / SSE(F)

dfEF
 

 Under appropriate conditions,  
 F* ~ F(dfER–dfEF, dfEF) so reject Ho when  
    F* > F(1–α; dfER–dfEF, dfEF) 
 as in the ANOVA Table. 



Linear Association

Besides the slope parameter β1, we can 
measure the linear association between Y 
and X using the SS terms from the ANOVA.

The reduction SS for the SLR model is 
SSE(R) – SSE(F) = SSTO – SSE = SSR. 
So, consider the ratio 

    SSR
SSTO = 1 – SSE

SSTO 



Linear Association (cont’d)

Since SSE(R) is always ≥ SSE(F), that says 
SSTO ≥ SSE.  But then 1 ≥ SSE/SSTO, i.e.

       0 ≤ 1 – SSE
SSTO 

And, since SSE/SSTO ≥ 0, we have  

       1 – SSE
SSTO ≤ 1 

     0 ≤ 1 – SSE
SSTO ≤ 1 



R2

We denote this as  

    R2 = 1 – SSE
SSTO = SSR

SSTO 

and call it the Coefficient of Determination.
 
Interpretation: R2 = SSR/SSTO is the % of 
total variation in the Yis explained by the 
regression model. 



R2 (cont’d)

R2 is easy to understand, but also easy to 
overuse!!  (So, employ with care.) 

Some features: 
(a) R2 = 1 when every point sits on the 

(straight) line. 
(b) R2 = 0 when the data are an amorphous 

cloud (i.e., β1 = 0) 
(c) R2 → 1 is good, but “how big is big” 

depends on the subject matter. 



Ex. CH01TA01 (cont’d):  R2

The coeff. of determination (R2) is in the 
summary() output 
(near bottom; previously suppressed):
> summary( CH01TA01.lm )
Call:

lm(formula = Y ~ X)
⁞

Residual std. error: 48.82 on 23 degr. of freedom
Multiple R-squared: 0.8215, 
Adjusted R-squared: 0.8138 
F-stat.: 105.9 on 1 and 23 DF, p-value: 4.449e-10
> summary( CH01TA01.lm )$r.squared

[1] 0.8215335



R2 Limitations

Some limitations: 
(a) R2 → 1 indicates strong linear 

association, but it may be a poor fit. 
 See Fig. 2.9(a). 

(b) R2 → 0 indicates weak linear 
association, but it may be a good 
nonlinear fit. 

 See Fig. 2.9(b). 



Comments on the SLR Model

(1) If using Ŷh for future estimation or 
prediction at X = Xh, the model 
assumptions must continue to hold. 

(2) If using Ŷh for future estimation or 
prediction at X = Xh, and if Xh is also 
predicted, the inferences are conditional 
on that Xh value. 

(3) If Xh falls outside the range of the orig. 
Xis, watch for extrapolation errors. 



Comments (cont’d)

(4) If we reject Ho:β1 = 0, we don’t necess. 
establish a causal relationship between 
X and Y.   (Don’t do lazy statistics!) 

(5) Except for the WHS conf. band, every 
inference we’ve described is pointwise 
and valid only once.  (Adjust this with 
“multiplicity corrections” as in Ch. 4.) 

(6) If X is itself random, the inferences are 
approximate (or, can be “conditional”).



Correlation Analysis

 Analysis of data pairs can also be 
performed via measures of correlation.

 Similar to the SLR model on the surface, 
and sharing many calculations, correlation 
is actually a totally different model built 
using two random variables, Y1 and Y2.

 If the paired components are both random 
and prediction is not an issue, the 
correlation model is more appropriate.



Assume Y1 and Y2 have a joint probability 
function of the form 

 f (y1,y2) = 1
2σ1σ2 1–ρ12

2  exp


– 

1
2(1–ρ12

2 ) 







y1–μ1

σ1

2

  

       









 – 2ρ12




y1–μ1

σ1 



y2–μ2

σ2
 + 





y2–μ2

σ2
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This is the Bivariate Normal model, denoted 

as  
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 ~ N2
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Correlation Model



Correlation Model (cont’d)

Marginally, we have E{Yj} = μj and  
σ2{Yj} = σj

2, with Yj ~ N(μj,σj
2),  j = 1,2. 

The correlation coefficient between Y1 and 
Y2 is ρ12 = σ{Y1,Y2}/σ{Y1}σ{Y2}. 

If Y1 and Y2 are indep., then ρ12 = 0.  The 
reverse isn’t always true; however for the 
bivariate normal it is:  
 Y1 and Y2 are indep.    ρ12 = 0 



Conditional Distribution (1|2)

Under the bivariate normal model, the 
conditional distributions are intriguing: 

Use f (y1|y2) =  f (y1,y2)
f (y2)  to find 

 Y1|Y2=y2 ~ N(α1|2 + β12y2, σ1|2
2),  

where α1|2 = μ1 – μ2ρ12σ1/σ2 

   β12 = ρ12σ1/σ2 

   σ1|2
2 = σ1

2(1–ρ12
2). 



Conditional Distribution (2|1)

Similarly, Y2|Y1=y1 ~ N(α2|1 + β21y1, σ2|1
2),  

where α2|1 = μ2 – μ1ρ12σ2/σ1 

   β21 = ρ12σ2/σ1 

   σ2|1
2 = σ2

2(1–ρ12
2). 

Notice that E{Y2|Y1=y1} = α2|1 + β21y1 is a 
linear relationship.  This is often described 
as a “regression” of Y2 on y1. (Same holds 
for E{Y1|Y2=y2}.) 



Lots of Confusion...

 The linear relation apparent in the condi-
tional models means that given Y1=y1, α2|1
and β21 can be computed using the SLR 
normal equs.

 But that doesn’t mean the models are the 
same!  It’s just a convenient computational 
coincidence.

 This leads to lots of confusion between 
correlation and regression.  Bottom line: 
they are two different models.



PPMCC

The goal in correlation analysis is deter-
mination of the (strength of) association 
between Y1 and Y2, using the ρ12 measure. 

Estimate ρ12 with the (sample) Pearson 
Product-Moment Correlation Coefficient: 

   r12 = 
∑i=1

n (Yi1 – 
—
Y1)(Yi2 – 

—
Y2)

∑i=1
n (Yi1 – 

—
Y1)2 ∑i=1

n (Yi2 – 
—
Y2)2

 

(a slightly biased, ML estimator). 



r12

The sample correlation coeff. r12 satisfies  
     –1 ≤ r12 ≤ 1, 
where 

r12 → –1 if Y1,Y2 are negatively associated 

r12 → +1 if Y1,Y2 are positively associated 

r12 →  0 if Y1,Y2 are not associated. 

(Oh, by the way: r12
2 = R2.) 



Hypothesis Test of ρ12

The natural null hypoth. here is Ho: ρ12 = 0, 
vs. Ha: ρ12 ≠ 0.  Under the bivariate normal 
model,  

    t* = r12 n–2
1 – r12

2 ~ t(n–2) 

so reject Ho when |t*| > t(1 – α2; n–2).   
The P-value is 2P[ t(n–2) > |t*| ]. 

t* is numerically identical to the t* in (2.20) for 
testing β1 = 0  tends to create confusion. 



Example p. 84:  Correlation

Oil Co. sales example: 
study n = 23 gas stations and record 
Y1 = {gasoline sales} 
and 
Y2 = {auxiliary product sales}.

We are given r12 = 0.52.  

Wish to test if ρ12 is positive. Set α = 
0.05. 

Can do this in R →



Example p.84:  Correlation

For the Oil Co. sales example, with r12 = 0.52 
we can find t* = 2.79 on 21 df.  

To test Ho:ρ12 ≤ 0 vs. Ha:ρ12 > 0, the one-sided 
P-value is P[t(21) > 2.79].  Find this in R via:
> pt( 2.79, df=21, lower.tail=F )
[1] 0.005486405

At α = 0.05 we see P < α, so reject Ho.



Confidence Limits on ρ12

Conf. limits on ρ12 are trickier (since, e.g., 
ρ12 doesn’t appear in t*).   

We use the Fisher z-Transform: 

    z = 12 ln








1 + r12

1 – r12
 

For n ≥ 8 , z •~ N( �, σ2{z} ) where  

� = 12 ln








1 + ρ12

1 – ρ12
  and  σ2{z} = 1/(n–3). 



Conf. Limits on ρ12 (cont’d)

Notice that (z – �)/σ{z} •~ N(0,1).  So, an 
approx. 1–α conf. int. for � is clearly 

   z ±  z(1 – α2)
 1
n–3 

[Use the ∞ row of Table B.2 to find z(1 – α2).] 

Now, reverse-transform to the ρ-scale:  

    r12 = 
e2z– 1
e2z+ 1

 

(Table B.8 gives selected values of both 
transforms.)



Conf. Limits on ρ12 (cont’d)

So, if the z-transform produces 1–α limits 
on � of, say,  
     zL < � < z U,  
the corresp. 1–α limits on ρ12 are 

    
e2zL – 1

e2zL + 1
 < ρ12 < 

e2z U – 1

e2z U + 1
 



Example p. 86:  Correlation

Grocery purchase example: 
study n = 200 households and record 
Y1 = {beef purchases} 
and 
Y2 = {poultry purchases}.

We are given r12 = –0.61.  

Wish to find a 95% conf. int. on the true 
correlation coeff. ρ12.

Can do this in R →



Ex. p. 86:  1–α conf. limits on ρ12

Direct R code for Fisher z-transform:
> r12 = -0.61
> alpha = .05
> n = 200

> zprime = 0.5*( log(1+r12) - log(1-r12) )
> se = 1/sqrt( n-3 )
> zlwr = zprime - qnorm( 1-alpha/2 )*se
> zupr = zprime + qnorm( 1-alpha/2 )*se
> rholwr = (exp(2*zlwr)-1)/(exp(2*zlwr)+1)
> rhoupr = (exp(2*zupr)-1)/(exp(2*zupr)+1)
> c(rholwr, rhoupr)

[1] -0.6903180 -0.5148301



Ex. p. 86:  1–α conf. limits on ρ12

Even faster, for Fisher z-transform, are 
the hyperbolic tangent functions:
> r12 = -0.61
> alpha = .05
> n = 200

> zprime = atanh( r12 )
> se = 1/sqrt( n-3 )
> zlwr = zprime - qnorm( 1-alpha/2 )*se
> zupr = zprime + qnorm( 1-alpha/2 )*se
> c( tanh( zlwr ), tanh( zupr ) )

[1] -0.6903180 -0.5148301



1–α conf. limits on ρ12

In R, can also use 

• CIr() from  psychometric package

• fisherz() suite in psych package

• cor.test() (in base stats) if original 
data pairs are available; see 
help(cor.test)



Testing Ho:ρ12 = ρ0

The t-test for Ho: ρ12 = 0 doesn’t naturally 
extend to testing any Ho: ρ12 = ρo. 

Fastest solution is to build a Fisher  
z-transform conf. int. for ρ12 (as above) and 
reject Ho if the interval fails to  
contain ρo. 
 
(Appeal here is to the tautology between hypoth. 
tests and conf. int’s) 



Spearman’s Rank Correlation

 If the bivariate normal model doesn’t 
hold (and a transformation of the Yj’s
can’t help), there is a rank-based form 
available, known as Spearman’s rank 
correlation.

 Basic idea: replace the observations 
with their ranks, and then perform the 
corrl’n calculations on the ranks.



Rank Correlation

Step 1: Find all the Yi1’s and rank them 
from min. to max.  Call these Ri1. 

Step 2: Repeat Step 1 for Yi2 to find Ri2. 
(If ties exist, give each tied value 
the average of the tied ranks.) 

Step 3: Calculate 

   rs = 
∑i=1

n (Ri1 – 
—
R1)(Ri2 – 

—
R2)

∑i=1
n (Ri1 – 

—
R1)2 ∑i=1

n (Ri2 – 
—
R2)2

 

   Notice that –1 ≤ rs ≤ 1. 



Rank Correlation (cont’d)

Step 4: For n ≥ 10, calculate appox. t-

statistic t* = rs n–2
1 – rs

2 •~ t(n–2). 

Step 5: Set  
Ho: {no assoc. between Y1 & Y2} 
vs.  
Ha: {some assoc. between Y1 & Y2}

Step 6: Reject Ho when |t*| > t(1 – α2; n–2).  



Example p. 88: Rank Correlation
New Food Marketing example: 
study n = 12 test markets and record 
Y1 = {popl’n of market}  and 
Y2 = {per cap. spending on new food

product}.

Data are in Table 2.4.  

Wish to test for association between Y1
and Y2 but can’t appeal to normality 
 use Spearman’s rank corrl’n.

Can do this in R →



Example CH02TA04:  
Spearman Rank Correlation

The New Food Marketing data from Table 
2.4 are
> Y1 = c(29, 435, ... , 89)

> Y2 = c(127, 214, ... , 103)

We can find rs in R:
> cor( Y1, Y2, method="spearman" )
[1] 0.8951049



Ex. CH02TA04 (cont’d):  
Spearman Corrl’n Testing

To test Ho:No Y1-vs.-Y2 association against 
Ha:Some Y1-vs.-Y2 association via t* statistic in 
R, use:
> cor.test( Y1, Y2, method="spearman", exact=F )

Spearman's rank correlation rho
data:  Y1 and Y2 
S = 30, p-value = 8.367e-05
alternative hypothesis: true rho is not equal to 0

At α = 0.01 we see P = 8.37×10-5 < α, so reject
Ho.  (For an ‘exact’ test, use exact=T option.)


