
STAT 571A — Advanced Statistical 
Regression Analysis

Chapter 4 NOTES
Simultaneous Inferences

and Other Topics

© 2017 University of Arizona Statistics GIDP.  All rights reserved, except where previous rights exist.  No part of this material may 
be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, 
photoreproduction, recording, or scanning — without the prior written consent of the course instructor.



Simultaneous Inferences
 (Almost) all of the inferences we’ve 

discussed have been Pointwise: they apply 
to one and only one outcome:
• one conf. interval on one parameter, or
• one hypoth. test on one parameter

 To make multiple, simultaneous inferences 
(hypoth. tests or conf. intervals) on g > 1 
parameters or mean responses, we adjust 
the tests or conf. regions for the 
multiplicity.



Multiplicity & FWER

 Why adjust?  If we do not correct for the 
multiple inferences, error rates will be 
too high (  conf. levels will be too low).

 When g > 1 inferences are applied to the 
same set of data, the Familywise (false 
positive) Error Rate, or FWER, is

P[any false positive error(s) among 
the g inferences]

 Goal: keep the FWER ≤ α.



Bonferroni’s Inequality

 Our mainstay adjustment is the 
(conservative) Bonferroni correction, 
based on Bonferroni’s Inequality:

 As in Equation (4.2), for any events Ak,

 This can be manipulated to place 
upper bounds on the FWER, or lower 
bounds on the FW conf. level.

P[
—
A1  

—
A2  …  

—
Ag] ≥ 1 – ∑k=1

g P[Ak] 



Bonferroni’s Inequality (cont’d)

 For instance, suppose A1 is ‘noncoverage’ of 
a parameter β0 and A2 is ‘noncoverage’ of 
another parameter β1.

 Then, the complementary events, Ak, are 
correct ‘coverage.’ Bonferroni tells us that
P[ jointly covering both ] ≥ 

1 – P[noncover β0] – P[noncover β1]
 Say P[noncover βj] = α. Then 

P[ jointly covering both ] ≥ 1 – α – α = 1 – 2α.
 (So, divide each orig. α by 2 to get ≥ 1 – α.)



Bonferroni Adjustment

Suppose we study the SLR model with  
Yi = β0 + β1Xi + εi.  A pointwise conf. int. on 
either βj is   
   bj ±  t(1 – α2; n–2)s{bj} 

But from Bonferroni, a FW conf. statement 
on both (g = 2) βj parameters is  
   bj ±  t(1 – (α/2)

2 ; n–2)s{bj} 
for j = 0,1. 



Bonferroni Adjustment (cont’d)

 Notice what this does: in effect, it simply 
changes the α-value in any critical point 
to α/g.

 Above, g = 2, so use  bj ± Bs{bj}, where

is the Bonferroni-adjusted critical point

     B = t(1 – α4; n–2) 
or, more generally 
     B = t(1 – (α/g)

2 ; n–2) 



Bonferroni Conf. Intervals on E{Yh}

An important example is with multiple 
conf. intervals for the mean response, 
E{Yh}, at any set of g > 1 predictor values 
Xh (h = 1,...,g).

Here, the family of (conservative) 
simultaneous conf. intervals becomes

(h = 1,...,g)  for B = t(1 – ½{α/g}; n–2).

Ŷh  ±  B s{Ŷh}



Working-Hotelling-Scheffé (WHS) 
Intervals on E{Yh}

 We can alternatively apply the WHS conf. band 
to build multiple conf. intervals for the mean 
response, E{Yh}, at any set of g >1 predictor 
values Xh (h = 1,...,g).

 The family of (conservative) simultaneous conf. 
intervals is

Yh ± W s{Yh}
where the WHS-adjusted critical point is based 
on W2 = 2F(1 – α; 2, n–2).  

^ ^



WHS or Bonferroni?

 For any set of g > 1 predictor values Xh
(h = 1,...,g), both the B and W crit. points are 
valid, if conservative.

 So, use the WHS value if W ≤ B, and use 
Bonferroni if B < W.

 Notice: The WHS is exact for all X-values.  So, 
it can be used for post hoc intervals on E{Yh} 
at any finite collection of Xh’s.  (It is the only
valid conf. int. for post hoc “data snooping.”)



Toluca Example (cont’d)

 In the Toluca Data example (CH01TA01), 
suppose we want g = 3 (three) 90% conf. int’s
at Xh = 30, 65, 100.  Here, dfE = 25 – 2 = 23.  

 The Bonfer. point is t(1 – ½{0.10/3}; 23):
> qt( 1-(.10/6), 23 )

2.263728

 The WHS point is {2F(1 – 0.10; 2, 23)}1/2:
> sqrt( 2*qf(.90,2,23) ) 

2.258003

 Since W ≤ B, use the WHS adjusted crit. point.



§4.4: Regression Thru the Origin

 If β0 = 0, the SLR model simplifies to 
E{Yi} = β1Xi (i = 1,...,n).

 The LS estimate of β1 is  b1 = ∑YiXi/∑Xi
2

 The corresp. std. error is 
s{b1} = 

where the MSE now has n–1 df.
 A 1 – α conf. interval for β1 is

b1 ± t(1 – α/2; n–1)s{b1}

MSE/∑Xi
2 



Regression Thru the Origin (cont’d)

For inferences on E{Yh}, use: 

 LS estimator:  Ŷh = b1Xh  

 std. error: s{Ŷh} = |Xh| MSE
∑Xi

2  

 (pointwise) conf. int.:   
    Ŷh ± t(1 – α2; n–1)s{Ŷh}  



Regression Thru the Origin (cont’d)

For prediction of a future Yh(new) at Xh(new), 
use: 

 LS estimator:  Ŷh(new) = b1Xh(new)  

 prediction error:  

    s{pred} = MSE










1 + Xh(new)
2

∑Xi
2  

 (pointwise) prediction int.:   
    Ŷh(new) ± t(1 – α2; n–1)s{pred}  



Warehouse Data (CH04TA02)

 X = work units, Y = variable labor costs.
 Expect E{Y} = 0 when X = 0, so fix β0 = 0:
> CH04TA02.lm = lm(Y ~ X -1 )
> summary( CH04TA02.lm )
Call:
lm(formula = Y ~ X - 1)
Coefficients:
Estimate Std. Error t value Pr(>|t|)

X  4.68527    0.03421   137   <2e-16
> confint(CH04TA02.lm)

2.5 % 97.5 %
X  4.609989  4.760559



Warehouse Data (CH04TA02) (cont’d)

> plot( Y~X, pch=19 )
> abline( lm(Y ~ X-1) ) 



Warehouse Data (CH04TA02) (cont’d)
> plot( resid(lm(Y ~ X-1)) ~ 

predict(lm(Y ~ X-1)) )
> abline( h=0 ) 



§4.6: Inverse Prediction

 We can reverse the prediction effort and 
ask, what value of X produces a given Y?  
This is an inverse prediction problem.
• also called: “inverse regression” or 

“calibration”
 Assume the SLR model: Yi = β0 + β1Xi + εi, 

with εi ~ i.i.d. N(0,σ2).
 Given Yh(new), we want to find the Xh(new) 

that yields this Yh(new).



Inverse Prediction (cont’d)

Clearly, if Ŷh = b0 + b1Xh, we can invert this 

into  X̂h(new) = Yh(new) – b0
b1

   for b1 ≠ 0.   

The prediction error can be found as 

 s{X̂h(new)} = MSE
b1

2  










1 + 1n + (X̂h(new) – 
—
X)2

∑(Xi – 
—
X)2  

from which a 1–α prediction int. is simply  
   X̂h(new) ± t(1 – α2; n–2)s{X̂h(new)} 



§4.7: Optimal Design

 Notice that terms containing the Xi’s, 
such as 

—
X and ∑(Xi – 

—
X)2, appear 

throughout these various expressions.  
If the Xi’s are under control of the 
investigator, we can manipulate these 
quantities. 

 Why?  We might be able to make a std. 
error smaller and hence tighten a conf. 
int. or increase power in an hypoth. test.



Optimal Design (cont’d)

Consider the margin of error on the conf. 
int. for β1:   

  MOE = ± t(1 – α2; n–2)s{b1}  

   = ± t(1 – α2; n–2) MSE
∑i=1

n (Xi – 
—
X)2 

Clearly, as ∑i=1
n (Xi – 

—
X)2  ↑  the MOE  ↓ and 

the conf. int. will get tighter.  



Optimal Design (cont’d)

 So, wherever possible, always try to 
select the spacing and number 
(including replicates) of the Xi’s to 
optimize the conf. int’s and hypoth. 
tests.

 See the exposition on pp. 170-172.




