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Simultaneous Inferences

m (Almost) all of the inferences we’ve
discussed have been Pointwise: they apply
to one and only one outcome:

* one conf. interval on one parameter, or
 one hypoth. test on one parameter

m To make multiple, simultaneous inferences
(hypoth. tests or conf. intervals) on g > 1
parameters or mean responses, we adjust
the tests or conf. regions for the
multiplicity.




Multiplicity & FWER

m Why adjust? If we do not correct for the
multiple inferences, error rates will be
too high ( < contf. levels will be too low).

m When g > 1 inferences are applied to the
same set of data, the Familywise (false
positive) Error Rate, or FWER, is

P[any false positive error(s) among
the g inferences]

m Goal: keep the FWER = a.




Bonferroni’s Inequality

m Our mainstay adjustment is the
(conservative) Bonferroni correction,
based on Bonferroni’s Inequality:

m As in Equation (4.2), for any events A,

P[A " AN "AG21-3,.P[A

m This can be manipulated to place
upper bounds on the FWER, or lower
bounds on the FW conf. level.




Bonferroni’s Inequality (cont’d)

m For instance, suppose A, is ‘nhoncoverage’ of
a parameter 3, and A, is ‘noncoverage’ of
another parameter §3,.

m Then, the complementary events, A,, are
correct ‘coverage.’ Bonferroni tells us that
P[ jointly covering both ] 2
1 — P[noncover B,] — P[noncover 3]
m Say P[noncover f3;] = a. Then
P[ jointly covering both]21-a-a=1 - 2a.
m (So, divide each orig. aby 2toget=21-a.)




Bonferroni Adjustment

Suppose we study the SLR model with
Yi=Bo + B1X; + €. A pointwise conf. int. on
either @3 is

b; £ t(1-2; n-2)s{b}

But from Bonferroni, a FW conf. statement
on both (g = 2) B; parameters is

b+ t(1-%2; n-2)s{b;}
forj=0,1.




Bonferroni Adjustment (cont’d)

m Notice what this does: in effect, it simply
changes the a-value in any critical point
to a/qg.

m Above, g =2, so use b; * Bs{b;}, where

B =t(1-9 n-2)
or, more generally
B = t(1 - 92; n-2)
is the Bonferroni-adjusted critical point




Bonferroni Conf. Intervals on E{Y,}

An important example is with multiple
conf. intervals for the mean response,
E{Y,}, at any set of g > 1 predictor values
X, (h=1,..,9).

Here, the family of (conservative)
simultaneous conf. intervals becomes

?h T BS{?h}

(h =1,...,g9) for B =t(1 - 2{a/g}; n—-2).




Working-Hotelling-Scheffé (WHS)
Intervals on E{Y,}

m We can alternatively apply the WHS conf. band
to build multiple conf. intervals for the mean
response, E{Y,}, at any set of g >1 predictor
values X, (h =1,...,9).

m The family of (conservative) simultaneous conf.

intervals is
/\

Y, + Ws{Y}
where the WHS-adjusted critical point is based
on W? = 2F(1 — a; 2, n-2).




WHS or Bonferroni?

m For any set of g > 1 predictor values X,
(h =1,...,9), both the B and W crit. points are
valid, if conservative.

m So, use the WHS value if W £ B, and use
Bonferroni if B <W.

m Notice: The WHS is exact for all X-values. So,
it can be used for post hoc intervals on E{Y,}
at any finite collection of X, ’s. (It is the only
valid conf. int. for post hoc “data snooping.”)




Toluca Example (cont’d)

m In the Toluca Data example (CHO1TAO01),
suppose we want g = 3 (three) 90% conf. int’s
at X, =30, 65, 100. Here, dfz =25 -2 = 23.

m The Bonfer. point is t(1 — 2{0.10/3}; 23):

> gt 1-(.10/6), 23 )
2.263728

m The WHS point is {2F(1 - 0.10; 2, 23)}"2:

> sqrt( 2*qf(.90,2,23) )
2.258003

m Since W = B, use the WHS adjusted crit. point.




§4.4: Regression Thru the Origin

m If B, = 0, the SLR model simplifies to
E{Y.} =B,X (i=1,...,n).

m The LS estimate of B,is b, =) Y.X/> X2
m The corresp. std. error is

s{b,} =~ MSE/Y X
where the MSE now has n-1 df.

m A1-aconf. interval for 3, Is
b, (1 - a/2; n-1)s{b,}




Regression Thru the Origin (cont’d)

For inferences on E{Y,}, use:

. LS estimator: ?h = b X,
MSE

. std. error: s{Ys} = |Xi| T X2

. (pointwise) conf. int.:
Yn £ t(1-2; n—1)s{Yy}




Regression Thru the Origin (cont’d)

For prediction of a future Yyhew) at Xnnew);
use:

. LS estimator: ?h(new) = b1 Xn(new)

. prediction error:

s{pred} = V MSE[1 +

. (pointwise) prediction int.:
Yhinew £ t(1—%; n—1)s{pred}




Warehouse Data (CHO04TAO02)

m X = work units, Y = variable labor costs.
m Expect E{Y} = 0 when X =0, so fix 3, = 0:

> CHO4TAO2.Im = Im(Y ~ X (-1))
> summary( CHO4TAO2.1Im )

Call:

Im(formula = Y ~ X - 1)
Coefficients:

Estimate Std. Error t value Pr(|t])
X 4.68527 0.03421 137 <2e-16

> confint(CHO4TAO2. Im)
2.5 % 97.5 %

X 4.609989 4.760559




Warehouse Data (CH04TAO02) (cont’'d)

> plot( Y~-X, pch=19 )
> abline( Im(Y -~ X-1) )




Warehouse Data (CH04TAO02) (cont’'d)

> plot( resid(Im(Y ~ X-1)) ~
predict(Im(Y ~ X-1)) )
> abline( h=0 )




§4.6: Inverse Prediction

m We can reverse the prediction effort and
ask, what value of X produces a given Y?
This is an inverse prediction problem.

 also called: “inverse regression” or
“calibration”

m Assume the SLR model: Y; =3, + B, X, + €,
with g ~ i.i.d. N(0,0?).

m Given Y, .., We want to find the X, ..,
that yields this Yh(new).




Inverse Prediction (cont’d)

Clearly, if ?h = by + b1 X;,, we can invert this

into Xh(new) — Yh(nelvav: — bo for b1 # 0.

The prediction error can be found as

~ MSE 1 X new) ~ i 2
s{Xnnew} =\ | p.2 [1 + o+ (Xngnew) = 2)
1 2 (Xi— X)

from which a 1-a prediction int. is simply
Xh(new) — t(1 — 5, N 2)S{Xh(new)}




§4.7: Optimal Design

m Notice that terms containing the X;’s,
such as X and 3 (X;- X)?, appear
throughout these various expressions.
If the Xi’s are under control of the
investigator, we can manipulate these
quantities.

Why? We might be able to make a std.
error smaller and hence tighten a conf.
int. or increase power in an hypoth. test.




Optimal Design (cont’d)

Consider the margin of error on the contf.
int. for B4:

MOE = % t(1-<; n—2)s{b+}

=+ t(1-¢; n— 2)\/ ?:(?E)_()Z
|1 =

Clearly, as 3..,(X;— X)° T the MOE | and
the conf. int. will get tighter.




Optimal Design (cont’d)

m So, wherever possible, always try to
select the spacing and number
(including replicates) of the X.’s to
optimize the conf. int’s and hypoth.
tests.

m See the exposition on pp. 170-172.






