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Multiple Linear Regression Model

 If p–1 > 1 predictor variables are under 
study, we expand the SLR model into a 
(“first-order”) Multiple Linear Regression 
(MLR) model:
Yi = β0 + β1Xi1 + β2Xi2 + … + βp–1Xi,p–1 + εi

where εi ~ i.i.d.N(0,σ2);  i = 1 ,..., n.

 One can also write this as Yi = β0Xi0 + β1Xi1
+ β2Xi2 + … + βp–1Xi,p–1 + εi, where Xi0 ≡ 1.



MLR with p=3
 For instance take the case of p = 3 (two 

predictors):  E{Yi} = β0 + β1Xi1 + β2Xi2

 This is a plane in 3-D space (see Fig. 6.1).



MLR with p=3 (cont’d)

 Two predictors:  E{Yi} = β0 + β1Xi1 + β2Xi2

 Interpret the βks as:
• β1 is change in E{Y} for unit change in X1, 

when all other Xk’s (here, just X2) are held
fixed.

• β2 is change in E{Y} for unit change in X2, 
when all other Xk’s (here, just X1) are held
fixed.

• β0 is the “Y-intercept,” as before.



Special MLR Models

 If one (or more) of the Xk’s is an indicator 
(=0 or =1), E{Y} has a simplified interpreta-
tion.  See equ. (6.10).

 If Xk = Xk, this is a polynomial regression 
(discussed in §8.1).

 Say X1 and X2 interact in how they affect 
E{Y}.  Then we include a second-order 
interaction term: 
E{Yi} = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2



Response Surface Model

 We combine the second-order 
polynomial with second-order 
interactions to create a response 
surface model:  

E{Yi} = β0 + β1Xi1 + β2Xi1
2

+ β3Xi2 + β4Xi2
2 + β5Xi1Xi2

 (Why is this “linear”? Because all the 
βk’s enter into E{Y} at first-order!)



Response Surface (cont’d)
 The second-order response surface model 

produces a smoothly arcing surface in 3-D 
space.

 See Fig. 6.2.



§6.2: MLR Matrix Formulation
The MLR model (with any p – 1 > 1) is a 
straightforward extension of SLR, so the 
matrix equations are of essentially identi-
cal form.

Recall  Yn×1 = 










Y1

Y2
⁞

Yn

,  E{Y} = 










E[Y1]

E[Y2]
⁞

E[Yn]
,  � = 











ε1

ε2
⁞
εn

and now take Xn×p = 










1 X11 X12 … X1‚p–1

1 X21 X22 … X2‚p–1
⁞ ⁞ ⁞ ⁞ ⁞
1 Xn1 Xn2 … Xn‚p–1

 



Matrix Formulation (cont’d)

If we let  �p×1 = 










β0

β1
⁞

βp–1

, we can write  

the MLR model as a matrix expression: 

   Yn×1 = Xn×p�p×1 + �n×1  

where  � ~ Nn(0,σ2I). 

The mean response vector is E{Y} = X� 
and the covariance matrix is �2{Y} = σ2I.  



§6.3: LS Estimation

The LS normal equations can again be 
written simply as   
      (XX)b = XY, 

for b = 










b0

b1
⁞

bp–1

.  The solution for b is clearly

        b = (XX)–1XY  
whenever (XX)–1 exists. 
(Here again, these correspond to the MLE 
for �.) 



§6.4: Fitted Values

The fitted values for the MLR are  
Ŷ = [Ŷ1 … Ŷn], which in matrix notation 
is again 
     Ŷ = Xb = HY.  
The hat matrix remains H = X(XX)–1X. 

Also, the residual vector is still 
     e = Y – Ŷ = Y – HY = (I – H)Y, 
with �2{e} = (I – H)σ2 estimated via  
     s2{e} = (I – H)×MSE. 



§6.5:  MLR ANOVA

The MLR ANOVA table also looks similar 
to its SLR counterpart: 
Source d.f. SS MS      
Regr. p–1 SSR=Y(H – 1

nJ)Y MSR=SSR
p–1  

Error n–p SSE=Y(I – H)Y MSE=SSE
n–p 

Total n–1 SSTO=Y(I – 1
nJ)Y 

The expected means squares are E{MSE} = σ2 
and E{MSR} = σ2 + θ2(�)  (see next slide). 



E{MSR}

The expected mean square for MSR 
involves the expression θ2(�), which is a 
complicated function of � such that  
θ2(0) = 0. 
For instance, at p=3: 
 θ2(�) = ½{∑∑βk

2(Xik–
—
Xk)2  

       + 2β1β2∑(Xi1–
—
X1)(Xi2–

—
X2)} 

This suggests that an F-test is available 
for testing Ho: β1 = β2 = … = βp–1 = 0  → 



Full MLR F-Test

 To test Ho: β1 = β2 = … = βp–1 = 0  vs. 
Ha: any departure, construct the “full” 
F-statistic F* = MSR/MSE and reject Ho
when F* > F(1–α; p–1,n–p).

 (At p=2 we clearly recover the SLR F-
test of Ho: β1=0.)

 The P-value is P = P[F(p–1,n–p) > F*].



Multiple R2

For the MLR model, the Coefficient of 
Multiple Determination mimics its SLR 
progenitor: 

   R2 = 1 – SSE
SSTO = SSR

SSTO 

Again, 0 ≤ R2 ≤ 1.   
Interpretation: R2 is still the % of total 
variation in the Yi’s explained by the Xj’s in 
the regression model. 



Adjusted R2

 With multiple Xk’s, however, R2 exhibits 
irregularities.

 Notice that by adding a new Xk to the 
model, SSE cannot increase.  Thus we can 
drive R2 → 1 simply by pushing p → n.

 An adjusted R2 compensates by replacing 
the SS terms with MS terms: 

Ra
2 = 1 – {MSE/MSTO}.

 Interpretation is essentially similar.



§6.6: MLR Inferences

The 
covar. 
of b0
and bp–1

The var. of bp–1

The LS estimator b is again unbiased:  
      E{b} = �. 

Its sample covariance mtx. is again  
s2{b} = MSE(XX)–1.  Take a closer look: 

s2{b} = 










s2{b0} s{b0‚b1} … s{b0‚bp–1}

s{b1‚b0} s2{b1} … s{b1‚bp–1}
⁞ ⁞ ⁞ ⁞

s{bp–1‚b0} s{bp–1‚b1} … s2{bp–1}

 



MLR inferences (cont’d)

So, each indiv. bk has 

    Tk = bk – βk
s{bk}  ~ t(n–p) 

(k = 0,...,p–1).  From this, a (pointwise) 1–α  
conf. int. on βk has the familiar form 
   bk ±  t(1 – α2; n–p)s{bk}. 

Or, to test Ho: βk = 0 vs. Ha: βk ≠ 0 find  
t* = bk/s{bk} & reject Ho when |t*| > t(1 – α2; n–p). 

(One-sided tests are similar.) 



Bonferroni Adjustment

 But, WATCH IT!  The t-based conf. int’s
and hypoth. tests are pointwise.  If multiple 
bk’s are assessed, need a multiplicity 
adjustment.

 For instance, Bonferroni-adjusted simul-
taneous limits on g>1 different βk’s are

bk ± Bs{bk} 
for B = t(1 – ½{α/g}; n–p) and k = 1,...,g.



§6.7: Inference on E{Yh}

Given a future predictor vector Xh = 








1
Xh1
⁞

Xh‚p–1

, 

an estimate of E{Yh} at this Xh is  Ŷh = Xh′b.

We find E{Ŷh} = Xh′� (unbiased!) with std. 
error  s{Ŷh} = MSE






Xh′ (X′X)–1Xh  . 

A 1–α conf. int. on E{Yh} then has the 
familiar form 
   Ŷh  ±  t(1 – α2; n–p)s{Ŷh}. 



Multiplicity Adjustment

Here again these are pointwise conf. int’s.  
If more than a single Xh is under study, 
must apply a multiplicity adjustment. 
 
Over a finite, pre-specified set of g > 1 
Xh’s, use the Bonferroni-adjusted intervals
     Ŷh  ±  B s{Ŷh} 
where B = t(1 – ½{α/g}; n–p) and h = 1,...,g.



Multiplicity Adjustment (cont’d)

Or, for an exact, simultaneous 1–α confidence 
(hyper-)band on E{Y} over all possible vectors 
Xh, use the WHS method: 
     Ŷh  ±  W s{Ŷh} 
for W2 = p F(1 – α; p,n–p). 
WHS also applies (conservatively) for any g>1 
Xh’s, so always check: if W ≤ B, use the WHS 
limits instead of Bonferroni. 
(Can also use the WHS band, and only the WHS 
band, for post hoc intervals on E{Yh}.) 



MLR Prediction

For prediction of a future observation 
Yh(new) at some Xh(new), use  
      Ŷh(new) = Xh(new)′ b,  
with 
s{pred} = MSE






1 + Xh(new)′ (X′X)–1Xh(new)  . 

The corresp. (pointwise) 1–α prediction 
interval is then  
   Ŷh(new)  ±  t(1 – α2; n–p)s{pred}. 



S-Method Prediction Intervals

As previously, the pointwise prediction 
interval is valid at only one Xh(new).  For 
simultaneous prediction intervals at g>1 
future Xh(new)’s, apply a modification of the 
WHS method due to Scheffé (called the  
“S-method”): 

      Ŷh(new)  ±  S s{pred} 

where S = g F(1–α; g,n–p) ,  
for h = 1,...,g.



Bonferroni Prediction 
Intervals

Can also use Bonferroni intervals for 
multiplicity-adjusted predictions: 
    Ŷh(new)  ±  B s{pred}  
with B = t(1 – ½{α/g}; n–p) over h = 1,...,g. 

Both the Scheffé and Bonferroni crit. 
points are conservative for any finite g,  
so check first: if S ≤ B, use Scheffé’s S-
method, otherwise use Bonferroni.



Extrapolation
 As always, be careful with extrapolated Xh

vectors.
 Ensure that the entire vector is within the 

range of the data.
 See Fig. 6.3 at p=3:

This point extrapolates, 
but that’s not clear with-
out a careful look at the 
data.



§6.8: Diagnostics

Preliminary diagnostics to assess an MLR fit 
include:
• Quick check of pairwise correlations among Y 

and each/all Xk’s: make sure no surprises are 
hiding (also see ‘multicollinearity’ discussion 
in §7.6).

• Should always plot the data!  Try plotting Y vs. 
each Xk.  Use a scatterplot matrix (see Fig. 6.4).

• Also try 3-D scatterplots of Y vs. pairs of Xk’s.    
If available, apply real-time rotation.  (In R, use 
plot3d() function from external rgl package.)



MLR Residual Plots

Residual plots remain a mainstay: 
● plot ei vs. Ŷi  (the usual resid. plot) 
● plot ei = Yi – Ŷi  vs. Xik at every k =  

1,...,p–1 
● graph histograms/boxplots of the ei’s 
● check NP plot of the ei’s 

(Same interpretations apply as in the SLR 
case.) 



Brown-Forsythe Test
The Brown-Forsythe test for constant σ2 
remains valid with the MLR model: 

(a) Divide ei’s into two groups: group 1 has 
ei’s from small fitted values, Ŷi, 

(b) and group 2 has ei’s from large fitted 
values, Ŷi. 

(c) Then construct the t*BF-statistic as in §3.6.  
Conclude significant departure from 
homogeneous variance if  

|t*BF| > t(1 – α2; n–2). 
(d) P-value is 2P[ t(n–2) > |t*BF| ]. 



Other Diagnostics/Remediation

 To test for Lack of Fit (LOF), can apply F-
tests similar to those seen in §3.7.
• Need to have appropriate form(s) of 

replication among the Xk’s.
• Can get tricky!  See p. 235.

 If serious departures from normality or 
from variance homogeneity are observed, 
can apply Box-Cox power transformation 
to Yi, as in §3.9.



§6.9:  MLR Example –
Dwaine Studios (CH06FI05)

 Example:  p=3 (two predictors) with
• Y = portrait studio sales
• X1 = target popl’n below 16 yrs. old
• X2 = per cap. disposable income

Data in Fig. 6.5.

Start with: (a) scatterplot matrix, and 
(b) quick check of pairwise correlations.



Dwaine Studios (CH06FI05)  
Scatterplot Matrix

For the Scatterplot Matrix in R, apply the 
pairs() command to a data frame 
containing the variables:
> CH06FI05.df = data.frame( Y_SALES,

X1_TARGPOP, X2_DISPINC )

> pairs( CH06FI05.df )



Dwaine Studios Data (CH06FI05)
Scatterplot Matrix



Dwaine Studios (CH06FI05)  
Correlation Matrix

For the correlations between Y and the 
multiple Xk predictor variables, in R apply the  
cor() command to the data frame:
> cor( CH06FI05.df )

Y_SALES  X1_TARGPOP  X2_DISPINC
Y_SALES     1.0000000   0.9445543   0.8358025
X1_TARGPOP  0.9445543   1.0000000   0.7812993
X2_DISPINC  0.8358025   0.7812993   1.0000000



Dwaine Studios (CH06FI05) (cont’d)

Fit MLR model with p–1 = 2 predictors:
> CH06FI05.lm = lm( Y_SALES ~

X1_TARGPOP + X2_DISPINC )

> coef( CH06FI05.lm )
(Intercept)  X1_TARGPOP  X2_DISPINC 
-68.85707      1.45456     9.36550

> summary( CH06FI05.lm )$r.squared
$r.squared
[1] 0.9167465

> summary( CH06FI05.lm )$adj.r.squared
$adj.r.squared
[1] 0.9074961

R2

Ra
2



Dwaine Studios (CH06FI05) (cont’d)

Fit MLR model with p–1 = 2 predictors:

> CH06FI05.lm = lm( Y_SALES ~
X1_TARGPOP + X2_DISPINC )

> coef( CH06FI05.lm )

(Intercept)  X1_TARGPOP  X2_DISPINC 
-68.85707      1.45456     9.36550

So, e.g., a unit ($K) increase in X2 = {dispos. 
income} generates a  $9.3655K  incr. in sales, 
when X1 = target popln. size is held fixed.



Dwaine Studios (CH06FI05) (cont’d)

Residual plot (ei = Yi –Yi vs. Yi):
> plot( resid(CH06FI05.lm) ~ fitted(CH06FI05.lm) )
> abline( h=0 )

^ ^



Dwaine Studios (CH06FI05) (cont’d)

Per-predictor residual plots (ei = Yi –Yi vs. 
each Xik):
> par( mfrow=c(1,2) )
> plot( resid(CH06FI05.lm) ~ X1_TARGPOP,

pch=19, xlab=expression(X[1]),
ylab='Residual') 

> abline( h=0 )
> plot( resid(CH06FI05.lm) ~ X2_DISPINC,

pch=19, xlab=expression(X[2]),
ylab='Residual' )

> abline( h=0 )

Plots follow →  

^



Dwaine Studios (CH06FI05) (cont’d)

Per-predictor residual plots (cf. Fig. 6.8):



Dwaine Studios (CH06FI05) (cont’d)

Can also plot residuals against functions of 
the Xiks; e.g., plot ei vs. potential interaction 
term Xi1Xi2 :
> X3 = X1_TARGPOP * X2_DISPINC

> plot( resid(CH06FI05.lm) ~ X3, 
pch=19, ylab='Residual',
xlab=expression(X[1]*X[2]) )

> abline( h=0 )

A systematic pattern in the plot suggests a need for the 
interaction term in the full MLR model →



Dwaine Studios (CH06FI05) (cont’d)

Interaction-predictor residual plot shows no 
systematic pattern (cf. Fig. 6.8d):



Dwaine Studios (CH06FI05) (cont’d)

ANOVA for testing full MLR model with p–1 = 2 
predictors:
> anova( lm(Y_SALES ~ 1), CH06FI05.lm )
Model 1: Y_SALES ~ 1
Model 2: Y_SALES ~ X1_TARGPOP + X2_DISPINC

Res.Df     RSS  Df Sum of Sq       F    Pr(>F)
1    20 26196.2
2    18  2180.9   2     24015  99.103 1.921e-10

F* = 99.1 with highly signif. P-value = 1.9×10–10.



Dwaine Studios (CH06FI05) (cont’d)

Pointwise conf. intervals on β1 and β2 are 
available via  confint( CH06FI05.lm ).
For Bonferroni-corrected simultaneous conf. 
intervals, adjust via the  level= option:
> g = length( coef(CH06FI05.lm) ) - 1
> alpha = .10 
> confint( CH06FI05.lm, level=1-(alpha/g) )[2:3,]

[lower]   [upper]
X1_TARGPOP  1.0096226  1.899497
X2_DISPINC  0.8274411 17.903560

(cf. p. 245)



Dwaine Studios (CH06FI05) (cont’d)

 Pointwise conf. intervals on E{Yh} at single
future value of predictor vector 
Xh′ = [Xh0 Xh1 Xh2] = [1   65.4   17.6]:

 In R, need to define new data frame con-
taining desired Xh value(s):
> newdata.df = data.frame( X1_TARGPOP=65.4, 

X2_DISPINC=17.6 ) 

 Then, employ  predict.lm() function:
> predict.lm( CH06FI05.lm, newdata=newdata.df,

se.fit=T, interval='confidence' )



Dwaine Studios (CH06FI05) (cont’d)

Output from  predict.lm():
> predict.lm( CH06FI05.lm, newdata=newdata.df,

se.fit=T, interval='confidence' )
$fit

fit       lwr      upr
1  191.1039  185.2911 196.9168

$se.fit
[1] 2.766798

$df
[1] 18

Yh
^
Lower and upper 95% limits

std. error, s{Yh}^



Dwaine Studios (CH06FI05) (cont’d)

 Pointwise prediction intervals on Yh at 
single future value of predictor vector 
Xh′ = [X0h X1h X2h] = [1   65.4   17.6]:

 In R, continue to employ  predict.lm()
function with newdata.df data frame, but 
change interval= option:
> predict.lm( CH06FI05.lm, newdata=newdata.df,

se.fit=T, interval='prediction' )



Dwaine Studios (CH06FI05) (cont’d)

Prediction from  predict.lm():
> predict.lm( CH06FI05.lm, newdata=newdata.df,

interval='prediction' )
fit       lwr      upr

1  191.1039  167.2589  214.949

This is a pointwise prediction interval.  For 
multiple Xh’s, correction for simultaneity is 
required.

Yh
^ Lower  and  upper 

95% prediction limits



Dwaine Studios (CH06FI05) (cont’d)

Simultaneous prediction intervals on Yh at 
g = 2 future values of predictor vector:

> newdata.df = data.frame( X1_TARGPOP=c(65.4,53.1),
X2_DISPINC=c(17.6,17.7) )

> g = nrow( newdata.df ) 

Xh = 








1

65.4
17.6

 , 








1

53.1
17.7

 



Dwaine Studios (CH06FI05) (cont’d)

 Simultaneous 90% prediction intervals on Yh

 Begin with check of Scheffé vs. Bonferroni 
critical points:

> alpha = .10
> Spoint = sqrt( g*qf(1-alpha, g,

CH06FI05.lm$df.residual) )
[1] 2.290828

> Bpoint = qt( 1-(.5*(alpha/g)),
CH06FI05.lm$df.residual )

[1] 2.100922

 B = 2.10 ≤ S = 2.29, so apply Bonferroni adjustment



Dwaine Studios (CH06FI05) (cont’d)

Simultaneous 90% prediction intervals on Yh with 
Bonferroni critical point at g=2:
> newdata.df

X1_TARGPOP  X2_DISPINC
1       65.4        17.6
2       53.1        17.7

> predict.lm( CH06FI05.lm, newdata=newdata.df,
interval='prediction', 
level=1-(alpha/g)) )

fit        lwr       upr
1  191.1039   167.2589  214.9490
2  174.1494   149.0867  199.2121


