STAT 571A - Advanced Statistical Regression Analysis

Chapter 6 NOTES Multiple Regression - I

© 2017 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means - electronic, online, mechanical, photoreproduction, recording, or scanning - without the prior written consent of the course instructor.

Multiple Linear Regression Model

- If \mathbf{p}-1 > 1 predictor variables are under study, we expand the SLR model into a ("first-order") Multiple Linear Regression (MLR) model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}+\varepsilon_{i}
$$

where $\varepsilon_{i} \sim$ i.i.d. $N\left(0, \sigma^{2}\right) ; i=1, \ldots, n$.

- One can also write this as $Y_{i}=\beta_{0} X_{i 0}+\beta_{1} X_{i 1}$ $+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\cdots+\beta_{\mathrm{p}-1} \mathrm{X}_{\mathrm{i}, \mathrm{p}-1}+\varepsilon_{\mathrm{i}}$, where $\mathrm{X}_{\mathrm{i} 0} \equiv 1$.

MLR with $\mathrm{p}=3$

- For instance take the case of $p=3$ (two predictors): $E\left\{Y_{i}\right\}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}$
- This is a plane in 3-D space (see Fig. 6.1).

MLR with $\mathrm{p}=3$ (cont'd)

- Two predictors: $E\left\{Y_{i}\right\}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}$
- Interpret the $\boldsymbol{\beta}_{\mathrm{k}} \mathrm{s}$ as:
- β_{1} is change in $E\{Y\}$ for unit change in X_{1}, when all other X_{k} 's (here, just X_{2}) are held fixed.
- β_{2} is change in $E\{Y\}$ for unit change in X_{2}, when all other X_{k} 's (here, just X_{1}) are held fixed.
- β_{0} is the " Y-intercept," as before.

Special MLR Models

- If one (or more) of the X_{k} 's is an indicator ($=0$ or $=1$), $\mathrm{E}\{\mathrm{Y}\}$ has a simplified interpretation. See equ. (6.10).
- If $X_{k}=X^{k}$, this is a polynomial regression (discussed in §8.1).
- Say X_{1} and X_{2} interact in how they affect $E\{Y\}$. Then we include a second-order interaction term:

$$
E\left\{Y_{i}\right\}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}
$$

Response Surface Model

- We combine the second-order polynomial with second-order interactions to create a response surface model:

$$
\begin{aligned}
E\left\{Y_{i}\right\}=\beta_{0}+ & \beta_{1} X_{i 1}+\beta_{2} X_{i 1}{ }^{2} \\
& +\beta_{3} X_{i 2}+\beta_{4} X_{i 2}{ }^{2}+\beta_{5} X_{i 1} X_{i 2}
\end{aligned}
$$

- (Why is this "linear"? Because all the β_{k} 's enter into $\mathrm{E}\{\mathrm{Y}\}$ at first-order!)

Response Surface (cont'd)

- The second-order response surface model produces a smoothly arcing surface in 3-D space.
- See Fig. 6.2.

§6.2: MLR Matrix Formulation

The MLR model (with any p-1>1) is a straightforward extension of SLR, so the matrix equations are of essentially identical form.
Recall $Y_{n \times 1}=\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right], E\{Y\}=\left[\begin{array}{c}E\left[Y_{1}\right] \\ E\left[Y_{2}\right] \\ \vdots \\ E\left[Y_{n}\right]\end{array}\right], \epsilon=\left[\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n}\end{array}\right]$
and now take $X_{n \times p}=\left[\begin{array}{cccccc}1 & X_{11} & X_{12} & \ldots & X_{1, p-1} \\ 1 & X_{21} & X_{22} & \ldots & X_{n, p-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n 1} & X_{n 2} & \ldots & x_{n, p-1}\end{array}\right]$

Matrix Formulation (cont'd)

If we let $\boldsymbol{\beta}_{\mathrm{p} \times 1}=\left[\begin{array}{c}\boldsymbol{\beta}_{0} \\ \boldsymbol{\beta}_{1} \\ \vdots \\ \boldsymbol{\beta}_{\mathrm{p}-1}\end{array}\right]$, we can write
the MLR model as a matrix expression:

$$
\mathbf{Y}_{\mathrm{n} \times 1}=\mathbf{X}_{\mathrm{n} \times \mathrm{p}} \boldsymbol{\beta}_{\mathrm{p} \times 1}+\epsilon_{\mathrm{n} \times 1}
$$

where $\epsilon \sim N_{n}\left(0, \sigma^{2} I\right)$.
The mean response vector is $E\{Y\}=X \beta$
and the covariance matrix is $\sigma^{2}\{Y\}=\sigma^{2} I$.

§6.3: LS Estimation

The LS normal equations can again be written simply as

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{b}=\mathbf{X}^{\prime} \mathbf{Y}
$$

for $b=\left[\begin{array}{c}b_{0} \\ b_{1} \\ \vdots \\ b_{p-1}\end{array}\right]$. The solution for b is clearly

$$
\mathbf{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

whenever ($\left.\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}$ exists.
(Here again, these correspond to the MLE for $\boldsymbol{\beta}$.)

§6.4: Fitted Values

The fitted values for the MLR are $\hat{\mathbf{Y}}=\left[\hat{\mathbf{Y}}_{1} \ldots \hat{\mathbf{Y}}_{n}\right]^{\prime}$, which in matrix notation is again

$$
\hat{\mathbf{Y}}=\mathbf{X b}=\mathbf{H Y} .
$$

The hat matrix remains $H=X\left(X^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$.
Also, the residual vector is still

$$
\mathrm{e}=\mathrm{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{H Y}=(\mathbf{I}-\mathbf{H}) \mathbf{Y}
$$

with $\sigma^{2}\{e\}=(I-H) \sigma^{2}$ estimated via

$$
\mathbf{s}^{2}\{\mathrm{e}\}=(\mathrm{I}-\mathbf{H}) \times \text { MSE }
$$

§6.5: MLR ANOVA

The MLR ANOVA table also looks similar to its SLR counterpart:
Source d.f. SS MS
Regr. $\quad \mathrm{p}-1 \quad \mathrm{SSR}=\mathrm{Y}^{\prime}\left(\mathrm{H}-\frac{1}{\mathrm{n}} \mathrm{J}\right) \mathrm{Y} \quad \mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{p}-1}$
Error $n-p \quad S S E=Y^{\prime}(I-H) Y \quad M S E=\frac{S S E}{n-p}$
Total $\quad \mathrm{n}-1 \quad \mathrm{SSTO}=\mathrm{Y}^{\prime}\left(\mathrm{I}-\frac{1}{n} \mathrm{~J}\right) \mathrm{Y}$
The expected means squares are $\mathrm{E}\{\mathrm{MSE}\}=\sigma^{2}$ and $E\{M S R\}=\sigma^{2}+\theta^{2}(\beta)$ (see next slide).

E\{MSR\}

The expected mean square for MSR involves the expression $\theta^{2}(\beta)$, which is a complicated function of β such that $\theta^{2}(0)=0$.
For instance, at $p=3$:

$$
\begin{aligned}
\theta^{2}(\beta)=1 / 2\{ & \sum \sum \beta_{\mathrm{k}}{ }^{2}\left(\mathrm{X}_{\mathrm{ik}}-\bar{X}_{\mathrm{k}}\right)^{2} \\
& \left.+2 \beta_{1} \beta_{2} \sum\left(\mathrm{X}_{\mathrm{i} 1}-\bar{X}_{1}\right)\left(\mathrm{X}_{\mathrm{i} 2}-\bar{X}_{2}\right)\right\}
\end{aligned}
$$

This suggests that an F-test is available for testing $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p-1}=0 \rightarrow$

Full MLR F-Test

- To test $\mathrm{H}_{\mathrm{o}}: \beta_{1}=\beta_{2}=\ldots=\beta_{\mathrm{p}-1}=0$ vs. H_{a} : any departure, construct the "full" F-statistic $\mathrm{F}^{*}=$ MSR/MSE and reject $\mathrm{H}_{\text {。 }}$ when $F^{*}>F(1-\alpha ; p-1, n-p)$.
- (At $\mathrm{p}=2$ we clearly recover the SLR Ftest of $\mathrm{H}_{0}: \boldsymbol{\beta}_{1}=0$.)
- The P-value is $P=P\left[F(p-1, n-p)>F^{\star}\right]$.

Multiple $\mathbf{R}^{\mathbf{2}}$

For the MLR model, the Coefficient of Multiple Determination mimics its SLR progenitor:

$$
R^{2}=1-\frac{\text { SSE }}{\text { SSTO }}=\frac{\text { SSR }}{\text { SSTO }}
$$

Again, $0 \leq R^{2} \leq 1$.
Interpretation: \mathbf{R}^{2} is still the \% of total variation in the Y_{i} 's explained by the X_{j} 's in the regression model.

Adjusted \mathbf{R}^{2}

- With multiple X_{k} 's, however, R^{2} exhibits irregularities.
- Notice that by adding a new X_{k} to the model, SSE cannot increase. Thus we can drive $R^{2} \rightarrow \mathbf{1}$ simply by pushing $p \rightarrow n$.
- An adjusted R^{2} compensates by replacing the SS terms with MS terms:

$$
\mathrm{R}_{\mathrm{a}}{ }^{2}=1-\{\text { MSE/MSTO }\} .
$$

- Interpretation is essentially similar.

§6.6: MLR Inferences

The LS estimator b is again unbiased:

$$
E\{b\}=\boldsymbol{\beta}
$$

Its sample covariance mtx. is again $s^{2}\{b\}=\operatorname{MSE}\left(X^{\prime} X\right)^{-1}$. Take a closer look:

The
covar.
$s^{2}\{b\}=\left[\begin{array}{cccc}s^{2}\left\{b_{0}\right\} & s\left\{b_{0}, b_{1}\right\} & \ldots & s\left\{b_{0}, b_{p-1}\right\} \\ s\left\{b_{1}, b_{0}\right\} & s^{2}\left\{b_{1}\right\} & \ldots & s\left\{b_{1}, b_{p-1}\right\} \\ \vdots & \vdots & \vdots & \vdots \\ s\left\{b_{p-1}, b_{0}\right\} & s\left\{b_{p-1}, b_{1}\right\} & \ldots & s^{2}\left\{b_{p-1}\right\}\end{array}\right]$ and b_{p-1}

MLR inferences (cont'd)

So, each indiv. b_{k} has

$$
T_{k}=\frac{b_{k}-\beta_{k}}{s\left\{b_{k}\right\}} \sim t(n-p)
$$

($k=0, \ldots, p-1$). From this, a (pointwise) 1- α
conf. int. on β_{k} has the familiar form

$$
b_{k} \pm t\left(1-\frac{\alpha}{2} ; n-p\right) s\left\{b_{k}\right\} .
$$

Or, to test $H_{0}: \beta_{k}=0$ vs. $H_{a}: \beta_{k} \neq 0$ find $t^{*}=b_{k} / \mathbf{s}\left\{b_{k}\right\} \&$ reject H_{o} when $\left|t^{*}\right|>t\left(1-\frac{\alpha}{2} ; n-p\right)$.
(One-sided tests are similar.)

Bonferroni Adjustment

- But, WATCH IT! The t-based conf. int's and hypoth. tests are pointwise. If multiple b_{k} 's are assessed, need a multiplicity adjustment.
- For instance, Bonferroni-adjusted simultaneous limits on $\mathrm{g}>1$ different $\boldsymbol{\beta}_{\mathrm{k}}$'s are $b_{k} \pm B s\left\{b_{k}\right\}$
for $B=t(1-1 / 2\{\alpha / g\} ; n-p)$ and $k=1, \ldots, g$.

§6.7: Inference on $E\left\{Y_{h}\right\}$

Given a future predictor vector $X_{h}=\left[\begin{array}{c}1 \\ x_{h 1} \\ 1 \\ x_{n, p-1}\end{array}\right]$, an estimate of $E\left\{Y_{h}\right\}$ at this X_{h} is $\hat{Y}_{h}=X_{h}^{\prime} b$. We find $E\left\{\hat{Y}_{h}\right\}=X_{h}^{\prime} \beta$ (unbiased!) with std. error $s\left\{\hat{Y}_{h}\right\}=\sqrt{M S E}\left(X_{h}^{\prime}\left(X^{\prime} X\right)^{-1} X_{h}\right)$.

A 1- α conf. int. on $E\left\{Y_{h}\right\}$ then has the familiar form

$$
\hat{Y}_{h} \pm t\left(1-\frac{\alpha}{2} ; n-p\right) s\left\{\hat{Y}_{h}\right\} .
$$

Multiplicity Adjustment

Here again these are pointwise conf. int's. If more than a single \mathbf{X}_{h} is under study, must apply a multiplicity adjustment.

Over a finite, pre-specified set of $\mathrm{g}>1$ X_{h} 's, use the Bonferroni-adjusted intervals

$$
\hat{Y}_{h} \pm B s\left\{\hat{Y}_{h}\right\}
$$

where $B=t(1-1 / 2\{\alpha / g\} ; n-p)$ and $h=1, \ldots, g$.

Multiplicity Adjustment (cont'd)

Or, for an exact, simultaneous 1- α confidence (hyper-)band on E\{Y\} over all possible vectors X_{h}, use the WHS method:

$$
\hat{Y}_{h} \pm W s\left\{\hat{Y}_{h}\right\}
$$

for $W^{2}=p F(1-\alpha ; p, n-p)$.
WHS also applies (conservatively) for any $g>1$ X_{h} 's, so always check: if $\mathbf{W} \leq B$, use the WHS limits instead of Bonferroni.
(Can also use the WHS band, and only the WHS band, for post hoc intervals on $E\left\{Y_{h}\right\}$.)

MLR Prediction

For prediction of a future observation $Y_{h(n e w)}$ at some $X_{h(n e w),}$, use

$$
\hat{\mathbf{Y}}_{\mathrm{h}(\text { new })}=\mathbf{X}_{\mathrm{h}(\text { new })}^{\prime} \mathbf{b},
$$

with
$\mathbf{s}\{$ pred $\}=\sqrt{\operatorname{MSE}\left(1+\mathbf{X}_{\mathrm{h}(\text { new })}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}_{\mathrm{h}(\text { new })}\right)}$.
The corresp. (pointwise) 1- α prediction interval is then

$$
\hat{Y}_{h(\text { new })} \pm t\left(1-\frac{\alpha}{2} ; n-p\right) s\{p r e d\} .
$$

S-Method Prediction Intervals

As previously, the pointwise prediction interval is valid at only one $X_{h(n e w)}$. For simultaneous prediction intervals at $g>1$ future $X_{h(n e w)}$'s, apply a modification of the WHS method due to Scheffé (called the "S-method"):

$$
\hat{\mathbf{Y}}_{\mathrm{h}(\text { new })} \pm S \mathrm{~S}\{\text { pred }\}
$$

where $S=\sqrt{g F(1-\alpha ; g, n-p)}$,
for $h=1, \ldots, g$.

Bonferroni Prediction Intervals

Can also use Bonferroni intervals for multiplicity-adjusted predictions:
$\hat{\mathbf{Y}}_{\text {h(new) }} \pm \mathrm{Bs}\{$ pred $\}$
with $B=\mathbf{t}(1-1 / 2\{\alpha / g\} ; n-p)$ over $h=1, \ldots, g$.
Both the Scheffé and Bonferroni crit. points are conservative for any finite g, so check first: if $S \leq B$, use Scheffe's Smethod, otherwise use Bonferroni.

Extrapolation

- As always, be careful with extrapolated X_{h} vectors.
- Ensure that the entire vector is within the range of the data.
- See Fig. 6.3 at $\mathrm{p}=3$:

This point extrapolates, but that's not clear without a careful look at the data.

§6.8: Diagnostics

Preliminary diagnostics to assess an MLR fit include:

- Quick check of pairwise correlations among Y and each/all X_{k} 's: make sure no surprises are hiding (also see 'multicollinearity' discussion in §7.6).
- Should always plot the data! Try plotting Y vs. each X_{k}. Use a scatterplot matrix (see Fig. 6.4).
- Also try 3-D scatterplots of Y vs. pairs of X_{k} 's. If available, apply real-time rotation. (In R, use plot3d() function from external rgl package.)

MLR Residual Plots

Residual plots remain a mainstay:

- plot e_{i} vs. \hat{Y}_{i} (the usual resid. plot)
- plot $e_{i}=Y_{i}-\hat{Y}_{i}$ vs. $X_{i k}$ at every $k=$ 1,...,p-1
- graph histograms/boxplots of the e_{i} 's - check NP plot of the e_{i} 's
(Same interpretations apply as in the SLR case.)

Brown-Forsythe Test

The Brown-Forsythe test for constant σ^{2} remains valid with the MLR model:
(a) Divide e_{i}^{\prime} 's into two groups: group 1 has e_{i} 's from small fitted values, \hat{Y}_{i},
(b) and group 2 has e_{i} 's from large fitted values, \hat{Y}_{i}.
(c) Then construct the $\mathrm{t}_{\mathrm{BF}}^{*}$-statistic as in $\S 3.6$. Conclude significant departure from homogeneous variance if

$$
\left|t_{B F}^{*}\right|>t\left(1-\frac{\alpha}{2} ; n-2\right) .
$$

(d) P -value is $2 \mathrm{P}\left[\mathrm{t}(\mathrm{n}-2)>\left|\mathrm{t}_{\mathrm{B}}^{*}\right|\right]$.

Other Diagnostics/Remediation

- To test for Lack of Fit (LOF), can apply Ftests similar to those seen in §3.7.
- Need to have appropriate form(s) of replication among the X_{k} 's.
- Can get tricky! See p. 235.
- If serious departures from normality or from variance homogeneity are observed, can apply Box-Cox power transformation to Y_{i}, as in §3.9.

§6.9: MLR Example Dwaine Studios (CH06FI05)

- Example: p=3 (two predictors) with
- $Y=$ portrait studio sales
- $X_{1}=$ target popl'n below 16 yrs. old
- $X_{2}=$ per cap. disposable income
- Data in Fig. 6.5.
- Start with: (a) scatterplot matrix, and (b) quick check of pairwise correlations.

Dwaine Studios (CH06FI05) Scatterplot Matrix

For the Scatterplot Matrix in R, apply the pairs() command to a data frame containing the variables:
> CH06FI05.df = data.frame(Y_SALES, X1_TARGPOP, X2_DISPINC)
> pairs(CH06FI05.df)

Dwaine Studios Data (CH06FIO5) Scatterplot Matrix

Dwaine Studios (CH06FI05) Correlation Matrix

For the correlations between Y and the multiple X_{k} predictor variables, in R apply the $\left.\operatorname{cor}()^{\prime}\right)$ command to the data frame:
> cor(CH06FI05.df)
Y_SALES X1_TARGPOP X2_DISPINC

Y_SALES	1.0000000	0.9445543	0.8358025
X1_TARGPOP	0.9445543	1.0000000	0.7812993
X2_DISPINC	0.8358025	0.7812993	1.0000000

Dwaine Studios (CH06FIO5) (cont'd)

Fit MLR model with p-1 = 2 predictors:
> CH06FI05.lm = lm(Y_SALES ~ X1_TARGPOP + X2_DISPINC)
> coef(CH06FI05.lm)
(Intercept) X1_TARGPOP X2_DISPINC
-68.85707 1.45456 9.36550
> summary(CH06FI05.lm)\$r.squared \$r.squared [1] 0.9167465
> summary(CH06FI05.lm)\$adj.r.squared \$adj.r.squared
 [1] 0.9074961

Dwaine Studios (CH06FI05) (cont'd)

Fit MLR model with $\mathbf{p - 1}=\mathbf{2}$ predictors:
> CH06FI05.lm $=$ lm(Y_SALES ~ X1_TARGPOP + X2_DISPINC) $>\operatorname{coef}(\mathrm{CH} 06 F I 05.1 \mathrm{~m})$
(Intercept) X1_TARGPOP X2_DISPINC $-68.85707 \quad 1.45456 \longrightarrow 9.36550$

So, e.g., a unit (\$K) increase in $\mathrm{X}_{2}=\{$ dispos. income\} generates a $\$ 9.3655 \mathrm{~K}$ incr. in sales, when $X_{1}=$ target popln. size is held fixed.

Dwaine Studios (CH06FI05) (cont'd)

Residual plot ($e_{i}=Y_{i}-\hat{Y}_{i}$ vs. \hat{Y}_{i}):
> plot(resid(CH06FI05.lm) ~ fitted(CH06FI05.lm))
> abline($\mathrm{h}=0$)

Dwaine Studios (CH06FIO5) (cont'd)

 Per-predictor residual plots ($e_{i}=Y_{i}-\hat{Y}_{i}$ vs. each X_{ik}):> par(mfrow=c(1,2))
> plot(resid(CH06FI05.lm) ~ X1_TARGPOP, pch=19, xlab=expression(X[1]), ylab='Residual')
> abline($\mathrm{h}=0$)
> plot(resid(CH06FI05.lm) ~ X2_DISPINC, pch=19, xlab=expression(X[2]), ylab='Residual')
> abline(h=0)
Plots follow \rightarrow

Dwaine Studios (CH06FI05) (cont'd)

Per-predictor residual plots (cf. Fig. 6.8):

Dwaine Studios (CH06FI05) (cont'd)

Can also plot residuals against functions of the $X_{i k} s$; e.g., plot e_{i} vs. potential interaction term $\mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}$:
> X3 = X1_TARGPOP * X2_DISPINC
> plot(resid(CH06FI05.lm) ~ X3, pch=19, ylab='Residual', xlab=expression(X[1]*X[2]))
> abline($\mathrm{h}=0$)
A systematic pattern in the plot suggests a need for the interaction term in the full MLR model \rightarrow

Dwaine Studios (CH06FI05) (cont'd)

Interaction-predictor residual plot shows no systematic pattern (cf. Fig. 6.8d):

Dwaine Studios (CH06FI05) (cont'd)

ANOVA for testing full MLR model with $\mathrm{p}-1=2$ predictors:

> > anova(lm(Y_SALES ~ 1), CH06FI05.lm)

Model 1: Y_SALES ~ 1
Model 2: Y_SALES ~ X1_TARGPOP + X2_DISPINC
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
12026196.2
$\begin{array}{lllllll}2 & 18 & 2180.9 & 2 & 24015 & 99.103 & 1.921 \mathrm{e}-10\end{array}$
$F^{*}=99.1$ with highly signif. P-value $=1.9 \times 10^{-10}$.

Dwaine Studios (CH06FI05) (cont'd)

Pointwise conf. intervals on β_{1} and β_{2} are available via confint (CH06FI05.lm). For Bonferroni-corrected simultaneous conf. intervals, adjust via the level= option:
> g = length(coef(CH06FI05.lm)) - 1
> alpha = . 10
> confint(CH06FI05.lm, level=1-(alpha/g)) [2:3,]

[lower] [upper]
X1_TARGPOP 1.0096226 1.899497
X2_DISPINC 0.8274411 17.903560

(cf. p. 245)

Dwaine Studios (CH06FI05) (cont'd)

- Pointwise conf. intervals on $E\left\{Y_{h}\right\}$ at single future value of predictor vector $\mathrm{X}_{\mathrm{h}}{ }^{\prime}=\left[\begin{array}{lll}\mathrm{X}_{\mathrm{h} 0} & \mathrm{X}_{\mathrm{h} 1} & \mathrm{X}_{\mathrm{h} 2}\end{array}\right]=\left[\begin{array}{lll}1 & 65.4 & 17.6\end{array}\right]:$
- In R, need to define new data frame containing desired X_{h} value(s):
> newdata.df = data.frame(X1_TARGPOP=65.4, X2_DISPINC=17.6)
■ Then, employ predict.lm() function:
> predict.lm(CH06FI05.lm, newdata=newdata.df, se.fit=T, interval='confidence')

Dwaine Studios (CH06FI05) (cont'd)

Output from predict.lm():

> predict.lm(CH06FI05.lm, newdata=newdata.df, se.fit=T, interval='confidence')
\$fit

Dwaine Studios (CH06FI05) (cont'd)

- Pointwise prediction intervals on Y_{h} at single future value of predictor vector $\mathrm{X}_{\mathrm{h}}{ }^{\prime}=\left[\begin{array}{lll}\mathrm{X}_{\mathrm{oh}} & \mathrm{X}_{1 \mathrm{~h}} & \mathrm{X}_{2 \mathrm{~h}}\end{array}\right]=\left[\begin{array}{lll}1 & 65.4 & 17.6\end{array}\right]:$
- In R, continue to employ predict. $\operatorname{lm}()$ function with newdata. df data frame, but change interval= option:
> predict.lm(CH06FI05.lm, newdata=newdata.df, se.fit=T, interval='prediction')

Dwaine Studios (CH06FI05) (cont'd)

Prediction from predict.lm():
> predict.lm(CH06FI05.lm, newdata=newdata.df, interval='prediction')

95% prediction limits
This is a pointwise prediction interval. For multiple \mathbf{X}_{h} 's, correction for simultaneity is required.

Dwaine Studios (CH06FI05) (cont'd)

Simultaneous prediction intervals on Y_{h} at $\mathrm{g}=2$ future values of predictor vector:

$$
X_{h}=\left[\begin{array}{c}
1 \\
65.4 \\
17.6
\end{array}\right],\left[\begin{array}{c}
1 \\
53.1 \\
17.7
\end{array}\right]
$$

> newdata.df = data.frame(X1_TARGPOP=c(65.4,53.1), X2_DISPINC=c (17.6,17.7))
> g = nrow(newdata.df)

Dwaine Studios (CH06FI05) (cont'd)

- Simultaneous 90% prediction intervals on Y_{h}
- Begin with check of Scheffé vs. Bonferroni critical points:
> alpha = . 10
> Spoint = sqrt(g*qf(1-alpha, g, CH06FI05.lm\$df.residual))
[1] 2.290828
> Bpoint = qt(1-(.5*(alpha/g)),
CH06FI05.lm\$df.residual)
[1] 2.100922
■ $B=2.10 \leq S=2.29$, so apply Bonferroni adjustment

Dwaine Studios (CH06FI05) (cont'd)

Simultaneous 90\% prediction intervals on Y_{h} with Bonferroni critical point at $\mathbf{g = 2}$:
> newdata.df

	X1_TARGPOP	X2_DISPINC
1	65.4	17.6
2	53.1	17.7

> predict.lm(CH06FI05.lm, newdata=newdata.df, interval='prediction', level=1-(alpha/g)))

	fit	lwr	upr
1	191.1039	167.2589	214.9490
2	174.1494	149.0867	199.2121

