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Predictor Diagnostics

 It’s always a good idea to study the nature 
of the predictor variable, Xi, and ensure it’s 
not harboring any surprises.

 Useful tools:
• Dot plots
• Sequence plots (scatterplot of Xi vs. i with 

dots connected — useful if i is a surrogate 
for time)

• Stemplots
• Boxplots



Residual Diagnostics

 The residuals from the LS fit for a Simple 
Linear Regression (SLR) model are the 
differences between the observed 
response and the predicted response:

ei = Yi  Yi.
 The ei’s contain useful info.  Recall that 
∑ei = ∑ eiXi = ∑eiYi = 0.  Thus 
while

^

^ —e = ∑ei/n = 0 

 se
2 = 1

n–2∑(ei – —e)2 = 1
n–2∑ei

2 = SSE
n–2  = MSE 



Residual Plots

 A powerful diagnostic tool for 
assessing model fit is the Residual 
Plot, i.e., a plot of ei = Yi  Yi vs. Yi.

 If the SLR model fit is adequate, the 
residuals, ei, should cluster around the 
horizontal line e = 0, with no apparent 
pattern. See, e.g., next slide →

^ ^



Prototypical Residual Plot 
with Random Scatter



Residual Plots (cont’d)

Can also use residual plots to study:
• departure from linearity in E{Y}
• departure from constant σ2 in σ2{Y}
• departure from indep. assumption
• outlying values of Yi

• departure from normality in εi ~ N(0,σ2)
• other values of X that could be useful 

(see Ch. 6)



Residual Plots (cont’d)

Alternate versions of the residual plot include:
• plot ei vs. Yi (std. version)
• plot ei vs. Xi

• plot |ei| or ei
2 vs. Xi

• plot ei vs. i (if sequence is surrogate for  time) 
→ see Fig. 3.2b

• boxplot and/or histogram of ei’s → see Fig. 
3.2c

• normal probab. plot of of ei’s → see Fig. 3.2d

^



Residual Plots in R

 In R, the  plot() function can extract 
the raw residual plot from the  lm()
object.

 Or, use  plot() directly with the 
functions resid() and  fitted().



Toluca Example (cont’d)

In the Toluca Data example (CH01TA01), 
we produce a residual plot via:

> CH01TA01.lm = lm( Y ~ X )

> plot( resid(CH01TA01.lm) ~ X )

> abline( h=0 )  #add horiz. e=0 line



Toluca Example Residual Plot



Toluca Resid. Plot (cont’d)

As mentioned, residual plots are usually 
drawn against the fitted values:

> CH01TA01.lm = lm( Y ~ X )

> plot( resid(CH01TA01.lm) ~ 
fitted(CH01TA01.lm) )

> abline( h=0 )  #add horiz. e=0 line

Residual pattern will be identical under an 
SLR model (reversed if b1 < 0).



Example TA01 Residual Plot



Quadratic Curvature
Curvature in the scatterplot and the resid. plot 
may indicate a parabolic (quadratic) pattern:

 Clear parabolic relationship 
deviates from linearity assumption

Scatterplot 
shows 

curvature

Resid. plot has 
striking down-
then-up pattern



Variance heterogeneity

Departure from constant σ2 in σ2{Y} will be 
evident in a widening residual pattern, e.g.

or



Possible Outliers

Unusual observations (possible ‘outliers’) 
can be recognized quickly in resid. plots:



Possible Outliers

 Keep in mind that detection of an unusual 
observation does not immediately 
condemn the data point or call for its 
deletion.

 Always examine why the point is flagged: 
it may involve a simple data entry error or 
some other explanation.



Standardizing the Residuals

 A problem with raw residuals is that they 
are scale/measurement-dependent:  
in one data set an absolute residual of 
|ei| = 8.2 may be less egregious than a 
residual of |ei| = 0.7 in another data set. 

 We can stabilize residuals across data 
sets/model fits by standardizing them to 
similar scales (sort of like a z-score).



Semistudentized Residuals

A Semistudentized Residual is a raw resid-
ual, ei, divided by its sample std. deviation:

(Some authors call this a Studentized 
Residual.  Others don’t!  Be careful of ter-
minology.)
There are more effective ways to adjust 
resid’s; we expand on this in Ch. 10.

ei* = ei
se

 = ei
MSE 



Semistudentized Residuals in R

• In R, we can plot the ei*s.

• E.g., with the Toluca data (CH01TA01), 
use
> CH01TA01.lm = lm( Y ~ X )

> eistar = resid( CH01TA01.lm )/
sqrt( anova(CH01TA01.lm)$"Mean Sq"[2] )

> plot( eistar ~ fitted(CH01TA01.lm) )
> abline( h=0 )



Toluca Example: 
Semistudentized Residual Plot

Pattern is 
similar to raw 
residual plot, 
but now on a 
standardized 
scale.



Normal Probability Plots

 To assess departure from normality in 
εi ~ N(0,σ2), display the ei’s via a boxplot, 
histogram, or normal probab. plot (NPP).

 E.g., with NPP’s, if normality holds, the 
NPP will show a 45º line.

 Departure from normality will be evident 
as deviations from the 45º line.

(See Fig. 3.9)



Right Skew in NP Plot

Right-skewed 
residuals 
display convex 
shape in NPP



Left Skew in NP Plot

Left-skewed 
residuals 
display 
concave shape 
in NPP



Thick Tails in NP Plot

Thick-tailed 
(but still 
symmetric)  
residuals 
display as 
flattened 
shape in NPP



Test of Normality

• Besides visualizations, we can apply a 
univariate test of Normality to the ei’s, and 
assess whether the εi’s  appear to deviate 
from the N(0,σ2) assumption.

• The basic test is due to Shapiro and Wilk.  
Applied to the residuals, it gives a test 
statistic (W*) and an associated P-value.

• If P is too small (below a pre-set α-level), 
reject the null hypothesis of normality.



Toluca Example (cont’d)

In the Toluca example (CH01TA01), we test 
the residuals for normality:

> CH01TA01.lm = lm( Y ~ X )
> shapiro.test( resid(CH01TA01.lm) )

Shapiro-Wilk normality test
data:  resid(CH01TA01.lm)
W = 0.9789, p-value = 0.8626

P-value is large, so no departure from 
normality is evidenced.



Test of Variance Homogeneity

 From an SLR model, we test the 
residuals for variance homogeneity (i.e., 
constant σ2) via the ‘robust’ Brown-
Forsythe test, a special case of the 
more-general Levene test.  

 The test breaks the ei’s into 2 groups: 
(1) ei’s from small Xi’s vs. (2) ei’s from 
large Xi’s.  Then, it compares deviations 
from median between the 2 groups.



Brown-Forsythe Test

 For (small-X) group 1, let n1 = # resid’s from 
small Xi’s, and denote the median resid. in 
that group as ~e1.  Compute di1 = |ei1 – ~e1|. 

 For (large-X) group 2, let n2 = # resid’s from 
large Xi’s, and denote the median resid. in 
that group as ~e2.  Compute di2 = |ei2 – ~e2|. 

 Calculate  t*BF = 
—
d1 – 

—
d2

SD
1
n1

 + 1
n2

  with  

   SD
2  = 

∑i=1
n1 (di1 – 

—
d1)2 + ∑i=1

n2 (di2 – 
—
d2)2

n – 2  



Brown-Forsythe Test (cont’d)

 Can do this in R, but must first download 
and install the lawstat package, then load 
it into the current workspace:
> require( lawstat )

 Then, conclude significant departure 
from homogeneous variance if   
|t*BF| > t(1 – α2; n–2). 

 P-value is 2P[ t(n–2) > |t*BF| ] 



Toluca Example (cont’d)

In the Toluca Data example (CH01TA01), test 
the residuals for variance homogeneity:  
> ei = resid( CH01TA01.lm )

> BF.htest = levene.test( ei[order(X)],
group=c(rep(1,13),rep(2,12)),
location="median" )

Note use of   ei[order(X)] to sort residuals 
by order of X.  (Could also sort by   .)
The  group= specifier factors into 2 groups for 
constructing the t* statistic. (Actually, it gives 
F* = t*2.)

Ŷ



Toluca Example (cont’d)

Browth-Forsythe output:  
modified robust Brown-Forsythe Levene-type test 
based on the absolute deviations from the median
data:  ei[order(X)] 
Test Statistic = 1.7331, p-value = 0.201

> sqrt( BF.htest$statistic ) #for t* statistic

Test Statistic 
1.316482

P = 0.201 > 0.05 = α.  No significant 
departure from constant σ2 is evidenced.



Brown-Forsythe Test: Caveats
 The Brown-Forsythe test works if variance 

heterogeneity is of the “megaphone” style 
(in the textbook’s terminology).

 But (!), it may fail with stranger patterns, 
such as two megaphones back-to-back:

Brown-Forsythe will fail to detect these patterns



Replication

 When there are multiple Yi’s observed at 
the same Xi, we say the data/design 
exhibits Replication. 

 The multiple Yi’s are called Replicates.

 In this case, it is possible to cleanly test 
the ‘fit’ of an assumed model for E{Yi}.



Lack Of Fit (LOF) Testing

Need to expand our notation:  
 the observations are now indexed as Yij, 
 where  i = 1,...,nj  (replicates) 
 and  j = 1,...,c  (unique X values) 

Sample size is n = ∑j=1
c nj. 

We approach the lack-of-Fit (LOF) test 
using the FM vs. RM discrepancy measure 
from §2.7. 



LOF Testing (cont’d)

 The Full Model (FM) here is  Yij = μj + εij  
with εij ~ i.i.d. N(0,σ2). 

 The model allows for c > 1 different, un-
specified means, μj, at each j. 

 The Reduced Model (RM) is the SLR:  
    Yij = β0 + β1Xj + εij 
with εij ~ i.i.d. N(0,σ2) 
(or whatever posited model is under 
study). 



LOF Testing (cont’d)

 To construct the F-statistic use (2.70): 
compare SSE(R) under the SLR with 
SSE(F) under the full, unspecified model.

 If the SSE’s differ too much, this implies 
that significant, explainable variation is 
still present, even after fitting the SLR 
model.

 Use the F-statistic to quantify this 
departure.



LOF Testing (cont’d)

 Recall: the general form of the 
discrepancy F-statistic is 

   F* = SSE(R)–SSE(F)
dfER–dfEF / SSE(F)

dfEF
 

 For LOF, the numerator is the mean 
square for lack-of-fit: MSLF.  The 
denominator is MSE(F). 

 Reject the null hypoth. of acceptable fit 
if F* > F(1–α; dfER–dfEF, dfEF). 



LOF Testing (cont’d)

Notice: The RM SSE is based on the SLR, 
SSE(R) = ∑j=1

c ∑i=1
nj (Yij – Ŷij(R))2  

   = ∑j=1
c ∑i=1

nj (Yij – b0 – b1Xj)2  

The FM SSE has similar form: SSE(F) = 
∑j=1

c ∑i=1
nj (Yij – Ŷij(F))2, but what is Ŷij(F)?? 

Answer: The FM makes no specification on 
E[Yij], so the LS estimators are simply the 
replicate means Ŷij(F) = 

—
Yj. 



Pure Error

With this, find SSE(F) = ∑j=1
c ∑i=1

nj (Yij – 
—
Yj)2.  This 

is called the Pure Error, and denoted as 
SSPE.  Then, 
  MSE(F) = MSPE = ∑j=1

c ∑i=1
nj (Yij – 

—
Yj)2/(n–c). 

The F-statistic becomes  

  FLOF*  = SSE(R)–SSPE
(n–2)–(n–c) /MSPE. 

Reject the null hypoth. of acceptable fit if F* > 
F(1–α; c–2, n–c). 



LOF ANOVA Table
We collect all these terms together into a 
special LOF ANOVA table: 
Source d.f.    SS   MS   
Regr. 1   SSR=∑∑(Ŷij – 

—
Y)2 MSR 

Error n–2 SSE(R)=∑∑(Yij – Ŷij)2  MSE(R) 
 LOF c–2  SSLF=∑∑(

—
Yj – Ŷij)2 MSLF 

 Pure Error n–c  SSPE=∑∑(Yij – 
—
Yj)2 MSPE 

Total n–1 SSTO=∑∑(Yij – 
—
Y)2 

 
The F-test employs the LOF statistic  
  FLOF*  = MSLF/MSPE. 



Example: Lack of Fit (LOF) test
Example:  Bank Data (CH03TA04)  
Y = Number of new accts.,
X = Min. deposit.
> X = c(125, 100, ... , 100)
> Y = c(160, 112, ... , 136)
> plot( Y~X,pch=19 )



Example CH03TA04 (cont’d)

To test for LOF with the Bank Data 
(CH03TA04), can use:

> # fit reduced model
> rmCH03TA04.lm = lm( Y ~ X )
> 
> # fit full model via factor() command
> fmCH03TA04.lm = lm( Y ~ factor(X) )



Example CH03TA04 (cont’d)

> #SLR anova component 
> anova( rmCH03TA04.lm )

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value  Pr(>F)
X    1  5141.3 5141.3  3.1389  0.1102
Resid 9 14741.6 1638.0



Example CH03TA04 (cont’d)

> #SSPE with F* for LOF 
> anova( rmCH03TA04.lm, fmCH03TA04.lm )

Analysis of Variance Table
Model 1: Y ~ X
Model 2: Y ~ factor(X)
Res.Df   RSS Df Sum of Sq      F   Pr(>F)
1     9 14742
2     5  1148  4     13594 14.801 0.005594

F* LOF statistic is given, with corresponding P-value.



Comments on LOF Approach

 We don’t need replication at every Xj.  As 
long as at least 1 Xj has replicated Y’s, the 
test can proceed, if poorly (& assuming the 
replicated Y’s are different).

 Can show that E{MSPE} = σ2 (always).  For 
that matter, 
E{MSLF} = σ2 + ∑nj{μj – (β0 + β1Xj)}2/(c–2).

 Any p-parameter model can be tested in 
this manner, as long as some replication is 
present and c > p.

 (Also see pp. 126-127)



Remediation

 What if our diagnostics uncover failure in 
the SLR model?

 If it’s just heterogeneous variance, we can 
move to Weighted Least Squares (WLS)
→ discussed in Ch. 11.

 If the linearity is in question, we might be 
able to transform Y (or X) to “linearize” the 
regression.  (This can also stabilize non-
constant variance.)   See next slide →



Transformations
 When the Y-vs.-X relationship does not 

conform to a simple linear model, it may be 
possible to transform either the Xi’s or the 
Yi’s (or both!) to at least approximately 
satisfy the SLR requirements.

 We don’t know this in advance, of course, 
so always

(a) plot the data, and 
(b) plot/examine the residuals

for guidance.



Transforming X to √X

 When a curvilinear relationship is 
evidenced in the data, a transform of X to 
√X might be called for.

 That is, replace the SLR model with 
Yi = β0 + β1Xi

1/2 + εi (i = 1,...,n).

 Sales Training example (CH03TA07):
> par( mfrow=c(1,2) )
> plot( Y ~ X )
> plot( Y ~ sqrt(X) )



Sales Training (CH03TA07)

Orig. curvilinear pattern linearized by √X transform. 



Sales Train’g (CH03TA07) (cont’d)

Resid. plot and normal probability plots 
seem reasonable after √X transform:
> sqrtX = sqrt(X)

> trCH03TA07.lm = lm( Y ~ sqrtX )

> par( mfrow=c(1,2) )

> plot( resid(trCH03TA07.lm) ~ 

sqrtX, xlab=expression(sqrt(X)) )

> abline( h=0 )

> qqnorm( resid(trCH03TA07.lm), main=“” )



Sales Train’g (CH03TA07) (cont’d)

Resid. plot and NPP after √X transform (cf. Fig. 3.14).



Transforming X to ln(X)

 Sometimes, a few Xi-values are very far 
away from the bulk of the data, or the X’s 
are geometrically or exponentially spaced 
(e.g., X = 1, 3, 10, 30, 100, 300, ...)

 If so, and if all the Xi’s are positive (X > 0), 
then a logarithmic transform may be called 
for; i.e., replace the SLR model with

Yi = β0 + β1 ln(Xi) + εi (i = 1, ..., n).



Example

Brain Weight/Body Weight
In a study of mammalian body features, 

X = avg. body weight (kg) and 
Y = avg. brain weight (g)

were determined for n = 62 terrestrial 
mammals.

On the original scale, a scatterplot shows 
little distinguishability, due to the extreme 
observations at high X  (next slide  )



Brain Weight Scatterplot

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000

B
ra

in
 w

ei
gh

t (
g)

Body weight (kg)



Brain Weight Scatterplot (cont’d)
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Brain Weight Scatterplot 
after ln(X)- ln(Y) transform
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Brain Weight Scatterplot 
after ln(X)- ln(Y) transform
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Brain Weight Scatterplot 
after ln(X)- ln(Y) transform
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Brain Weight Example (cont’d)

• We see that the logarithmic transform 
applied to X (and here, also to Y) can 
increase distinguishability in the scatterplot.

• In this example, it also “reduced” the 
outlying effect of the extreme observations 
(elephants), while also enhancing our ability 
to identify other possible extreme observa-
tions (maybe humans?).



Other Useful 
Transformations

Some other useful transformations of 
the X variable include 

• X′ = log10(X)
• X′ = 1/(X + k)  (for some k ≥ 0)
• X′ = X – (1/X)



Transforming Y to log10Y

• When a curvilinear relationship is 
evidenced in the data, a transform of Y
to log10Y might be called for.

• That is, replace the SLR model with 
log10Yi = β0 + β1Xi + εi (i = 1, ..., n).

• Blood plasma example (CH03TA08):
> par( mfrow=c(1,2) )
> plot( Y ~ X )
> plot( log10(Y) ~ X )



Blood Plasma (CH03TA08)

Curvilinear pattern linearized by log10(Y) transform 



Blood Plasma (CH03TA08) (cont’d)

Residual plot and normal probability plot 
under ‘usual’ SLR model:

> CH03TA08.lm = lm( Y ~ X )

> par( mfrow=c(1,2) )

> plot( resid(CH03TA08.lm) ~ X )

> abline( h=0 )

> qqnorm( resid(CH03TA08.lm), main='' )



Blood Plasma (CH03TA08) (cont’d)

Resid. plot and NPP under SLR model show multiple 
model violations



Blood Plasma (CH03TA08) (cont’d)

Residual plot and normal probability plot 
under log10(Y) transform:

> trCH03TA08.lm = lm( log10(Y) ~ X )
> par( mfrow=c(1,2) )
> plot( resid(trCH03TA08.lm) ~ X )
> abline( h=0 )
> qqnorm( resid(trCH03TA08.lm),

main=“” )



Blood Plasma (CH03TA08) (cont’d)

Resid. plot and NPP after log10(Y) transform (cf. Fig. 3.14).



Box-Cox Power Transform

 A general class of transformations that 
includes the square root and the log is 
the Box-Cox Power Transformation:

 where � is a transform parameter and K2
is the geometric mean of the Yis:

Wi = 
Y i

� – 1
�K2

�–1

K2 = 



∏i=1

n
Yi

1/n 



Box-Cox Transform (cont’d)

 If � = 0, use the continuity-preserving 
logarithm for the Box-Cox transform:

Wi = K2 ln(Yi)  at � = 0.
 We can apply maximum likelihood (ML)  to 

estimate � from the data.  (Alternatively, 
can minimize the regression SSE over a 
series � values; see p. 135.)  

 In R, this is performed via the boxcox()
function in the MASS package.



Blood Plasma (CH03TA08) (cont’d)

Box-Cox transform analysis (mimics presen-
tation in Neter et al., p.136):
> require( MASS )

> CH03TA08.lm = lm( Y ~ X )

> CH03TA08.bc = boxcox( CH03TA08.lm,
lambda=seq(-1, 1, 0.1), interp=F )

> cbind( CH03TA08.bc$x, CH03TA08.bc$y )



Blood Plasma (CH03TA08) (cont’d)

boxcox() function produces plot of log-
likelihood (cf. to Fig. 3.17 in Neter et al.)

Max. log-
likelihood 
(also min. 
SSE) at 
� = –0.5



Call to cbind()prints out � (‘x’ col.) and calculated 
values of log-likelihood (‘y’ col.):
[1,] -1.0   9.5036602  [12,] 0.1  8.6280273
[2,] -0.9   9.9557422  [13,] 0.2  7.8716970
[3,] -0.8  10.3202421  [14,] 0.3  7.0196583 
[4,] -0.7  10.5882760  [15,] 0.4  6.0806054 
[5,] -0.6  10.7517109  [16,] 0.5  5.0634353 
[6,] -0.5  10.8036292 [17,] 0.6  3.9768915 
[7,] -0.4  10.7387696  [18,] 0.7  2.8292907 
[8,] -0.3  10.5538884  [19,] 0.8  1.6283340 
[9,] -0.2  10.2479881  [20,] 0.9  0.3809955 

[10,] -0.1   9.8223822  [21,] 1.0 -0.9065263 
[11,]  0.0   9.2805821 

Blood Plasma (CH03TA08) (cont’d)



Transforming Y: Caveats

We need to be careful when transforming the 
response, Y.   
Say you use W = ln(Y), so that  Y = exp{W}. 

• The model becomes E[W] = β0 + β1X. 
• The fitted values have the form Ŵh = b0 + 

b1Xh.  But don’t stop there! 
• Should reverse the transform to end with 

Ŷh = exp{b0 + b1Xh}. 
• Use similar reverse-transforms for other 

transforming functions. 



Transforming X: Caveats

 By contrast, if you transform just the X-
variable/predictor, you only change the 
input scale.

 At that point, stay on the chosen, 
transformed, input scale throughout all 
the calculations.
Example:  if you transform Xi to Xi the 
model becomes E[Yi] = β0 + β1 Xi.  Then 
stay on the Xi scale for estimates, 
inferences, predictions, etc. 


