

STAT 571A — Advanced Statistical Regression Analysis

<u>Chapter 3 NOTES</u> Diagnostics and Remedial Measures

© 2015 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, photoreproduction, recording, or scanning — without the prior written consent of the course instructor.

Predictor Diagnostics

It's always a good idea to study the nature of the predictor variable, X_i, and ensure it's not harboring any surprises.

Useful tools:

- Dot plots
- Sequence plots (scatterplot of X_i vs. *i* with dots connected — useful if *i* is a surrogate for time)
- Stemplots
- Boxplots

Residual Diagnostics

The residuals from the LS fit for a Simple Linear Regression (SLR) model are the differences between the observed response and the predicted response:

$$\mathbf{e}_{i} = \mathbf{Y}_{i} - \mathbf{\hat{Y}}_{i}$$
.

The e_i's contain useful info. Recall that $\sum e_i = \sum e_i X_i = \sum e_i \hat{Y}_i = 0$. Thus $\overline{e} = \sum e_i/n = 0$ while

$$\mathbf{s_e}^2 = \frac{1}{n-2} \Sigma (\mathbf{e_i} - \overline{\mathbf{e}})^2 = \frac{1}{n-2} \Sigma \mathbf{e_i}^2 = \frac{SSE}{n-2} = MSE$$

Residual Plots

- A powerful diagnostic tool for assessing model fit is the Residual Plot, i.e., a plot of e_i = Y_i - Ŷ_i vs. Ŷ_i.
- If the SLR model fit is adequate, the residuals, e_i, should cluster around the horizontal line e = 0, with no apparent pattern. See, e.g., next slide →

Prototypical Residual Plot with Random Scatter

Fitted value

Residual Plots (cont'd)

Can also use residual plots to study:

- departure from linearity in E{Y}
- departure from constant σ^2 in σ^2 {Y}
- departure from indep. assumption
- outlying values of Y_i
- departure from normality in $\epsilon_i \sim N(0,\sigma^2)$
- other values of X that could be useful (see Ch. 6)

Residual Plots (cont'd)

Alternate versions of the residual plot include:

- plot e_i vs. \hat{Y}_i (std. version)
- plot e_i vs. X_i
- plot |e_i| or e_i² vs. X_i
- plot e_i vs. *i* (if sequence is surrogate for time) \rightarrow see Fig. 3.2b
- boxplot and/or histogram of e_i's → see Fig.
 3.2c
- normal probab. plot of of e_i 's \rightarrow see Fig. 3.2d

Residual Plots in R

- In R, the plot() function can extract the raw residual plot from the lm() object.
- Or, use plot() directly with the functions resid() and fitted().

Toluca Example (cont'd)

In the Toluca Data example (CH01TA01), we produce a residual plot via:

- > CH01TA01.lm = lm($Y \sim X$)
- > plot(resid(CH01TA01.lm) ~ X)
- > abline(h=0) #add horiz. e=0 line

Toluca Example Residual Plot

Х

Toluca Resid. Plot (cont'd)

As mentioned, residual plots are usually drawn against the fitted values:

- > CH01TA01.lm = lm($Y \sim X$)
- > abline(h=0) #add horiz. e=0 line

Residual pattern will be identical under an SLR model (reversed if $b_1 < 0$).

Example TA01 Residual Plot

Quadratic Curvature

Curvature in the scatterplot and the resid. plot may indicate a parabolic (quadratic) pattern:

Variance heterogeneity

Departure from constant σ^2 in σ^2 {Y} will be evident in a widening residual pattern, e.g.

Possible Outliers

Unusual observations (possible 'outliers') can be recognized quickly in resid. plots:

Possible Outliers

- Keep in mind that detection of an unusual observation does not immediately condemn the data point or call for its deletion.
- Always examine <u>why</u> the point is flagged: it may involve a simple data entry error or some other explanation.

Standardizing the Residuals

- A problem with raw residuals is that they are scale/measurement-dependent: in one data set an absolute residual of |e_i| = 8.2 may be *less* egregious than a residual of |e_i| = 0.7 in another data set.
- We can stabilize residuals across data sets/model fits by standardizing them to similar scales (sort of like a z-score).

Semistudentized Residuals

A *Semistudentized Residual* is a raw residual, e_i, divided by its sample std. deviation:

$$e_i^* = \frac{e_i}{s_e} = \frac{e_i}{\sqrt{MSE}}$$

(Some authors call this a *Studentized Residual*. Others don't! Be careful of terminology.)

There are more effective ways to adjust resid's; we expand on this in Ch. 10.

Semistudentized Residuals in R

- In R, we can plot the e_i*s.
- E.g., with the Toluca data (CH01TA01), use
 - > CH01TA01.lm = lm($Y \sim X$)
 - > eistar = resid(CH01TA01.lm)/

sqrt(anova(CH01TA01.lm)\$"Mean Sq"[2])

- > plot(eistar ~ fitted(CH01TA01.lm))
- > abline(h=0)

Toluca Example: Semistudentized Residual Plot

Pattern is similar to raw residual plot, but now on a standardized scale.

Normal Probability Plots

- To assess departure from normality in ε_i ~ N(0,σ²), display the e_i's via a boxplot, histogram, or normal probab. plot (NPP).
- E.g., with NPP's, if normality holds, the NPP will show a 45° line.
- Departure from normality will be evident as deviations from the 45° line.

(See Fig. 3.9)

Right Skew in NP Plot

Right-skewed residuals display convex shape in NPP

Normal Q-Q Plot

Thick Tails in NP Plot

Thick-tailed (but still symmetric) residuals display as flattened shape in NPP

Normal Q-Q Plot

Test of Normality

- Besides visualizations, we can apply a univariate test of Normality to the e_i 's, and assess whether the ϵ_i 's appear to deviate from the N(0, σ^2) assumption.
- The basic test is due to Shapiro and Wilk.
 Applied to the residuals, it gives a test statistic (W*) and an associated P-value.
- If *P* is too small (below a pre-set α-level), reject the null hypothesis of normality.

Toluca Example (cont'd)

In the Toluca example (CH01TA01), we test the residuals for normality:

> CH01TA01.lm = lm(Y ~ X)

> shapiro.test(resid(CH01TA01.lm))

Shapiro-Wilk normality test data: resid(CH01TA01.lm) W = 0.9789, p-value = 0.8626

P-value is large, so no departure from normality is evidenced.

Test of Variance Homogeneity

- From an SLR model, we test the residuals for variance homogeneity (i.e., constant σ²) via the 'robust' Brown-Forsythe test, a special case of the more-general Levene test.
- The test breaks the e_i's into 2 groups: (1) e_i's from small X_i's vs. (2) e_i's from large X_i's. Then, it compares deviations from median between the 2 groups.

Brown-Forsythe Test

- For (small-X) group 1, let n₁ = # resid's from small X_i's, and denote the median resid. in that group as e₁. Compute d_{i1} = |e_{i1} – e₁|.
- For (large-X) group 2, let n₂ = # resid's from large X_i's, and denote the median resid. in that group as e₂. Compute d_{i2} = |e_{i2} - e₂|.

• Calculate
$$t_{BF}^* = \frac{\overline{d}_1 - \overline{d}_2}{S_D \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 with
 $S_D^2 = \frac{\sum_{i=1}^{n_1} (d_{i1} - \overline{d}_1)^2 + \sum_{i=1}^{n_2} (d_{i2} - \overline{d}_2)^2}{n - 2}$

Brown-Forsythe Test (cont'd)

- Then, conclude significant departure from homogeneous variance if
 |t^{*}_{BF}| > t(1-^α/₂; n-2).
- P-value is 2P[t(n-2) > |t^{*}_{BF}|]
- Can do this in R, but must first download and install the *lawstat* package, then load it into the current workspace:
 - > require(lawstat)

Toluca Example (cont'd)

In the Toluca Data example (CH01TA01), test the residuals for variance homogeneity:

```
> ei = resid( CH01TA01.lm )
```

> BF.htest = levene.test(ei[order(X)],
 group=c(rep(1,13),rep(2,12)),
 location="median")

Note use of $ei[order(\hat{x})]$ to <u>sort</u> residuals by order of X. (Could also sort by \hat{Y} .)

The group= specifier factors into 2 groups for constructing the t*statistic. (Actually, it gives $F^* = t^{*2}$.)

Toluca Example (cont'd)

Browth-Forsythe output:

modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median data: ei[order(X)] Test Statistic = 1.7331, p-value = 0.201 > sqrt(BF.htest\$statistic) #for t*/statistic Test Statistic 1.316482 $P = 0.201 > 0.05 = \alpha$. No significant departure from constant σ^2 is evidenced.

Brown-Forsythe Test: Caveats

- The Brown-Forsythe test works if variance heterogeneity is of the "megaphone" style (in the textbook's terminology).
- But (!), it may fail with stranger patterns, such as two megaphones back-to-back:

Replication

- When there are multiple Y_i's observed at the <u>same</u> X_i, we say the data/design exhibits Replication.
- The multiple Y_i's are called Replicates.
- In this case, it is possible to cleanly test the 'fit' of an assumed model for E{Y_i}.

Lack Of Fit (LOF) Testing

Need to expand our notation: the observations are now indexed as Y_{ij}, where i = 1,...,n_j (replicates) and j = 1,...,c (unique X values)

Sample size is $n = \sum_{j=1}^{c} n_j$.

We approach the lack-of-Fit (LOF) test using the FM vs. RM discrepancy measure from §2.7.

LOF Testing (cont'd)

- The Full Model (FM) here is $Y_{ij} = \mu_j + \varepsilon_{ij}$ with $\varepsilon_{ij} \sim i.i.d. N(0,\sigma^2)$.
- The model allows for c > 1 different, unspecified means, μ_j, at each j.
- The Reduced Model (RM) is the SLR: Y_{ij} = β₀ + β₁X_j + ε_{ij}
 with ε_{ij} ~ i.i.d. N(0,σ²)
 (or whatever posited model is under
 study).

LOF Testing (cont'd)

- To construct the F-statistic use (2.70): compare SSE(R) under the SLR with SSE(F) under the full, unspecified model.
- If the SSE's differ too much, this implies that significant, explainable variation is still present, even after fitting the SLR model.
- Use the F-statistic to quantify this departure.
LOF Testing (cont'd)

- Recall: the general form of the discrepancy F-statistic is $F^* = \frac{SSE(R) SSE(F)}{df_{ER} df_{EF}} / \frac{SSE(F)}{df_{EF}}$
- For LOF, the numerator is the mean square for lack-of-fit: MSLF. The denominator is MSE(F).
- Reject the null hypoth. of acceptable fit if F* > F(1-α; df_{ER}-df_{EF}, df_{EF}).

LOF Testing (cont'd)

Notice: The RM SSE is based on the SLR, $SSE(R) = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - \hat{Y}_{ij}(R))^2$ $= \sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - b_0 - b_1 X_j)^2$

The FM SSE has similar form: SSE(F) = $\sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - \hat{Y}_{ij}(F))^2$, but what is $\hat{Y}_{ij}(F)$?

Answer: The FM makes no specification on $E[Y_{ij}]$, so the LS estimators are simply the replicate means $\hat{Y}_{ij}(F) = \overline{Y}_j$.

Pure Error

With this, find SSE(F) = $\sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_j)^2$. This is called the **Pure Error**, and denoted as SSPE. Then,

$$MSE(F) = MSPE = \sum_{j=1}^{c} \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_j)^2 / (n-c).$$

The F-statistic becomes $F_{LOF}^{*} = \frac{SSE(R) - SSPE}{(n-2) - (n-c)} / MSPE.$

Reject the null hypoth. of acceptable fit if $F^* > F(1-\alpha; c-2, n-c)$.

LOF ANOVA Table

We collect all these terms together into a special LOF ANOVA table:

Source	d.f.	SS	MS
Regr.	1	$SSR=\sum (\hat{Y}_{ij}-\overline{Y})^2$	MSR
Error	n–2	$SSE(R) = \sum (Y_{ij} - \hat{Y}_{ij})$) ² MSE(R)
LOF	c–2	SSLF= $\sum (\overline{\mathbf{Y}}_{j} - \hat{\mathbf{Y}}_{ij})^{2}$	² MSLF
Pure E	rror n–c	$SSPE=\sum (Y_{ij} - \vec{Y}_j)$	² MSPE
Total	n–1	SSTO= $\sum (Y_{ij} - \overline{Y})^2$	

The F-test employs the LOF statistic $F_{LOF}^* = MSLF/MSPE$.

Example: Lack of Fit (LOF) test

Example CH03TA04 (cont'd)

To test for LOF with the Bank Data (CH03TA04), can use:

> # fit reduced model

>

- > rmCH03TA04.lm = lm(Y ~ X)
- > # fit full model via factor() command
- > fmCH03TA04.lm = lm($Y \sim factor(X)$)

Example CH03TA04 (cont'd)

- > #SLR anova component
- > anova(rmCH03TA04.lm)

Analysis of Variance Table
Response: Y
 Df Sum Sq Mean Sq F value Pr(>F)
X 1 5141.3 5141.3 3.1389 0.1102
Resid 9 14741.6 1638.0

Example CH03TA04 (cont'd)

> #SSPE with F* for LOF

> anova(rmCH03TA04.lm, fmCH03TA04.lm)

Comments on LOF Approach

- We don't need replication at every X_j. As long as at least 1 X_j has replicated Y's, the test can proceed, if poorly (& assuming the replicated Y's are different).
- Can show that E{MSPE} = σ^2 (always). For that matter, E{MSLF} = $\sigma^2 + \sum n_i \{\mu_i - (\beta_0 + \beta_1 X_j)\}^2/(c-2)$.
- Any p-parameter model can be tested in this manner, as long as some replication is present and c > p.
- (Also see pp. 126-127)

Remediation

- What if our diagnostics uncover failure in the SLR model?
- If it's just heterogeneous variance, we can move to Weighted Least Squares (WLS) → discussed in Ch. 11.
- If the linearity is in question, we might be able to transform Y (or X) to "linearize" the regression. (This can also stabilize non-constant variance.)

Transformations

When the Y-vs.-X relationship does not conform to a simple linear model, it may be possible to transform either the X_i's or the Y_i's (or both!) to at least approximately satisfy the SLR requirements.

We don't know this in advance, of course, so <u>always</u>

 (a) plot the data, and
 (b) plot/examine the residuals
 for guidance.

Transforming X to \sqrt{X}

- When a curvilinear relationship is evidenced in the data, a transform of X to √X might be called for.
- That is, replace the SLR model with $Y_i = \beta_0 + \beta_1 X_i^{1/2} + \varepsilon_i \quad (i = 1,...,n).$
- Sales Training example (CH03TA07):
 - > par(mfrow=c(1,2))
 - > plot(Y ~ X)
 - > plot(Y ~ sqrt(X))

Sales Train'g (CH03TA07) (cont'd)

Resid. plot and normal probability plots seem reasonable after \sqrt{X} transform:

- > sqrtX = sqrt(X)
- > trCH03TA07.lm = lm($Y \sim sqrtX$)
- > par(mfrow=c(1,2))
- > plot(resid(trCH03TA07.lm) ~

sqrtX, xlab=expression(sqrt(X)))

> abline(h=0)

> qqnorm(resid(trCH03TA07.lm), main=""

Sales Train'g (CH03TA07) (cont'd)

Transforming X to *ln*(X)

- Sometimes, a few X_i-values are very far away from the bulk of the data, or the X's are geometrically or exponentially spaced (e.g., X = 1, 3, 10, 30, 100, 300, ...)
- If so, and if all the X_i's are positive (X > 0), then a logarithmic transform may be called for; i.e., replace the SLR model with

 $Y_i = β_0 + β_1 ln(X_i) + ε_i$ (i = 1, ..., n).

Example

Brain Weight/Body Weight

In a study of mammalian body features, X = avg. body weight (kg) and Y = avg. brain weight (g) were determined for n = 62 terrestrial mammals.

On the original scale, a scatterplot shows little distinguishability, due to the extreme observations at high X (next slide \rightarrow)

Brain Weight Scatterplot

Brain Weight Scatterplot after *ln*(X)-*ln*(Y) transform

Brain Weight Scatterplot after *ln*(X)-*ln*(Y) transform

Brain Weight Scatterplot after *ln*(X)-*ln*(Y) transform

Brain Weight Example (cont'd)

- We see that the logarithmic transform applied to X (and here, also to Y) can increase distinguishability in the scatterplot.
- In this example, it also "reduced" the outlying effect of the extreme observations (elephants), while also enhancing our ability to identify other possible extreme observations (maybe humans?).

Other Useful Transformations

Some other useful transformations of the X variable include

- $X' = \log_{10}(X)$
- X' = 1/(X + k) (for some $k \ge 0$)
- X' = X (1/X)

Transforming Y to log₁₀Y

- When a curvilinear relationship is evidenced in the data, a transform of Y to log₁₀Y might be called for.
- That is, replace the SLR model with $\log_{10} Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ (i = 1, ..., n).
- Blood plasma example (CH03TA08):
 - > par(mfrow=c(1,2))
 - > plot(Y ~ X)
 - > plot(log10(Y) ~ X)

Residual plot and normal probability plot under 'usual' SLR model:

- > CH03TA08.lm = lm(Y ~ X)
- > par(mfrow=c(1,2))
- > plot(resid(CH03TA08.lm) ~ X)
- > abline(h=0)
- > qqnorm(resid(CH03TA08.lm), main='')

Residual plot and normal probability plot under log₁₀(Y) transform:

- > trCH03TA08.lm = lm(log10(Y) ~ X)
- > par(mfrow=c(1,2))
- > plot(resid(trCH03TA08.lm) ~ X)
- > abline(h=0)
- > qqnorm(resid(trCH03TA08.lm),
 - main=""

Box-Cox Power Transform

A general class of transformations that includes the square root and the log is the Box-Cox Power Transformation:

$$W_{i} = \frac{Y_{i}^{\lambda} - 1}{\lambda K_{2}^{\lambda - 1}}$$

where λ is a transform parameter and K₂ is the geometric mean of the Y_is:

$$\mathbf{K}_{2} = \left(\prod_{i=1}^{n} \mathbf{Y}_{i} \right)^{1/n}$$

Box-Cox Transform (cont'd)

If λ = 0, use the continuity-preserving logarithm for the Box-Cox transform:

$$W_i = K_2 ln(Y_i)$$
 at $\lambda = 0$.

- We can apply maximum likelihood (ML) to estimate λ from the data. (Alternatively, can minimize the regression SSE over a series λ values; see p. 135.)
- In R, this is performed via the boxcox() function in the MASS package.

Box-Cox transform analysis (mimics presentation in Neter *et al.*, p.136):

> require(MASS)

- > CH03TA08.lm = lm($Y \sim X$)
- > CH03TA08.bc = boxcox(CH03TA08.lm, lambda=seq(-1, 1, 0.1), interp=F)

> cbind(CH03TA08.bc\$x, CH03TA08.bc\$y)

boxcox() function produces plot of loglikelihood (cf. to Fig. 3.17 in Neter *et al*.)

Call to cbind() prints out λ ('x' col.) and calculated values of log-likelihood ('y' col.):

[1,]	-1.0	9.5036602	[12,]	0.1	8.6280273
[2,]	-0.9	9.9557422	[13,]	0.2	7.8716970
[3,]	-0.8	10.3202421	[14,]	0.3	7.0196583
[4,]	-0.7	10.5882760	[15,]	0.4	6.0806054
[5,]	-0.6	10.7517109	[16,]	0.5	5.0634353
[6,]	-0.5	10.8036292	[17,]	0.6	3.9768915
[7,]	-0.4	10.7387696	[18,]	0.7	2.8292907
[8,]	-0.3	10.5538884	[19,]	0.8	1.6283340
[9,]	-0.2	10.2479881	[20,]	0.9	0.3809955
[10,]	-0.1	9.8223822	[21,]	1.0	-0.9065263
[11,]	0.0	9.2805821			

Transforming Y: Caveats

We need to be careful when transforming the response, Y.

Say you use W = ln(Y), so that $Y = exp{W}$.

- The model becomes $E[W] = \beta_0 + \beta_1 X$.
- The fitted values have the form $\hat{W}_h = b_0 + b_1 X_h$. But don't stop there!
- Should reverse the transform to end with $\hat{Y}_h = \exp\{b_0 + b_1 X_h\}$.
- Use similar reverse-transforms for other transforming functions.
Transforming X: Caveats

- By contrast, if you transform just the Xvariable/predictor, you only change the input scale.
- At that point, stay on the chosen, transformed, input scale throughout all the calculations.

<u>Example</u>: if you transform X_i to $\sqrt{X_i}$ the model becomes $E[Y_i] = \beta_0 + \beta_1 \sqrt{X_i}$. Then stay on the $\sqrt{X_i}$ scale for estimates, inferences, predictions, etc.