
STAT 571A — Advanced Statistical 
Regression Analysis

Chapter 5 NOTES
Matrix Approach
to SLR Analysis

© 2017 University of Arizona Statistics GIDP.  All rights reserved, except where previous rights exist.  No part of this material may 
be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, 
photoreproduction, recording, or scanning — without the prior written consent of the course instructor.



Introduction to Matrices
By appealing to matrix notation & matrix 
algebra, linear regression models become 
far more compact. 
Recall that a matrix is an r×c rectangular 

array:  A = 










a11 a12 … a1c

a21 a22 … a2c
⁞ ⁞ ⁞ ⁞

ar1 ar2 … arc

  

(where order is important!) 

Shorthand notation: A = [aij] 



Types of Matrices/Vectors

For Ar×c = [aij]: 
• if r = c, Ar×r is a Square Matrix 
• if c = 1, Ar×1 is a Column Vector
• if r = 1, A1×c is a Row Vector

The transpose of a matrix switches the rows 
and columns.  Notation: A = [aji].  E.g., if

A = 








2 5
10 7
3 4

  then  A = 






2 10 3

5 7 4



More on Matrices

 Two matrices A and B are equal if 
(a) they have the same dimensions (r×c), 
and
(b) aij = bij.

 If a matrix is made up of random 
variables Yij, then the expected value of 
Y = [Yij] is taken elementwise: 

E{Y} = [ E{Yij} ] 



§5.2: Matrix Form of SLR Model

We add/subtract matrices and vectors 
elementwise (if they have the same 
dimensions):  cA + dB = [ caij + dbij ] 
With this, a matrix formulation of the SLR 
model takes 

  Y = 










Y1

Y2
⁞

Yn

,   E{Y} = 










E[Y1]

E[Y2]
⁞

E[Yn]
,   � = 











ε1

ε2
⁞
εn

 

such that   Y = E{Y} + �. 



§5.3: Matrix Multiplication

Multiplication for matrices is trickier: it’s 
an operation first across rows, then down 
columns. 

For Ar×c = [aij]  and  Bc×d = [bij], the r×d 
product AB is  (AB)r×d = [ ∑k=1

c aikbkj ].  
(and, BA doesn’t exist unless r=d). 

See various examples on pp. 182-184. 



The XX Matrix

Let  X = 










1 X1

1 X2
⁞ ⁞
1 Xn

  be the design matrix of 

the SLR.  We will find the following matrix 
to be useful: 

XX = 






1 1 … 1

X1 X2 … Xn
 











1 X1

1 X2
⁞ ⁞
1 Xn

 = 






n ∑Xi

∑Xi ∑Xi
2 . 



Matrix Products

Also,  

XY = 






1 1 … 1

X1 X2 … Xn
 











Y1

Y2
⁞

Yn

 = 






∑Yi

∑XiYi
 

and 

YY =  
Y1 Y2 … Yn  











Y1

Y2
⁞

Yn

 = ∑Yi
2 



Special Matrices
If Ar×r is square such that  aij = 0 for all i≠j, 
we call it a diagonal matrix.   
Notation: Ar×r = diag{a11,a22,…,arr}  

If Ar×r is square and diagonal such that  
aii = 1 for all i, we denote it as 

   Ir =  










1 0 … 0

0 1 … 0
⁞ ⁞ ⁞ ⁞
0 0 … 1

 

and call it the Identity Matrix. 



Special Matrices (cont’d)

 For the identity matrix I, 
Ar×cIc = IrAr×c = Ar×c,  

if the products exist (“conformable”).

 Some other special matrices/vectors:

1r×1 =  








1
1
⁞
1

, 0r×1 =  








0
0
⁞
0

,  Jr×r = 11 =  








1 1 … 1
1 1 … 1
⁞ ⁞ ⁞ ⁞
1 1 … 1

 



§5.5: Rank of a Matrix

Suppose a matrix A is partitioned into 
its constituent columns: A = [C1 C2 … Cc], 
where Cm is the mth col. vector. 
Now, if there exist constants km ≠ 0 such 
that the vector sum ∑m=1

c kmCm = 0,  we 
say the columns of A are linearly 
dependent.   
If not, the col’s  are linearly independent.

(See example on. p. 188.) 



Rank (cont’d)

 Def’n:  The Rank of a matrix is the 
(maximum) number of linearly indepen-
dent columns the matrix possesses.
Notation:  rank(A)

 (Can do this with linearly independent 
rows, instead.  The rank will not change.)

 Notice that rank(Ar×c) ≤ min{r, c}



§5.6: Inverse of a Matrix

 The Inverse of a square r×r matrix A is 
another r×r matrix A–1 that satisfies 

A–1A = AA–1 = Ir

 A–1 can only exist if rank(Ar×r) = r.
 Direct calculation of A–1 is usually tedious.  

See pp. 190-191.
 A special case: for A = diag{a11,…,arr}, 

A–1 = diag{1/a11,…,1/arr}. 



Inverses (cont’d)

A useful, special case of an inverse matrix: 

for     XX = 






n ∑Xi

∑Xi ∑Xi
2 , 

  (XX)–1 = 













1

n + 
—
X2

∑(Xi–
—
X)2

– 
—
X

∑(Xi–
—
X)

– 
—
X

∑(Xi–
—
X)

1
∑(Xi–

—
X)2

 . 



Inverses (cont’d)

 Since matrix multiplication is order-
sensitive, we can’t be cavalier with the 
algebra.

 E.g., suppose A–1 exists and we have the 
relationship AY = C.

 Then (pre-multiply by A–1):  A–1AY = A–1C.  
But since A–1A = I we find  Y = A–1C.

 But, CA–1 doesn’t necess. make sense!



§5.7: Matrix Relations

(Assuming all products/inverses exist:)

A + B = B + A (A + B) + C = A + (B + C)
(AB)C = A(BC) C(A + B) = CA + CB
k(A + B) = kA + kB (A) = A
(A + B) = A + B (AB) = BA
(ABC) = CBA (AB)–1 = B–1A–1

(A–1)–1 = A (A)–1 = (A–1)



§5.8: Covariance Matrix

We saw that for Y =  
Y1 Y2 … Yn ,  

the mean vector is E{Y} = [ E{Yi} ]. 

We also have  
the variance-covariance matrix of Y  
as 

�2{Y} = 










σ2{Y1} σ{Y1‚Y2} … σ{Y1‚Yn}

σ{Y2‚Y1} σ2{Y2} … σ{Y2‚Yn}
⁞ ⁞ ⁞ ⁞

σ{Yn‚Y1} σ{Yn‚Y2} … σ2{Yn}
 



Covariance Matrix (cont’d)

If Y = [ Y1 Y2 ... Yn ]1×n is random but 
An×n has only fixed (nonrandom) 
elements, then

• E{A} = A
• E{AY} = AE{Y}
• and �2{AY} = A(�2{Y})A



Multivariate Normal Dist’n
With this notation, we can extend the 
bivariate normal dist’n from §2.11 into a  
p-dimensional multivariate normal dist’n. 
The p×1 mean vector is  
   E{Y} = � = [μ1 … μp]. 
The p×p covariance matrix is  

 �2{Y} = � =  










σ1

2 σ12 … σ1p
σ21 σ2

2 … σ2p
⁞ ⁞ ⁞ ⁞
σp1 σp2 … σp

2

 

Notation:  Y ~ Np(�,�). 



§5.9: Matrix Formulation of SLR

Putting all this together, the SLR model 
has a compact matrix formulation. 

Recall  Yn×1 = 










Y1

Y2
⁞

Yn

,  E{Y} = 










E[Y1]

E[Y2]
⁞

E[Yn]
,  � = 











ε1

ε2
⁞
εn

and   Xn×2 = 










1 X1

1 X2
⁞ ⁞
1 Xn

.    Now, let  �2×1 = 






β0

β1
.



SLR Formulation (cont’d)

With these, the SLR model in matrix terms 
is simply 

   Yn×1 = Xn×2�2×1 + �n×1  

where  � ~ Nn(0,σ2I).     
(Compact, eh?) 
 
Notice that since E{�} = 0, E{Y} = X�. 



§5.10: LS Estimation

Moreover, the LS normal equations can  
be written simply as   

    (XX)b = XY, 

for b = 






b0

b1
.   

The solution for b is clearly 
    b = (XX)–1XY  
 whenever (XX)–1 exists. 



§5.11: Hat Matrix
We can also write the fitted values in 
matrix form.  Let Ŷ = [Ŷ1 … Ŷn] so that  
Ŷ = Xb.  But, this is 
  Ŷ = Xb = X(XX)–1XY = HY  
for H = X(XX)–1X.  
   We call H the hat matrix. 
(This reminds us that Ŷ is a linear combin-
ation of the Yi’s.) 
Note that H2 = H (“idempotent”) and  
H = H (symmetric). 



Residual Vector

From this, the residual vector is 
    e = [ei] = Y – Ŷ = Y – HY = (I – H)Y. 
Here again, (I – H)2 = I – H  and  
(I – H) = I – H. 
 
We can show �2{e} = (I – H)σ2.  
Estimate this matrix via  
    s2{e} = (I – H)×MSE. 



§5.12: ANOVA

The ANOVA components may also be 
written in matrix form.  Recall YY = ∑Yi

2.  
Then 
SSTO = ∑(Yi – 

—
Y)2  =   YY – 1nYJY 

 = YIY – Y




1

nJ Y =  (YI – Y1nJ)Y 
 =  Y(I – 1nJ)Y 
 
The SSE is a little trickier... →



ANOVA decomposition (cont’d)

We know SSE = ∑(Yi – Ŷi)2  = YY – bXY 

But, recall that b = [(XX)–1XY]  
      = Y(X)[(XX)–1] 
      = YX[(XX)]–1 
      =  YX[XX]–1 
Now use this b in the expression for SSE:
SSE = YY – bXY = YY – (YX[XX]–1)XY  
 = YIY – YX[XX]–1XY 
      cont’d →



ANOVA decomposition (cont’d)

SSE =  = YIY – YX[XX]–1XY 
 = (YI – YX[XX]–1X)Y 
 = Y(I – X[XX]–1X)Y 
But notice that X[XX]–1X = H (the ‘hat 
matrix’), so we find   SSE = Y(I – H)Y 

Lastly,  
SSR = (by subtraction) = SSTO – SSE  
 =  = bXY – 1nYJY  =  Y(H – 1nJ)Y 



Quadratic Forms
Notice that each SS expresses in the form 
YAY  for some symmetric matrix A.  This is  
a number and is given a special name: a 
quadratic form:   
    YAY = ∑i=1

n
∑j=1

n
 aijYiYj. 

 
A is the “matrix of the quadratic form.” 
 
It is common for SS terms to appear as 
quadratic forms. 



§5.13: Estimation
With b = (XX)–1XY we can show (pp. 207-208) 
that �2{b} = (XX)–1σ2.  Estimate this via  
   s2{b} = MSE(XX)–1. 
To estimate E{Yh} = β0 + β1Xh, let Xh = 







1

Xh
. 

Then E{Yh} =  Xh�.  The point estimator 
becomes Ŷh = Xhb, with  
   σ2{Ŷh} = σ2Xh(XX)–1Xh 
and estimated std. error 
 s{Ŷh} = MSE×Xh(XX)–1Xh . 



Prediction

Or, for predicting a new observation,  
Ŷh(new), at Xh(new), let  
   Xh(new) = 







1

Xh(new)
. 

Then  
   Ŷh(new) = Xh(new) b,  
with 
s{pred} = MSE




1 + Xh(new) (X′X)–1Xh(new)  . 



Matrix Calculations in R
 In R, matrix operations are straightforward 

(once you know the syntax).
 An n×1 vector Y is entered as
> Y = c(y1, y2, ..., yn)

 An n×2  matrix X is entered as
> X = matrix( c(x11, x21, ..., xn1, x12,

x22, ..., xn2),
ncol=2, byrow=F )

 The n×1 vector of ones (for known n) is 
> OneVec = rep(1,n)



Matrix Calculations in R  (cont’d)

 X, the transpose of X, is simply
> t(X)

 Multiply two (conformable) matrices or 
vectors with the operator  %*%.  So, XY is 
> t(X)%*%Y

It’s also: crossprod(X,Y).
 Invert a (square!) matrix A with solve(A).  

So, e.g., (XX)–1XY is
> solve(t(X)%*%X)%*%t(X)%*%Y


