

STAT 571A — Advanced Statistical Regression Analysis

<u>Chapter 6 NOTES</u> Multiple Regression – I

© 2017 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, photoreproduction, recording, or scanning — without the prior written consent of the course instructor.

Multiple Linear Regression Model

If p-1 > 1 predictor variables are under study, we expand the SLR model into a ("first-order") Multiple Linear Regression (MLR) model:

 $Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{p-1}X_{i,p-1} + \varepsilon_{i}$ where $\varepsilon_{i} \sim i.i.d.N(0,\sigma^{2})$; i = 1,..., n.

• One can also write this as $Y_i = \beta_0 X_{i0} + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$, where $X_{i0} \equiv 1$.

MLR with p=3

- For instance take the case of p = 3 (two predictors): E{Y_i} = β₀ + β₁X_{i1} + β₂X_{i2}
- This is a plane in 3-D space (see Fig. 6.1).

MLR with p=3 (cont'd)

- Two predictors: $E{Y_i} = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}$
- Interpret the β_k s as:
 - β_1 is change in E{Y} for unit change in X₁, when all other X_k's (here, just X₂) <u>are held</u> <u>fixed</u>.
 - β_2 is change in E{Y} for unit change in X₂, when all other X_k's (here, just X₁) <u>are held</u> <u>fixed</u>.
 - β_0 is the "Y-intercept," as before.

Special MLR Models

- If one (or more) of the X_k's is an indicator (=0 or =1), E{Y} has a simplified interpretation. See equ. (6.10).
- If X_k = X^k, this is a polynomial regression (discussed in §8.1).
- Say X₁ and X₂ interact in how they affect E{Y}. Then we include a second-order interaction term: E{Y_i} = β₀ + β₁X_{i1} + β₂X_{i2} + β₃X_{i1}X_{i2}

Response Surface Model

We combine the second-order polynomial with second-order interactions to create a response surface model:

$$E\{Y_{i}\} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i1}^{2} + \beta_{3}X_{i2} + \beta_{4}X_{i2}^{2} + \beta_{5}X_{i1}X_{i2}$$

 (Why is this "linear"? Because all the β_k's enter into E{Y} at first-order!)

Response Surface (cont'd)

The second-order response surface model produces a smoothly arcing surface in 3-D space.

§6.2: MLR Matrix Formulation

The MLR model (with any p - 1 > 1) is a straightforward extension of SLR, so the matrix equations are of essentially identical form.

Recall
$$Y_{n\times 1} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$$
, $E\{Y\} = \begin{bmatrix} E[Y_1] \\ E[Y_2] \\ \vdots \\ E[Y_n] \end{bmatrix}$, $\epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$
and now take $X_{n\times p} = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \dots & X_{2,p-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \dots & X_{n,p-1} \end{bmatrix}$

Matrix Formulation (cont'd)

If we let
$$\beta_{p\times 1} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix}$$
, we can write

the MLR model as a matrix expression:

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$$

where $\epsilon \sim N_n(0,\sigma^2 I)$.

The mean response vector is E{Y} = X β and the covariance matrix is σ^2 {Y} = σ^2 I.

§6.4: Fitted Values

The fitted values for the MLR are $\hat{Y} = [\hat{Y}_1 \dots \hat{Y}_n]'$, which in matrix notation is again

 $\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b} = \mathbf{H}\mathbf{Y}.$

The hat matrix remains $H = X(X'X)^{-1}X'$.

Also, the residual vector is still $e = Y - \hat{Y} = Y - HY = (I - H)Y$, with $\sigma^2 \{e\} = (I - H)\sigma^2$ estimated via $s^2 \{e\} = (I - H) \times MSE$.

§6.5: MLR ANOVA

The MLR ANOVA table also looks similar to its SLR counterpart:

Source d.f.SSMSRegr.p-1 $SSR=Y'(H-\frac{1}{n}J)Y$ $MSR=\frac{SSR}{p-1}$ Errorn-pSSE=Y'(I-H)Y $MSE=\frac{SSE}{n-p}$ Totaln-1 $SSTO=Y'(I-\frac{1}{n}J)Y$

The expected means squares are E{MSE} = σ^2 and E{MSR} = $\sigma^2 + \theta^2(\beta)$ (see next slide).

E{MSR}

The expected mean square for MSR involves the expression $\theta^2(\beta)$, which is a complicated function of β such that $\theta^2(0) = 0$.

For instance, at p=3: $\theta^2(\beta) = \frac{1}{2} \left\{ \sum \beta_k^2 (X_{ik} - \overline{X}_k)^2 + 2\beta_1 \beta_2 \sum (X_{i1} - \overline{X}_1) (X_{i2} - \overline{X}_2) \right\}$ This suggests that an F-test is available for testing H_o: $\beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0 \rightarrow$

Full MLR F-Test

- To test $H_o: \beta_1 = \beta_2 = ... = \beta_{p-1} = 0$ vs. $H_a:$ any departure, construct the "full" F-statistic F* = MSR/MSE and reject H_o when F* > F(1- α ; p-1,n-p).
- At p=2 we clearly recover the SLR Ftest of H_o: β₁=0.)

■ The P-value is *P* = P[F(p–1,n–p) > F*].

Multiple R²

For the MLR model, the Coefficient of Multiple Determination mimics its SLR progenitor:

$$R^2 = 1 - \frac{SSE}{SSTO} = \frac{SSR}{SSTO}$$

Again, $0 \le \mathbb{R}^2 \le 1$.

Interpretation: R^2 is still the % of total variation in the Y_i's explained by the X_j's in the regression model.

Adjusted R²

- With multiple X_k's, however, R² exhibits irregularities.
- Notice that by adding a new X_k to the model, SSE cannot increase. Thus we can drive R² → 1 simply by pushing p → n.
- An adjusted R² compensates by replacing the SS terms with MS terms: R_a² = 1 – {MSE/MSTO}.

Interpretation is essentially similar.

§6.6: MLR Inferences

The LS estimator b is again unbiased: $E{b} = \beta$.

MLR inferences (cont'd)

So, each indiv. b_k has

$$T_{k} = \frac{b_{k} - \beta_{k}}{s\{b_{k}\}} \sim t(n-p)$$

(k = 0,...,p-1). From this, a (pointwise) 1– α conf. int. on β_k has the familiar form $b_k \pm t(1-\frac{\alpha}{2}; n-p)s\{b_k\}.$

Or, to test H_o: $\beta_k = 0$ vs. H_a: $\beta_k \neq 0$ find t* = b_k/s{b_k} & reject H_o when |t*| > t(1 - $\frac{\alpha}{2}$; n-p). (One-sided tests are similar.)

Bonferroni Adjustment

- But, WATCH IT! The t-based conf. int's and hypoth. tests are pointwise. If multiple b_k's are assessed, need a multiplicity adjustment.
- For instance, Bonferroni-adjusted simultaneous limits on g>1 different β_k's are b_k ± Bs{b_k} for B = t(1 – ½{α/g}; n–p) and k = 1,...,g.

§6.7: Inference on E{Y_h}
Given a future predictor vector
$$X_h = \begin{bmatrix} 1 \\ X_{h1} \\ \vdots \\ X_{h,p-1} \end{bmatrix}$$
,
an estimate of E{Y_h} at this X_h is $\hat{Y}_h = X'_h b$.
We find E{ \hat{Y}_h } = $X'_h \beta$ (unbiased!) with std.
error s{ \hat{Y}_h } = $\sqrt{MSE[X'_h(X'X)^{-1}X_h]}$.
A 1- α conf. int. on E{Y_h} then has the
familiar form
 $\hat{Y}_h \pm t(1 - \frac{\alpha}{2}; n-p)s{\hat{Y}_h}$.

Multiplicity Adjustment

Here again these are <u>pointwise</u> conf. int's. If more than a single X_h is under study, must apply a multiplicity adjustment.

Over a finite, pre-specified set of g > 1 X_h 's, use the Bonferroni-adjusted intervals $\hat{Y}_h \pm B s\{\hat{Y}_h\}$ where B = t(1 – ½{\alpha/g}; n–p) and h = 1,...,g.

Multiplicity Adjustment (cont'd)

Or, for an exact, simultaneous 1– α confidence (hyper-)band on E{Y} over <u>all possible</u> vectors X_h , use the WHS method:

 $\hat{\mathbf{Y}}_{h} \pm \mathbf{W} \mathbf{s} \{ \hat{\mathbf{Y}}_{h} \}$

for
$$W^2 = pF(1 - \alpha; p, n-p)$$
.

WHS also applies (conservatively) for any g>1 X_h 's, so always check: if W \leq B, use the WHS limits instead of Bonferroni.

(Can also use the WHS band, and <u>only</u> the WHS band, for *post hoc* intervals on $E{Y_h}$.)

MLR Prediction

For <u>prediction</u> of a future observation $Y_{h(new)}$ at some $X_{h(new)}$, use $\hat{Y}_{h(new)} = X'_{h(new)}b$,

with

s{pred} = $\sqrt{MSE(1 + X'_{h(new)}(X'X)^{-1}X_{h(new)})}$.

The corresp. (pointwise) 1– α prediction interval is then

 $Y_{h(new)} \pm t(1-\frac{\alpha}{2}; n-p)s\{pred\}.$

S-Method Prediction Intervals

As previously, the pointwise prediction interval is valid at only one $X_{h(new)}$. For simultaneous prediction intervals at g>1 future $X_{h(new)}$'s, apply a modification of the WHS method due to Scheffé (called the "S-method"):

 $\hat{Y}_{h(new)} \pm Ss\{pred\}$ where S = $\sqrt{g} F(1-\alpha; g, n-p)$, for h = 1,...,g.

Bonferroni Prediction Intervals

Can also use Bonferroni intervals for multiplicity-adjusted predictions: Y_{h(new)} ± Bs{pred} with B = $t(1 - \frac{1}{2} \{ \frac{\alpha}{g} \}; n-p)$ over h = 1,...,q. Both the Scheffé and Bonferroni crit. points are conservative for any finite g, so check first: if $S \leq B$, use Scheffé's Smethod, otherwise use Bonferroni.

Extrapolation

- As always, be careful with extrapolated X_h vectors.
- Ensure that the <u>entire</u> <u>vector</u> is within the range of the data.
- See Fig. 6.3 at p=3:

This point extrapolates, but that's not clear without a careful look at the data.

§6.8: Diagnostics

Preliminary diagnostics to assess an MLR fit include:

- Quick check of pairwise correlations among Y and each/all X_k's: make sure no surprises are hiding (also see 'multicollinearity' discussion in §7.6).
- Should always plot the data! Try plotting Y vs. each X_k. Use a scatterplot matrix (see Fig. 6.4).
- Also try 3-D scatterplots of Y vs. pairs of X_k's. If available, apply real-time rotation. (In R, use plot3d() function from external *rgl* package.)

MLR Residual Plots

Residual plots remain a mainstay:

- plot e_i vs. \hat{Y}_i (the usual resid. plot)
- plot e_i = Y_i Ŷ_i vs. X_{ik} at every k = 1,...,p–1
- graph histograms/boxplots of the e_i's
- check NP plot of the e_i's

(Same interpretations apply as in the SLR case.)

Brown-Forsythe Test

The Brown-Forsythe test for constant σ^2 remains valid with the MLR model:

- (a) Divide e_i 's into two groups: group 1 has e_i 's from small fitted values, \hat{Y}_i ,
- (b) and group 2 has e_i 's from large fitted values, \hat{Y}_i .
- (c) Then construct the t^{*}_{BF}-statistic as in §3.6.
 Conclude significant departure from homogeneous variance if

$$|t_{BF}^*| > t(1 - \frac{\alpha}{2}; n-2).$$

(d) P-value is 2P[$t(n-2) > |t_{BF}^*|$].

Other Diagnostics/Remediation

- To test for Lack of Fit (LOF), can apply Ftests similar to those seen in §3.7.
 - Need to have appropriate form(s) of replication among the X_k's.
 - Can get tricky! See p. 235.
- If serious departures from normality or from variance homogeneity are observed, can apply Box-Cox power transformation to Y_i, as in §3.9.

§6.9: MLR Example – Dwaine Studios (CH06FI05)

- Example: p=3 (two predictors) with
 - Y = portrait studio sales
 - X_1 = target popl'n below 16 yrs. old
 - X_2 = per cap. disposable income
- Data in Fig. 6.5.
- Start with: (a) scatterplot matrix, and
 (b) quick check of pairwise correlations.

Dwaine Studios (CH06FI05) Scatterplot Matrix

For the Scatterplot Matrix in R, apply the **pairs()** command to a data frame containing the variables:

- > CH06FI05.df = data.frame(Y_SALES, X1_TARGPOP, X2_DISPINC)
- > pairs(CH06FI05.df)

Dwaine Studios Data (CH06FI05) Scatterplot Matrix

Dwaine Studios (CH06FI05) Correlation Matrix

For the correlations between Y and the multiple X_k predictor variables, in R apply the cor() command to the data frame:

```
> cor( CH06FI05.df )
```

	Y_SALES	X1_TARGPOP	X2_DISPINC
Y_SALES	1.0000000	0.9445543	0.8358025
X1_TARGPOP	0.9445543	1.000000	0.7812993
X2_DISPINC	0.8358025	0.7812993	1.0000000

Fit MLR model with p–1 = 2 predictors:

> CH06FI05.lm = lm(Y_SALES ~ X1_TARGPOP + X2_DISPINC)

> coef(CH06FI05.lm)
 (Intercept) X1_TARGPOP X2_DISPINC
 -68.85707 1.45456 9.36550

> summary(CH06FI05.lm)\$r.squared \$r.squared R² [1] 0.9167465

> summary(CH06FI05.lm)\$adj.r.squared \$adj.r.squared R_a² [1] 0.9074961

Dwaine Studios (CH06FI05) (cont'd) Fit MLR model with p-1 = 2 predictors: > CH06FI05.lm = lm($Y_SALES \sim$ X1_TARGPOP + X2_DISPINC) > coef(CH06FI05.lm) (Intercept) X1_TARGPOP X2_DISPINC -68.85707 1.45456 **→9.36550** So, e.g., a unit (\$K) increase in $X_2 = \{dispos.\}$ income} generates a \$9.3655K incr. in sales, when X_1 = target popln. size is held fixed.

Residual plot ($e_i = Y_i - \hat{Y}_i vs. \hat{Y}_i$):

> plot(resid(CH06FI05.lm) ~ fitted(CH06FI05.lm))
> abline(h=0)

Per-predictor residual plots ($e_i = Y_i - \hat{Y}_i$ vs. each X_{ik}):

Plots follow \rightarrow

Per-predictor residual plots (cf. Fig. 6.8):

Can also plot residuals against functions of the $X_{ik}s$; e.g., plot e_i vs. potential interaction term $X_{i1}X_{i2}$:

- > X3 = X1_TARGPOP * X2_DISPINC
- > plot(resid(CH06FI05.lm) ~ X3, pch=19, ylab='Residual', xlab=expression(X[1]*X[2]))

> abline(h=0)

A systematic pattern in the plot suggests a need for the interaction term in the full MLR model \rightarrow

Interaction-predictor residual plot shows no systematic pattern (cf. Fig. 6.8d):

ANOVA for testing full MLR model with p–1 = 2 predictors:

> anova(lm(Y_SALES ~ 1), CH06FI05.lm)
Model 1: Y_SALES ~ 1
Model 2: Y_SALES ~ X1_TARGPOP + X2_DISPINC
Res.Df RSS Df Sum of Sq F Pr(>F)
1 20 26196.2
2 18 2180.9 2 24015 99.103 1.921e-10
F*=99.1 with highly signif. P-value = 1.9×10⁻¹⁰.

Pointwise conf. intervals on β_1 and β_2 are available via confint(CH06FI05.lm). For Bonferroni-corrected simultaneous conf. intervals, adjust via the level= option:

```
> g = length( coef(CH06FI05.lm) ) - 1
```

```
> alpha = .10
```

> confint(CH06FI05.lm, level=1-(alpha/g))[2:3,]

		[lower]	[upper]
X1 _	TARGPOP	1.0096226	1.899497
X2_	DISPINC	0.8274411	17.903560

(cf. p. 245)

- Pointwise conf. intervals on E{Y_h} at single future value of predictor vector
 X_h' = [X_{h0} X_{h1} X_{h2}] = [1 65.4 17.6]:
- In R, need to define new data frame containing desired X_h value(s):

Then, employ predict.lm() function:

Output from predict.lm():

- Pointwise prediction intervals on Y_h at single future value of predictor vector X_h' = [X_{0h} X_{1h} X_{2h}] = [1 65.4 17.6]:
- In R, continue to employ predict.lm() function with newdata.df data frame, but change interval= option:

Prediction from predict.lm():

This is a *pointwise* prediction interval. For *multiple* X_h 's, correction for simultaneity is required.

Simultaneous prediction intervals on Y_h at g = 2 future values of predictor vector:

$$\mathbf{X}_{h} = \begin{bmatrix} 1 \\ 65.4 \\ 17.6 \end{bmatrix}, \begin{bmatrix} 1 \\ 53.1 \\ 17.7 \end{bmatrix}$$

> g = nrow(newdata.df)

- Simultaneous 90% prediction intervals on Y_h
- Begin with check of Scheffé vs. Bonferroni critical points:

■ B = $2.10 \le S = 2.29$, so apply Bonferroni adjustment

Simultaneous 90% prediction intervals on Y_h with Bonferroni critical point at g=2:

> newdata.df

	X1_TARGPOP	X2_DISPINC
1	65.4	17.6
2	53.1	17.7

	fit	lwr	upr
1	191.1039	167.2589	214.9490
2	174.1494	149.0867	199.2121