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Introduction to Matrices

By appealing to matrix notation & matrix
algebra, linear regression models become
far more compact.

Recall that a matrix is an rxc rectangular
a1 A2 ... Aqc

A= 3521 3522 aizc

array:

- ar1 ar2 mam arc -

(where order is important!)

Shorthand notation: A = [a;]




Types of Matrices/Vectors

For A = [a;]:
e ifr=c, A,,, Is a Square Matrix
ifc=1, A4 Is a Column Vector
e ifr=1, A;,. iIs a Row Vector

The transpose of a matrix switches the rows
and columns. Notation: A’ =[a;]. E.g., if

2
7 | then ar=[2 103
3




More on Matrices

m Two matrices A and B are equal if
(a) they have the same dimensions (rxc),
and
(b) a; = by

m [f a matrix is made up of random

variables Y;;, then the expected value of

Y =[Y;] is taken elementwise:
E{Y}=[E{Y;}]




§5.2: Matrix Form of SLR Model

We add/subtract matrices and vectors
elementwise (if they have the same
dimensions): cA +dB =[ ca; + db; ]

With this, a matrix formulation of the SLR
model takes

E[Y4]

, E{Y}= E[=Y2]

CE[Y.].
such that Y = E{Y} +e€.




§5.3: Matrix Multiplication

Multiplication for matrices is trickier: it’s
an operation first across rows, then down
columns.

For Aix. =[a;] and Bcxg = [b.,] the rxd
product AB is (AB)ixq = [ 2,- @by 1.

(and, BA doesn’t exist unless r=d).

See various examples on pp. 182-184.




The X'X Matrix

10X C
1 X

Let X = be the design matrix of

10X,
the SLR. We will find the following matrix
to be useful:

1 Xy ] -
1 1 ... } 1 X,

n in_
XX={X1 X, ... X

X YX

1 X,




Matrix Products

1 1 ... 1}
X1 X, ... X,

X’Y={




Special Matrices

If Arxr Is square such that a;; = 0 for all 17,
we call it a diagonal matrix.
Notation: A, = diag{ais,az2,...,an}

If A<, is square and diagonal such that

a;; =1 for all I, we denote it as
1 0 ... 0
o1 ... 0

00 ... 1
and call it the Identity Matrix.




Special Matrices (cont’d)

m For the identity matrix I,
ALd. = 1TA,.. = A

rXc"C r 'rxc rxc’

if the products exist (“conformable”).

m Some other special matrices/vectors:

1[’"1 = 2 P OI’"1 = PP \]rxr — 11’ =




§5.5: Rank of a Matrix

Suppose a matrix Ais partitioned into
its constituent columns: A =[C; C, " C.],
where C,, Is the mth col. vector.

Now, if there exist constants k,, # 0 such

that the vector sum 3 _.knCm =0, we
say the columns of A are linearly
dependent.

If not, the col’s are linearly independent.

(See example on. p. 188.)




Rank (cont’d)

m Def’n: The Rank of a matrix is the
(maximum) number of linearly indepen-
dent columns the matrix possesses.
Notation: rank(A)

m (Can do this with linearly independent
rows, instead. The rank will not change.)

m Notice that rank(A,..) £ min{r, c}




§5.6: Inverse of a Matrix

m The Inverse of a square rxr matrix A is
another rxr matrix A-1 that satisfies
ATTA=AAT =,

m A-1 can only exist if rank(A ) =r.

m Direct calculation of A-'is usually tedious.
See pp. 190-191.

m A special case: for A = diag{a,,..-,a,.},
A-1=diag{1/a,,,...,1/a.}.




Inverses (cont’d)

A useful, special case of an inverse matrix:
) n ZX, |
L SXi IX
1 X2 —X

TSXXP S(XX)

for X'X =

(X'X)™" =

-X 1
L I (XX > (X—X)?




Inverses (cont’d)

m Since matrix multiplication is order-
sensitive, we can’t be cavalier with the
algebra.

m E.g., suppose A1 exists and we have the
relationship AY = C.

m Then (pre-multiply by A-'): A-1AY = A-1C.
But since A-TA =1 we find Y = A-1C.

m But, CA-' doesn’t necess. make sense!




§5.7: Matrix Relations

(Assuming all products/inverses exist:)

A+B=B+A (A+B)+C=A+(B+C)
(AB)C = A(BC) C(A+B)=CA +CB
k(A+B)=kA+kB (A" =

(A+B)=A"+B (AB)' = B'A’

(ABC)’ = C'B'A’ (AB)-1= B-1A-1
(A=A (A= (ATT)




§5.8: Covariance Matrix

We saw that for Y' =[Y; Y, ... Y,],
the mean vector is E{Y} =[ E{Y} ].

We also have
the variance-covariance matrix of Y

dsS
I 02{Y1} o{Y1,Y2} ... o{Y4,Yn} |

IV ICARD o*{Yz} ... o{Y2,Yn}

I o{Y:,,Y1} G{Y:,,Yz} oz{'Y,,} _




Covariance Matrix (cont’d)

IfFY' =[Y,Y,5...Y, ]ix, IS random but
A, «, has only fixed (nonrandom)
elements, then

« E{A}=A

« E{AY} = AE{Y}

« and o2{AY} = A(c2{YDA'




Multivariate Normal Dist’'n

With this notation, we can extend the
bivariate normal dist’n from §2.11 into a
p-dimensional multivariate normal dist’n.

The p*1 mean vector is

E{Y}=mn=[M1 ... upl'.

The pxp covariance matrix is
g _

(0 0'1% ... Oqp
2 0} (o) e O
qvy=3=| % % ¢ %

2
| o.p1 C'pz maw o.p

Notation: Y ~Nj(p,2).




§5.9: Matrix Formulation of SLR

Putting all this together, the SLR model
has a compact matrix formulation.

Y] - E[Yq]
L Emy=| H
v, CE[Y,].

1OXC
1 X5

Recall Y x1 =

Now, let By = { 2 |

1 X,




SLR Formulation (cont’d)

With these, the SLR model in matrix terms
Is simply

Ynxt = Xnx2PBax1 + €nx1

where e ~ N,(0,0°1).
(Compact, eh?)

Notice that since E{e} = 0, E{Y} = X.




§5.10: LS Estimation

Moreover, the LS normal equations can
be written simply as

(X'X)b = X'Y,

for b =[ E‘: }

The solution for b is clearly
b = (X'X)"'X"Y

whenever (X’'X)™ exists.




§5.11: Hat Matrix

We can also wrlte the fltted values in
matrlx form. LetY = [Y1 n]’ so that
= Xb. But, this is

= Xb = X(X’X)"'X'Y = HY

for H = X(X'X)"X'.
We call H the hat matrix.

(This reminds us that Y is a linear combin-
ation of the Y;’s.)

Note that H? = H (“idempotent”) and
H' = H (symmetric).




Residual Vector

From this, the residual vector is

e=[e]=Y =Y =Y-=HY=(l-H)Y.
Here again, (I - H)’=1-H and

(1=H) =1-H.

We can show o*{e} = (I — H)o>
Estimate this matrix via
s?{e} = (I — H)xMSE.




§5.12: ANOVA

The ANOVA components may also be
written in matrix form. Recall Y'Y = Y.
Then

SSTO = (Y, -Y) = Y'Y -1y
=YY =YY = (Y1-Y)Y
= Y'(1-1)Y

The SSE is a little trickier... —




ANOVA decomposition (cont’d)

We know SSE = (Y, - Y)? = Y'Y - b'X'Y
But, recall that b’ = [(X'X)™"' XYY’

= Y'(X')[(X'X)7T

= Y'X[(X'X)T"

= Y'X[X'X]”
Now use this D’ in the expression for SSE:
SSE = Y'Y — b'X'Y = Y'Y = (Y'X[X'X])X"Y
= Y'IY = Y'X[X'XT'X'Y

cont'd —




ANOVA decomposition (cont’d)

SSE = = Y'IY = Y'X[X'X]'X'Y
= (Y'l = Y'X[X'X]'X)Y
= Y'(1 = X[X'X]'X")Y
But notice that X[X'X] "X’ = H (the ‘hat

matrix’), so we find SSE =Y'(l - H)Y

Lastly,

SSR = (by subtraction) = SSTO — SSE
== p'X'Y =2YJY = Y'(H=-J)Y




Quadratic Forms

Notice that each SS expresses in the form
Y'AY for some symmetric matrix A. This is
a number and Is given a special name: a
quadratic form:

Y'AY = zin=12jn=1 ainin.

A is the “matrix of the quadratic form.”

It is common for SS terms to appear as
quadratic forms.




§5.13: Estimation

With b = (X’X)™'X"Y we can show (pp. 207-208)
that o*{b} = (X'X)'o®. Estimate this via

s?{b} = MSE(X'X)™".
To estimate E{Y} = Bo + B1X;, let X, ={ 1 }

Xn
Then E{Y,} = Xi'B. The point estimator
becomes Y}, = Xn'b, with
o2{Y} = 02X, (X' X) "X,
and estimated std. error
s{Y:} = \|MSExX;,'(X"X)™"Xp, .




Prediction

Or, for predicting a new observation,
Yh(new)s at Xh(new); let

1
Xh(new) = { }

Xh(new)
Then
?h(new) = Xhnew)D
with
s{pred} = VMSEH + X;l(new)(xlx)_1xh(new)] -




Matrix Calculations in R

m In R, matrix operations are straightforward
(once you know the syntax).

m An nx1 vector Y is entered as
> Y =c(yl, y2, ..., yn)

m An nx2 matrix X is entered as

> X = matrix( c(x11, x21, ..., xnl, x12,
X22, ..., Xn2),
ncol=2, byrow=F )

m The nx1 vector of ones (for known n) is
> OneVec = rep(l,n)




Matrix Calculations in R (cont’d)

m X', the transpose of X, is simply
> t(X)
m Multiply two (conformable) matrices or
vectors with the operator %*%. So, X'Y is
> T(X)%* %Y
It’s also: crossprod(X,Y).
m Invert a (square!) matrix A with solve(A).
So, e.g., (X’X) XY is
> solve(tCX)%*%X)%*%t(X)%*%Y




