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Predictor Diagnostics

 It’s always a good idea to study the nature 
of the predictor variable, Xi, and ensure it’s 
not harboring any surprises.

 Useful tools:
• Dot plots
• Sequence plots (scatterplot of Xi vs. i with 

dots connected — useful if i is a surrogate 
for time)

• Stemplots
• Boxplots



Residual Diagnostics

 The residuals from the LS fit for a Simple 
Linear Regression (SLR) model are the 
differences between the observed 
response and the predicted response:

ei = Yi  Yi.
 The ei’s contain useful info.  Recall that 
∑ei = ∑ eiXi = ∑eiYi = 0.  Thus 
while

^

^ —e = ∑ei/n = 0 

 se
2 = 1

n–2∑(ei – —e)2 = 1
n–2∑ei

2 = SSE
n–2  = MSE 



Residual Plots

 A powerful diagnostic tool for 
assessing model fit is the Residual 
Plot, i.e., a plot of ei = Yi  Yi vs. Yi.

 If the SLR model fit is adequate, the 
residuals, ei, should cluster around the 
horizontal line e = 0, with no apparent 
pattern. See, e.g., next slide →

^ ^



Prototypical Residual Plot 
with Random Scatter



Residual Plots (cont’d)

Can also use residual plots to study:
• departure from linearity in E{Y}
• departure from constant σ2 in σ2{Y}
• departure from indep. assumption
• outlying values of Yi

• departure from normality in εi ~ N(0,σ2)
• other values of X that could be useful 

(see Ch. 6)



Residual Plots (cont’d)

Alternate versions of the residual plot include:
• plot ei vs. Yi (std. version)
• plot ei vs. Xi

• plot |ei| or ei
2 vs. Xi

• plot ei vs. i (if sequence is surrogate for  time) 
→ see Fig. 3.2b

• boxplot and/or histogram of ei’s → see Fig. 
3.2c

• normal probab. plot of of ei’s → see Fig. 3.2d

^



Residual Plots in R

 In R, the  plot() function can extract 
the raw residual plot from the  lm()
object.

 Or, use  plot() directly with the 
functions resid() and  fitted().



Toluca Example (cont’d)

In the Toluca Data example (CH01TA01), 
we produce a residual plot via:

> CH01TA01.lm = lm( Y ~ X )

> plot( resid(CH01TA01.lm) ~ X )

> abline( h=0 )  #add horiz. e=0 line



Toluca Example Residual Plot



Toluca Resid. Plot (cont’d)

As mentioned, residual plots are usually 
drawn against the fitted values:

> CH01TA01.lm = lm( Y ~ X )

> plot( resid(CH01TA01.lm) ~ 
fitted(CH01TA01.lm) )

> abline( h=0 )  #add horiz. e=0 line

Residual pattern will be identical under an 
SLR model (reversed if b1 < 0).



Example TA01 Residual Plot



Quadratic Curvature
Curvature in the scatterplot and the resid. plot 
may indicate a parabolic (quadratic) pattern:

 Clear parabolic relationship 
deviates from linearity assumption

Scatterplot 
shows 

curvature

Resid. plot has 
striking down-
then-up pattern



Variance heterogeneity

Departure from constant σ2 in σ2{Y} will be 
evident in a widening residual pattern, e.g.

or



Possible Outliers

Unusual observations (possible ‘outliers’) 
can be recognized quickly in resid. plots:



Possible Outliers

 Keep in mind that detection of an unusual 
observation does not immediately 
condemn the data point or call for its 
deletion.

 Always examine why the point is flagged: 
it may involve a simple data entry error or 
some other explanation.



Standardizing the Residuals

 A problem with raw residuals is that they 
are scale/measurement-dependent:  
in one data set an absolute residual of 
|ei| = 8.2 may be less egregious than a 
residual of |ei| = 0.7 in another data set. 

 We can stabilize residuals across data 
sets/model fits by standardizing them to 
similar scales (sort of like a z-score).



Semistudentized Residuals

A Semistudentized Residual is a raw resid-
ual, ei, divided by its sample std. deviation:

(Some authors call this a Studentized 
Residual.  Others don’t!  Be careful of ter-
minology.)
There are more effective ways to adjust 
resid’s; we expand on this in Ch. 10.

ei* = ei
se

 = ei
MSE 



Semistudentized Residuals in R

• In R, we can plot the ei*s.

• E.g., with the Toluca data (CH01TA01), 
use
> CH01TA01.lm = lm( Y ~ X )

> eistar = resid( CH01TA01.lm )/
sqrt( anova(CH01TA01.lm)$"Mean Sq"[2] )

> plot( eistar ~ fitted(CH01TA01.lm) )
> abline( h=0 )



Toluca Example: 
Semistudentized Residual Plot

Pattern is 
similar to raw 
residual plot, 
but now on a 
standardized 
scale.



Normal Probability Plots

 To assess departure from normality in 
εi ~ N(0,σ2), display the ei’s via a boxplot, 
histogram, or normal probab. plot (NPP).

 E.g., with NPP’s, if normality holds, the 
NPP will show a 45º line.

 Departure from normality will be evident 
as deviations from the 45º line.

(See Fig. 3.9)



Right Skew in NP Plot

Right-skewed 
residuals 
display convex 
shape in NPP



Left Skew in NP Plot

Left-skewed 
residuals 
display 
concave shape 
in NPP



Thick Tails in NP Plot

Thick-tailed 
(but still 
symmetric)  
residuals 
display as 
flattened 
shape in NPP



Test of Normality

• Besides visualizations, we can apply a 
univariate test of Normality to the ei’s, and 
assess whether the εi’s  appear to deviate 
from the N(0,σ2) assumption.

• The basic test is due to Shapiro and Wilk.  
Applied to the residuals, it gives a test 
statistic (W*) and an associated P-value.

• If P is too small (below a pre-set α-level), 
reject the null hypothesis of normality.



Toluca Example (cont’d)

In the Toluca example (CH01TA01), we test 
the residuals for normality:

> CH01TA01.lm = lm( Y ~ X )
> shapiro.test( resid(CH01TA01.lm) )

Shapiro-Wilk normality test
data:  resid(CH01TA01.lm)
W = 0.9789, p-value = 0.8626

P-value is large, so no departure from 
normality is evidenced.



Test of Variance Homogeneity

 From an SLR model, we test the 
residuals for variance homogeneity (i.e., 
constant σ2) via the ‘robust’ Brown-
Forsythe test, a special case of the 
more-general Levene test.  

 The test breaks the ei’s into 2 groups: 
(1) ei’s from small Xi’s vs. (2) ei’s from 
large Xi’s.  Then, it compares deviations 
from median between the 2 groups.



Brown-Forsythe Test

 For (small-X) group 1, let n1 = # resid’s from 
small Xi’s, and denote the median resid. in 
that group as ~e1.  Compute di1 = |ei1 – ~e1|. 

 For (large-X) group 2, let n2 = # resid’s from 
large Xi’s, and denote the median resid. in 
that group as ~e2.  Compute di2 = |ei2 – ~e2|. 

 Calculate  t*BF = 
—
d1 – 

—
d2

SD
1
n1

 + 1
n2

  with  

   SD
2  = 

∑i=1
n1 (di1 – 

—
d1)2 + ∑i=1

n2 (di2 – 
—
d2)2

n – 2  



Brown-Forsythe Test (cont’d)

 Can do this in R, but must first download 
and install the lawstat package, then load 
it into the current workspace:
> require( lawstat )

 Then, conclude significant departure 
from homogeneous variance if   
|t*BF| > t(1 – α2; n–2). 

 P-value is 2P[ t(n–2) > |t*BF| ] 



Toluca Example (cont’d)

In the Toluca Data example (CH01TA01), test 
the residuals for variance homogeneity:  
> ei = resid( CH01TA01.lm )

> BF.htest = levene.test( ei[order(X)],
group=c(rep(1,13),rep(2,12)),
location="median" )

Note use of   ei[order(X)] to sort residuals 
by order of X.  (Could also sort by   .)
The  group= specifier factors into 2 groups for 
constructing the t* statistic. (Actually, it gives 
F* = t*2.)

Ŷ



Toluca Example (cont’d)

Browth-Forsythe output:  
modified robust Brown-Forsythe Levene-type test 
based on the absolute deviations from the median
data:  ei[order(X)] 
Test Statistic = 1.7331, p-value = 0.201

> sqrt( BF.htest$statistic ) #for t* statistic

Test Statistic 
1.316482

P = 0.201 > 0.05 = α.  No significant 
departure from constant σ2 is evidenced.



Brown-Forsythe Test: Caveats
 The Brown-Forsythe test works if variance 

heterogeneity is of the “megaphone” style 
(in the textbook’s terminology).

 But (!), it may fail with stranger patterns, 
such as two megaphones back-to-back:

Brown-Forsythe will fail to detect these patterns



Replication

 When there are multiple Yi’s observed at 
the same Xi, we say the data/design 
exhibits Replication. 

 The multiple Yi’s are called Replicates.

 In this case, it is possible to cleanly test 
the ‘fit’ of an assumed model for E{Yi}.



Lack Of Fit (LOF) Testing

Need to expand our notation:  
 the observations are now indexed as Yij, 
 where  i = 1,...,nj  (replicates) 
 and  j = 1,...,c  (unique X values) 

Sample size is n = ∑j=1
c nj. 

We approach the lack-of-Fit (LOF) test 
using the FM vs. RM discrepancy measure 
from §2.7. 



LOF Testing (cont’d)

 The Full Model (FM) here is  Yij = μj + εij  
with εij ~ i.i.d. N(0,σ2). 

 The model allows for c > 1 different, un-
specified means, μj, at each j. 

 The Reduced Model (RM) is the SLR:  
    Yij = β0 + β1Xj + εij 
with εij ~ i.i.d. N(0,σ2) 
(or whatever posited model is under 
study). 



LOF Testing (cont’d)

 To construct the F-statistic use (2.70): 
compare SSE(R) under the SLR with 
SSE(F) under the full, unspecified model.

 If the SSE’s differ too much, this implies 
that significant, explainable variation is 
still present, even after fitting the SLR 
model.

 Use the F-statistic to quantify this 
departure.



LOF Testing (cont’d)

 Recall: the general form of the 
discrepancy F-statistic is 

   F* = SSE(R)–SSE(F)
dfER–dfEF / SSE(F)

dfEF
 

 For LOF, the numerator is the mean 
square for lack-of-fit: MSLF.  The 
denominator is MSE(F). 

 Reject the null hypoth. of acceptable fit 
if F* > F(1–α; dfER–dfEF, dfEF). 



LOF Testing (cont’d)

Notice: The RM SSE is based on the SLR, 
SSE(R) = ∑j=1

c ∑i=1
nj (Yij – Ŷij(R))2  

   = ∑j=1
c ∑i=1

nj (Yij – b0 – b1Xj)2  

The FM SSE has similar form: SSE(F) = 
∑j=1

c ∑i=1
nj (Yij – Ŷij(F))2, but what is Ŷij(F)?? 

Answer: The FM makes no specification on 
E[Yij], so the LS estimators are simply the 
replicate means Ŷij(F) = 

—
Yj. 



Pure Error

With this, find SSE(F) = ∑j=1
c ∑i=1

nj (Yij – 
—
Yj)2.  This 

is called the Pure Error, and denoted as 
SSPE.  Then, 
  MSE(F) = MSPE = ∑j=1

c ∑i=1
nj (Yij – 

—
Yj)2/(n–c). 

The F-statistic becomes  

  FLOF*  = SSE(R)–SSPE
(n–2)–(n–c) /MSPE. 

Reject the null hypoth. of acceptable fit if F* > 
F(1–α; c–2, n–c). 



LOF ANOVA Table
We collect all these terms together into a 
special LOF ANOVA table: 
Source d.f.    SS   MS   
Regr. 1   SSR=∑∑(Ŷij – 

—
Y)2 MSR 

Error n–2 SSE(R)=∑∑(Yij – Ŷij)2  MSE(R) 
 LOF c–2  SSLF=∑∑(

—
Yj – Ŷij)2 MSLF 

 Pure Error n–c  SSPE=∑∑(Yij – 
—
Yj)2 MSPE 

Total n–1 SSTO=∑∑(Yij – 
—
Y)2 

 
The F-test employs the LOF statistic  
  FLOF*  = MSLF/MSPE. 



Example: Lack of Fit (LOF) test
Example:  Bank Data (CH03TA04)  
Y = Number of new accts.,
X = Min. deposit.
> X = c(125, 100, ... , 100)
> Y = c(160, 112, ... , 136)
> plot( Y~X,pch=19 )



Example CH03TA04 (cont’d)

To test for LOF with the Bank Data 
(CH03TA04), can use:

> # fit reduced model
> rmCH03TA04.lm = lm( Y ~ X )
> 
> # fit full model via factor() command
> fmCH03TA04.lm = lm( Y ~ factor(X) )



Example CH03TA04 (cont’d)

> #SLR anova component 
> anova( rmCH03TA04.lm )

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value  Pr(>F)
X    1  5141.3 5141.3  3.1389  0.1102
Resid 9 14741.6 1638.0



Example CH03TA04 (cont’d)

> #SSPE with F* for LOF 
> anova( rmCH03TA04.lm, fmCH03TA04.lm )

Analysis of Variance Table
Model 1: Y ~ X
Model 2: Y ~ factor(X)
Res.Df   RSS Df Sum of Sq      F   Pr(>F)
1     9 14742
2     5  1148  4     13594 14.801 0.005594

F* LOF statistic is given, with corresponding P-value.



Comments on LOF Approach

 We don’t need replication at every Xj.  As 
long as at least 1 Xj has replicated Y’s, the 
test can proceed, if poorly (& assuming the 
replicated Y’s are different).

 Can show that E{MSPE} = σ2 (always).  For 
that matter, 
E{MSLF} = σ2 + ∑nj{μj – (β0 + β1Xj)}2/(c–2).

 Any p-parameter model can be tested in 
this manner, as long as some replication is 
present and c > p.

 (Also see pp. 126-127)



Remediation

 What if our diagnostics uncover failure in 
the SLR model?

 If it’s just heterogeneous variance, we can 
move to Weighted Least Squares (WLS)
→ discussed in Ch. 11.

 If the linearity is in question, we might be 
able to transform Y (or X) to “linearize” the 
regression.  (This can also stabilize non-
constant variance.)   See next slide →



Transformations
 When the Y-vs.-X relationship does not 

conform to a simple linear model, it may be 
possible to transform either the Xi’s or the 
Yi’s (or both!) to at least approximately 
satisfy the SLR requirements.

 We don’t know this in advance, of course, 
so always

(a) plot the data, and 
(b) plot/examine the residuals

for guidance.



Transforming X to √X

 When a curvilinear relationship is 
evidenced in the data, a transform of X to 
√X might be called for.

 That is, replace the SLR model with 
Yi = β0 + β1Xi

1/2 + εi (i = 1,...,n).

 Sales Training example (CH03TA07):
> par( mfrow=c(1,2) )
> plot( Y ~ X )
> plot( Y ~ sqrt(X) )



Sales Training (CH03TA07)

Orig. curvilinear pattern linearized by √X transform. 



Sales Train’g (CH03TA07) (cont’d)

Resid. plot and normal probability plots 
seem reasonable after √X transform:
> sqrtX = sqrt(X)

> trCH03TA07.lm = lm( Y ~ sqrtX )

> par( mfrow=c(1,2) )

> plot( resid(trCH03TA07.lm) ~ 

sqrtX, xlab=expression(sqrt(X)) )

> abline( h=0 )

> qqnorm( resid(trCH03TA07.lm), main=“” )



Sales Train’g (CH03TA07) (cont’d)

Resid. plot and NPP after √X transform (cf. Fig. 3.14).



Transforming X to ln(X)

 Sometimes, a few Xi-values are very far 
away from the bulk of the data, or the X’s 
are geometrically or exponentially spaced 
(e.g., X = 1, 3, 10, 30, 100, 300, ...)

 If so, and if all the Xi’s are positive (X > 0), 
then a logarithmic transform may be called 
for; i.e., replace the SLR model with

Yi = β0 + β1 ln(Xi) + εi (i = 1, ..., n).



Example

Brain Weight/Body Weight
In a study of mammalian body features, 

X = avg. body weight (kg) and 
Y = avg. brain weight (g)

were determined for n = 62 terrestrial 
mammals.

On the original scale, a scatterplot shows 
little distinguishability, due to the extreme 
observations at high X  (next slide  )



Brain Weight Scatterplot
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Brain Weight Scatterplot (cont’d)
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Brain Weight Scatterplot 
after ln(X)- ln(Y) transform
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Brain Weight Scatterplot 
after ln(X)- ln(Y) transform
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Brain Weight Scatterplot 
after ln(X)- ln(Y) transform
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Brain Weight Example (cont’d)

• We see that the logarithmic transform 
applied to X (and here, also to Y) can 
increase distinguishability in the scatterplot.

• In this example, it also “reduced” the 
outlying effect of the extreme observations 
(elephants), while also enhancing our ability 
to identify other possible extreme observa-
tions (maybe humans?).



Other Useful 
Transformations

Some other useful transformations of 
the X variable include 

• X′ = log10(X)
• X′ = 1/(X + k)  (for some k ≥ 0)
• X′ = X – (1/X)



Transforming Y to log10Y

• When a curvilinear relationship is 
evidenced in the data, a transform of Y
to log10Y might be called for.

• That is, replace the SLR model with 
log10Yi = β0 + β1Xi + εi (i = 1, ..., n).

• Blood plasma example (CH03TA08):
> par( mfrow=c(1,2) )
> plot( Y ~ X )
> plot( log10(Y) ~ X )



Blood Plasma (CH03TA08)

Curvilinear pattern linearized by log10(Y) transform 



Blood Plasma (CH03TA08) (cont’d)

Residual plot and normal probability plot 
under ‘usual’ SLR model:

> CH03TA08.lm = lm( Y ~ X )

> par( mfrow=c(1,2) )

> plot( resid(CH03TA08.lm) ~ X )

> abline( h=0 )

> qqnorm( resid(CH03TA08.lm), main='' )



Blood Plasma (CH03TA08) (cont’d)

Resid. plot and NPP under SLR model show multiple 
model violations



Blood Plasma (CH03TA08) (cont’d)

Residual plot and normal probability plot 
under log10(Y) transform:

> trCH03TA08.lm = lm( log10(Y) ~ X )
> par( mfrow=c(1,2) )
> plot( resid(trCH03TA08.lm) ~ X )
> abline( h=0 )
> qqnorm( resid(trCH03TA08.lm),

main=“” )



Blood Plasma (CH03TA08) (cont’d)

Resid. plot and NPP after log10(Y) transform (cf. Fig. 3.14).



Box-Cox Power Transform

 A general class of transformations that 
includes the square root and the log is 
the Box-Cox Power Transformation:

 where � is a transform parameter and K2
is the geometric mean of the Yis:

Wi = 
Y i

� – 1
�K2

�–1

K2 = 



∏i=1

n
Yi

1/n 



Box-Cox Transform (cont’d)

 If � = 0, use the continuity-preserving 
logarithm for the Box-Cox transform:

Wi = K2 ln(Yi)  at � = 0.
 We can apply maximum likelihood (ML)  to 

estimate � from the data.  (Alternatively, 
can minimize the regression SSE over a 
series � values; see p. 135.)  

 In R, this is performed via the boxcox()
function in the MASS package.



Blood Plasma (CH03TA08) (cont’d)

Box-Cox transform analysis (mimics presen-
tation in Neter et al., p.136):
> require( MASS )

> CH03TA08.lm = lm( Y ~ X )

> CH03TA08.bc = boxcox( CH03TA08.lm,
lambda=seq(-1, 1, 0.1), interp=F )

> cbind( CH03TA08.bc$x, CH03TA08.bc$y )



Blood Plasma (CH03TA08) (cont’d)

boxcox() function produces plot of log-
likelihood (cf. to Fig. 3.17 in Neter et al.)

Max. log-
likelihood 
(also min. 
SSE) at 
� = –0.5



Call to cbind()prints out � (‘x’ col.) and calculated 
values of log-likelihood (‘y’ col.):
[1,] -1.0   9.5036602  [12,] 0.1  8.6280273
[2,] -0.9   9.9557422  [13,] 0.2  7.8716970
[3,] -0.8  10.3202421  [14,] 0.3  7.0196583 
[4,] -0.7  10.5882760  [15,] 0.4  6.0806054 
[5,] -0.6  10.7517109  [16,] 0.5  5.0634353 
[6,] -0.5  10.8036292 [17,] 0.6  3.9768915 
[7,] -0.4  10.7387696  [18,] 0.7  2.8292907 
[8,] -0.3  10.5538884  [19,] 0.8  1.6283340 
[9,] -0.2  10.2479881  [20,] 0.9  0.3809955 

[10,] -0.1   9.8223822  [21,] 1.0 -0.9065263 
[11,]  0.0   9.2805821 

Blood Plasma (CH03TA08) (cont’d)



Transforming Y: Caveats

We need to be careful when transforming the 
response, Y.   
Say you use W = ln(Y), so that  Y = exp{W}. 

• The model becomes E[W] = β0 + β1X. 
• The fitted values have the form Ŵh = b0 + 

b1Xh.  But don’t stop there! 
• Should reverse the transform to end with 

Ŷh = exp{b0 + b1Xh}. 
• Use similar reverse-transforms for other 

transforming functions. 



Transforming X: Caveats

 By contrast, if you transform just the X-
variable/predictor, you only change the 
input scale.

 At that point, stay on the chosen, 
transformed, input scale throughout all 
the calculations.
Example:  if you transform Xi to Xi the 
model becomes E[Yi] = β0 + β1 Xi.  Then 
stay on the Xi scale for estimates, 
inferences, predictions, etc. 


