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Simultaneous Inferences
 (Almost) all of the inferences we’ve 

discussed have been Pointwise: they apply 
to one and only one outcome:
• one conf. interval on one parameter, or
• one hypoth. test on one parameter

 To make multiple, simultaneous inferences 
(hypoth. tests or conf. intervals) on g > 1 
parameters or mean responses, we adjust 
the tests or conf. regions for the 
multiplicity.



Multiplicity & FWER

 Why adjust?  If we do not correct for the 
multiple inferences, error rates will be 
too high (  conf. levels will be too low).

 When g > 1 inferences are applied to the 
same set of data, the Familywise (false 
positive) Error Rate, or FWER, is

P[any false positive error(s) among 
the g inferences]

 Goal: keep the FWER ≤ α.



Bonferroni’s Inequality

 Our mainstay adjustment is the 
(conservative) Bonferroni correction, 
based on Bonferroni’s Inequality:

 As in Equation (4.2), for any events Ak,

 This can be manipulated to place 
upper bounds on the FWER, or lower 
bounds on the FW conf. level.

P[
—
A1  

—
A2  …  

—
Ag] ≥ 1 – ∑k=1

g P[Ak] 



Bonferroni’s Inequality (cont’d)

 For instance, suppose A1 is ‘noncoverage’ of 
a parameter β0 and A2 is ‘noncoverage’ of 
another parameter β1.

 Then, the complementary events, Ak, are 
correct ‘coverage.’ Bonferroni tells us that
P[ jointly covering both ] ≥ 

1 – P[noncover β0] – P[noncover β1]
 Say P[noncover βj] = α. Then 

P[ jointly covering both ] ≥ 1 – α – α = 1 – 2α.
 (So, divide each orig. α by 2 to get ≥ 1 – α.)



Bonferroni Adjustment

Suppose we study the SLR model with  
Yi = β0 + β1Xi + εi.  A pointwise conf. int. on 
either βj is   
   bj ±  t(1 – α2; n–2)s{bj} 

But from Bonferroni, a FW conf. statement 
on both (g = 2) βj parameters is  
   bj ±  t(1 – (α/2)

2 ; n–2)s{bj} 
for j = 0,1. 



Bonferroni Adjustment (cont’d)

 Notice what this does: in effect, it simply 
changes the α-value in any critical point 
to α/g.

 Above, g = 2, so use  bj ± Bs{bj}, where

is the Bonferroni-adjusted critical point

     B = t(1 – α4; n–2) 
or, more generally 
     B = t(1 – (α/g)

2 ; n–2) 



Bonferroni Conf. Intervals on E{Yh}

An important example is with multiple 
conf. intervals for the mean response, 
E{Yh}, at any set of g > 1 predictor values 
Xh (h = 1,...,g).

Here, the family of (conservative) 
simultaneous conf. intervals becomes

(h = 1,...,g)  for B = t(1 – ½{α/g}; n–2).

Ŷh  ±  B s{Ŷh}



Working-Hotelling-Scheffé (WHS) 
Intervals on E{Yh}

 We can alternatively apply the WHS conf. band 
to build multiple conf. intervals for the mean 
response, E{Yh}, at any set of g >1 predictor 
values Xh (h = 1,...,g).

 The family of (conservative) simultaneous conf. 
intervals is

Yh ± W s{Yh}
where the WHS-adjusted critical point is based 
on W2 = 2F(1 – α; 2, n–2).  

^ ^



WHS or Bonferroni?

 For any set of g > 1 predictor values Xh
(h = 1,...,g), both the B and W crit. points are 
valid, if conservative.

 So, use the WHS value if W ≤ B, and use 
Bonferroni if B < W.

 Notice: The WHS is exact for all X-values.  So, 
it can be used for post hoc intervals on E{Yh} 
at any finite collection of Xh’s.  (It is the only
valid conf. int. for post hoc “data snooping.”)



Toluca Example (cont’d)

 In the Toluca Data example (CH01TA01), 
suppose we want g = 3 (three) 90% conf. int’s
at Xh = 30, 65, 100.  Here, dfE = 25 – 2 = 23.  

 The Bonfer. point is t(1 – ½{0.10/3}; 23):
> qt( 1-(.10/6), 23 )

2.263728

 The WHS point is {2F(1 – 0.10; 2, 23)}1/2:
> sqrt( 2*qf(.90,2,23) ) 

2.258003

 Since W ≤ B, use the WHS adjusted crit. point.



§4.4: Regression Thru the Origin

 If β0 = 0, the SLR model simplifies to 
E{Yi} = β1Xi (i = 1,...,n).

 The LS estimate of β1 is  b1 = ∑YiXi/∑Xi
2

 The corresp. std. error is 
s{b1} = 

where the MSE now has n–1 df.
 A 1 – α conf. interval for β1 is

b1 ± t(1 – α/2; n–1)s{b1}

MSE/∑Xi
2 



Regression Thru the Origin (cont’d)

For inferences on E{Yh}, use: 

 LS estimator:  Ŷh = b1Xh  

 std. error: s{Ŷh} = |Xh| MSE
∑Xi

2  

 (pointwise) conf. int.:   
    Ŷh ± t(1 – α2; n–1)s{Ŷh}  



Regression Thru the Origin (cont’d)

For prediction of a future Yh(new) at Xh(new), 
use: 

 LS estimator:  Ŷh(new) = b1Xh(new)  

 prediction error:  

    s{pred} = MSE










1 + Xh(new)
2

∑Xi
2  

 (pointwise) prediction int.:   
    Ŷh(new) ± t(1 – α2; n–1)s{pred}  



Warehouse Data (CH04TA02)

 X = work units, Y = variable labor costs.
 Expect E{Y} = 0 when X = 0, so fix β0 = 0:
> CH04TA02.lm = lm(Y ~ X -1 )
> summary( CH04TA02.lm )
Call:
lm(formula = Y ~ X - 1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)

X  4.68527    0.03421   137   <2e-16
> confint(CH04TA02.lm)

2.5 % 97.5 %
X  4.609989  4.760559



Warehouse Data (CH04TA02) (cont’d)

> plot( Y~X, pch=19 )
> abline( lm(Y ~ X-1) ) 



Warehouse Data (CH04TA02) (cont’d)
> plot( resid(lm(Y ~ X-1)) ~ 

predict(lm(Y ~ X-1)) )
> abline( h=0 ) 



§4.6: Inverse Prediction

 We can reverse the prediction effort and 
ask, what value of X produces a given Y?  
This is an inverse prediction problem.
• also called: “inverse regression” or 

“calibration”
 Assume the SLR model: Yi = β0 + β1Xi + εi, 

with εi ~ i.i.d. N(0,σ2).
 Given Yh(new), we want to find the Xh(new) 

that yields this Yh(new).



Inverse Prediction (cont’d)

Clearly, if Ŷh = b0 + b1Xh, we can invert this 

into  X̂h(new) = Yh(new) – b0
b1

   for b1 ≠ 0.   

The prediction error can be found as 

 s{X̂h(new)} = MSE
b1

2  










1 + 1n + (X̂h(new) – 
—
X)2

∑(Xi – 
—
X)2  

from which a 1–α prediction int. is simply  
   X̂h(new) ± t(1 – α2; n–2)s{X̂h(new)} 



§4.7: Optimal Design

 Notice that terms containing the Xi’s, 
such as 

—
X and ∑(Xi – 

—
X)2, appear 

throughout these various expressions.  
If the Xi’s are under control of the 
investigator, we can manipulate these 
quantities. 

 Why?  We might be able to make a std. 
error smaller and hence tighten a conf. 
int. or increase power in an hypoth. test.



Optimal Design (cont’d)

Consider the margin of error on the conf. 
int. for β1:   

  MOE = ± t(1 – α2; n–2)s{b1}  

   = ± t(1 – α2; n–2) MSE
∑i=1

n (Xi – 
—
X)2 

Clearly, as ∑i=1
n (Xi – 

—
X)2  ↑  the MOE  ↓ and 

the conf. int. will get tighter.  



Optimal Design (cont’d)

 So, wherever possible, always try to 
select the spacing and number 
(including replicates) of the Xi’s to 
optimize the conf. int’s and hypoth. 
tests.

 See the exposition on pp. 170-172.




