

STAT 571A — Advanced Statistical Regression Analysis

<u>Chapter 4 NOTES</u> Simultaneous Inferences and Other Topics

© 201+ University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, photoreproduction, recording, or scanning — without the prior written consent of the course instructor.

Simultaneous Inferences

- (Almost) all of the inferences we've discussed have been Pointwise: they apply to one and only one outcome:
 - one conf. interval on one parameter, or
 - one hypoth. test on one parameter
- To make <u>multiple</u>, <u>simultaneous</u> inferences (hypoth. tests or conf. intervals) on g > 1 parameters or mean responses, we adjust the tests or conf. regions for the multiplicity.

Multiplicity & FWER

- Why adjust? If we do not correct for the multiple inferences, error rates will be too high (\(\Leftarrow conf. levels will be too low).
- When g > 1 inferences are applied to the same set of data, the Familywise (false positive) Error Rate, or FWER, is

P[any false positive error(s) among the g inferences]

Goal: keep the FWER $\leq \alpha$.

Bonferroni's Inequality

- Our mainstay adjustment is the (conservative) Bonferroni correction, based on Bonferroni's Inequality:
- As in Equation (4.2), for any events A_k , $P[\overline{A}_1 \cap \overline{A}_2 \cap \cdots \cap \overline{A}_g] \ge 1 - \Sigma_{k=1}^g P[A_k]$
- This can be manipulated to place upper bounds on the FWER, or lower bounds on the FW conf. level.

Bonferroni's Inequality (cont'd)

- For instance, suppose A₁ is 'noncoverage' of a parameter β₀ and A₂ is 'noncoverage' of another parameter β₁.
- Then, the complementary events, A
 ^k, are correct 'coverage.' Bonferroni tells us that P[jointly covering both] ≥
 1 P[noncover β₀] P[noncover β₁]
- Say P[noncover β_j] = α . Then P[jointly covering both] ≥ 1 - α - α = 1 - 2 α .
- (So, divide each orig. α by 2 to get $\geq 1 \alpha$.)

Bonferroni Adjustment

Suppose we study the SLR model with $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$. A pointwise conf. int. on either β_i is

$$b_j \pm t(1 - \frac{\alpha}{2}; n-2)s\{b_j\}$$

But from Bonferroni, a FW conf. statement on both (g = 2) β_j parameters is

$$b_j \pm t(1 - \frac{(\alpha/2)}{2}; n-2)s\{b_j\}$$

for j = 0,1.

Bonferroni Adjustment (cont'd)

- Notice what this does: in effect, it simply changes the α-value in any critical point to α/g.
- Above, g = 2, so use $b_j \pm Bs\{b_j\}$, where B = t(1 - $\frac{\alpha}{4}$; n-2)

or, more generally

B = t(1 -
$$\frac{(\alpha/g)}{2}$$
; n-2)

is the Bonferroni-adjusted critical point

Bonferroni Conf. Intervals on E{Y_h}

An important example is with multiple conf. intervals for the mean response, $E{Y_h}$, at any set of g > 1 predictor values X_h (h = 1,...,g).

Here, the family of (conservative) simultaneous conf. intervals becomes $\hat{Y}_h \pm Bs\{\hat{Y}_h\}$

(h = 1,...,g) for B = t(1 - $\frac{1}{2} \{ \frac{\alpha}{g} \}; n-2 \}$.

Working-Hotelling-Scheffé (WHS) Intervals on E{Y_h}

- We can alternatively apply the WHS conf. band to build multiple conf. intervals for the mean response, E{Y_h}, at any set of g >1 predictor values X_h (h = 1,...,g).
- The family of (conservative) simultaneous conf. intervals is

 $\hat{\mathbf{Y}}_{h} \pm \mathbf{W} \mathbf{s} \{ \hat{\mathbf{Y}}_{h} \}$

where the WHS-adjusted critical point is based on $W^2 = 2F(1 - \alpha; 2, n-2)$.

WHS or Bonferroni?

- For any set of g > 1 predictor values X_h (h = 1,...,g), both the B and W crit. points are valid, if conservative.
- So, use the WHS value if W ≤ B, and use Bonferroni if B < W.
- Notice: The WHS is <u>exact</u> for all X-values. So, it can be used for post hoc intervals on E{Y_h} at any finite collection of X_h's. (It is the <u>only</u> valid conf. int. for post hoc "data snooping.")

Toluca Example (cont'd)

- In the Toluca Data example (CH01TA01), suppose we want g = 3 (three) 90% conf. int's at X_h = 30, 65, 100. Here, df_E = 25 - 2 = 23.
- The Bonfer. point is t(1 ½{0.10/3}; 23):
 - > qt(1-(.10/6), 23)
 2.263728
- The WHS point is {2F(1 0.10; 2, 23)}^{1/2}:
 - > sqrt(2*qf(.90,2,23))
 2.258003

■ Since W ≤ B, use the WHS adjusted crit. point.

§4.4: Regression Thru the Origin

- If $\beta_0 = 0$, the SLR model simplifies to E{Y_i} = $\beta_1 X_i$ (i = 1,...,n).
- The LS estimate of β_1 is $b_1 = \sum Y_i X_i / \sum X_i^2$
- The corresp. std. error is

$$s{b_1} = \sqrt{MSE/\sum_i^2}$$

where the MSE now has n-1 df.

Regression Thru the Origin (cont'd)

For inferences on E{Y_h}, use:

• LS estimator: $\hat{\mathbf{Y}}_{h} = \mathbf{b}_{1}\mathbf{X}_{h}$

• std. error: s{
$$\hat{\mathbf{Y}}_{h}$$
} = $|\mathbf{X}_{h}| / \frac{MSE}{\sum X_{i}^{2}}$

Regression Thru the Origin (cont'd) For prediction of a future $Y_{h(new)}$ at $X_{h(new)}$, use:

- LS estimator: $\hat{\mathbf{Y}}_{h(new)} = \mathbf{b}_1 \mathbf{X}_{h(new)}$
- prediction error:

s{pred} =
$$\sqrt{MSE\left(1 + \frac{X_{h(new)}^2}{\sum X_i^2}\right)}$$

• (pointwise) prediction int.: $\hat{Y}_{h(new)} \pm t(1 - \frac{\alpha}{2}; n-1)s\{pred\}$

Warehouse Data (CH04TA02)

- X = work units, Y = variable labor costs.
- Expect E{Y} = 0 when X = 0, so fix $\beta_0 = 0$:
 - > CH04TA02.lm = lm(Y ~ X 1)

Warehouse Data (CH04TA02) (cont'd)

- > plot(Y~X, pch=19)
- > abline(lm(Y ~ X-1))

Х

§4.6: Inverse Prediction

- We can <u>reverse</u> the prediction effort and ask, what value of X produces a given Y? This is an inverse prediction problem.
 - also called: "inverse regression" or "calibration"
- Assume the SLR model: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, with $\epsilon_i \sim i.i.d. N(0, \sigma^2)$.
- Given Y_{h(new)}, we want to find the X_{h(new)} that yields this Y_{h(new)}.

Inverse Prediction (cont'd)

Clearly, if $\hat{Y}_h = b_0 + b_1 X_h$, we can invert this into $\hat{X}_{h(new)} = \frac{Y_{h(new)} - b_0}{b_1}$ for $b_1 \neq 0$.

The prediction error can be found as

$$s\{\hat{X}_{h(new)}\} = \sqrt{\frac{MSE}{b_1^2}} \left(1 + \frac{1}{n} + \frac{(\hat{X}_{h(new)} - \overline{X})^2}{\sum(X_i - \overline{X})^2}\right)$$

from which a 1– α prediction int. is simply $\hat{X}_{h(new)} \pm t(1 - \frac{\alpha}{2}; n-2)s{\hat{X}_{h(new)}}$

§4.7: Optimal Design

- Notice that terms containing the X_i's, such as X̄ and ∑(X_i X̄)², appear throughout these various expressions. If the X_i's are under control of the investigator, we can manipulate these quantities.
- Why? We might be able to make a std. error smaller and hence tighten a conf. int. or increase power in an hypoth. test.

Optimal Design (cont'd)

Consider the margin of error on the conf. int. for β_1 :

$$MOE = \pm t(1 - \frac{\alpha}{2}; n-2)s\{b_1\}$$
$$= \pm t(1 - \frac{\alpha}{2}; n-2)\sqrt{\frac{MSE}{\sum_{i=1}^{n}(X_i - \overline{X})^2}}$$

Clearly, as $\sum_{i=1}^{n} (X_i - \overline{X})^2 \uparrow$ the MOE \downarrow and the conf. int. will get tighter.

Optimal Design (cont'd)

So, wherever possible, always try to select the spacing and number (including replicates) of the X_i's to optimize the conf. int's and hypoth. tests.

See the exposition on pp. 170-172.