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Multiple Linear Regression Model

m If p—1 > 1 predictor variables are under
study, we expand the SLR model into a
(“first-order”) Multiple Linear Regression
(MLR) model:

Y =B+ B Xiy + B Xp# -+ B X, 4 +E
where €.~ i.i.d.N(0,02%); i=1,...,n.

m One can also write this as Y; = 3,X,, + B,X,
+ B X+ - + By X; o1 t €, Where X;o=1.




MLR with p=3

m For instance take the case of p = 3 (two
predictors): E{Y;} =B, + B Xj; + B2X;;

m This is a plane in 3-D space (see Fig. 6.1).

Response Plane )




MLR with p=3 (cont’d)

m Two predictors: E{Y.} =B, + B X, + B,X,,
m Interpret the B,s as:

* B, is change in E{Y} for unit change in X,,
when all other X, ’s (here, just X,) are held
fixed.

* B, is change in E{Y} for unit change in X,,
when all other X ’s (here, just X,) are held
fixed.

* B, is the “Y-intercept,” as before.




Special MLR Models

m If one (or more) of the X,’s is an indicator
(=0 or =1), E{Y} has a simplified interpreta-
tion. See equ. (6.10).

m If X, = XK, this is a polynomial regression
(discussed in §8.1).

m Say X, and X, interact in how they affect
E{Y}. Then we include a second-order
interaction term:

E{Y} = By + B4X;y + BX; + B3X;4 X,




Response Surface Model

m We combine the second-order
polynomial with second-order
interactions to create a response
surface model:

E{Y;} =B + B4 X, + B,X;;?
+ B3 X, + BXix? + BsXiy X,

m (Why is this “linear”? Because all the
B,’s enter into E{Y} at first-order!)




Response Surface (cont’d)

m The second-order response surface model
produces a smoothly arcing surface in 3-D
space.

m See Fig. 6.2.
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§6.2: MLR Matrix Formulation

The MLR model (withany p-1>1)is a
straightforward extension of SLR, so the

matrix equations are of essentially identi-

cal form.
- E[Y4] |

E[_YZ]

Recall Yo =| |, E{Y} = , €=

_ E[.Yn] _ _ £=n _

_1 X11 X12 X1,p_1_
1 X21 X22 Xz,p_1

and now take X,x, =

L 1 Xn1 Xn2 "an Xn,p_1 -




Matrix Formulation (cont’d)
B,
P
- Bp
the MLR model as a matrix expression:

If we let Box1 = , We can write

Y1 = anpox1 + €nx1

where e ~ N,(0,0°1).

The mean response vector is E{Y} = X
and the covariance matrix is ¢*{Y} = 0°I.




§6.3: LS Estimation

The LS normal equations can again be
written simply as
(X’X)b = XY,

forb=| ' | The solution for b is clearly

b = (X’X)"'X'Y
whenever (X’'X)™ exists.

(Here again, these correspond to the MLE
for 3.)




§6.4: Fitted Values

The fitted values for the MLR are

= [Y1 n]’ which in matrix notation
IS agaln

= Xb = HY.

The hat matrix remains H = X(X'X)'X'.

Also, the residual vector is still
e=Y—-Y=Y-HY = (I-HY,
with o*{e} = (I - H)o” estimated via
s*{e} = (I - H)xMSE.




§6.5: MLR ANOVA

The MLR ANOVA table also looks similar
to its SLR counterpart:

Source d.f. SS MS

Regr. p-1 SSR=Y’(H—%J)Y MSR:ﬁ

p—1
Error n—p SSE=Y'(I - H)Y MSE—ﬁ

n—p
Total n-1 SSTO=Y'(I-1J)Y

The expected means squares are E{MSE} = o?
and E{MSR} = o® + 8%(B) (see next slide).




E{MSR}

The expected mean square for MSR
involves the expression 8%(B), which is a
complicated function of  such that
8%(0) = 0.

For instance, at p=3:
8%(B) = V{3 Y B’ (Xik—X&)’
+ 2B4B23 (Xit—X1)(Xi—X2) }
This suggests that an F-test is available
for testing H,: B1 =B, ==




Full MLR F-Test

mTotestH,:B,=B,=...=B,1=0 vs.
H_: any departure, construct the “full”
F-statistic F* = MSR/MSE and reject H,
when F* > F(1-a; p—1,n—p).

m (At p=2 we clearly recover the SLR F-
test of H,: B,=0.)

m The P-value is P = P[F(p—1,n—p) > F*].




Multiple R?

For the MLR model, the Coefficient of
Multiple Determination mimics its SLR
progenitor:

SSE SSR

R*=1-355T0 = SSTO

Again, 0 SR’ < 1.

Interpretation: R’ is still the % of total
variation in the Y;’s explained by the X;’s in
the regression model.




Adjusted R?

m With multiple X,’s, however, R? exhibits
irregularities.

m Notice that by adding a new X, to the
model, SSE cannot increase. Thus we can
drive R? — 1 simply by pushing p — n.

m An adjusted R? compensates by replacing
the SS terms with MS terms:
R,2=1- {MSE/MSTO}.

m Interpretation is essentially similar.




§6.6: MLR Inferences

The LS estimator b is again unbiased:
E{b} = B.

Its sample covariance mtx. is again The

s*{b} = MSE(X'X)™". Take a closer look: covar
0

s*{bo} s{bg,b1} ... S{bo,bp_a.}\_\a_njd b,_4
s2{b} = s{b1,bo} 32{.b1} o S{b1,bp-1}

I s{bp;1,bo} s{bp;1,b1} . sz{Bp_1} _

\The var. of b _,




MLR inferences (cont’d)

So, each indiv. by has

_bc—B
Tk = sk{bk}k ~ t(n—p)

(k = 0,...,p—1). From this, a (pointwise) 1-a
conf. int. on B¢ has the familiar form
bk £ t(1-3; n—p)s{by}.
Or, to test H,: Bx = 0 vs. Ha: Bk # 0 find
* = by/s{bk} & reject H, when |t*| > t(1-3; n—p).

(One-sided tests are similar.)




Bonferroni Adjustment

m But, WATCH IT! The t-based conf. int’s
and hypoth. tests are pointwise. If multiple
b, ’'s are assessed, need a multiplicity
adjustment.

m For instance, Bonferroni-adjusted simul-
taneous limits on g>1 different 3,’s are
b, * Bs{b,}
for B = t(1 — 2{a/g}; n—p) and k =1,...,0.




§6.7: Inference on E{Y,}

Given a future predictor vector X;, =

_Xh,p_1 -

an estimate of E{Y,} at this X,, is ?h = X;,b.

We find E{Y,} = X, (unbiased!) with std.

error s{Y;} =/MSEX},(X'X)™"X,, .

A 1-a conf. int. on E{Y,} then has the

familiar form
Yh £ t(1-7; n—p)s{Yn}.




Multiplicity Adjustment

Here again these are pointwise conf. int’s.
If more than a single X, is under study,
must apply a multiplicity adjustment.

Over a finite, pre-specified set of g > 1
Xh’s, use the Bonferroni-adjusted intervals

?h + B S{?h}
where B = t(1- "2{a/g}; n—p) and h =1,...,Q.




Multiplicity Adjustment (cont’d)

Or, for an exact, simultaneous 1—a confidence
(hyper-)band on E{Y} over all possible vectors
Xph, use the WHS method:

?h T WS{?h}

for W? = pF(1- a; p,n—p).

WHS also applies (conservatively) for any g>1
Xh’s, so always check: if W < B, use the WHS
limits instead of Bonferroni.

(Can also use the WHS band, and only the WHS
band, for post hoc intervals on E{Y}.)




MLR Prediction

For prediction of a future observation
Yhnew) @t somMe Xy new), Use

Yhnew) = Xh(new)D>
with
s{pred} = \MSE1 + X} new)(X"X) " Xn(new) -
The corresp. (pointwise) 1—a prediction
interval is then
Yomew * t(1—%; n—p)s{predy.




S-Method Prediction Intervals

As previously, the pointwise prediction
interval is valid at only one Xy new). FOr
simultaneous prediction intervals at g>1
future Xhnew)'s, apply a modification of the
WHS method due to Scheffé (called the
“S-method”):

?h(new) = Ss{pred}

where S =+/g F(1-a; g,n—p) ,
forh=1,...,0.




Bonferroni Prediction
Intervals

Can also use Bonferroni intervals for
multiplicity-adjusted predictions:
Yh(new) + B s{pred}

with B = t(1- '~{a/g}; n—p) over h =1,...,g.

Both the Scheffé and Bonferroni crit.
points are conservative for any finite g,
so check first: if S < B, use Scheffé’s S-
method, otherwise use Bonferroni.




Extrapolation

m As always, be careful with extrapolated X,
vectors.

m Ensure that the entire vector is within the
range of the data.

m See Fig. 6.3 at p=3:

|
L Region Covered
| by X, and X,

: Jointly |

This point extrapolates,

but that’s not clear with-
out a careful look at the re—Range of X;—
data. |




§6.8: Diagnostics

Preliminary diagnostics to assess an MLR fit
include:

* Quick check of pairwise correlations among Y
and each/all X, ’s: make sure no surprises are

hiding (also see ‘multicollinearity’ discussion
in §7.6).

 Should always plot the data! Try plotting Y vs.
each X,. Use a scatterplot matrix (see Fig. 6.4).

» Also try 3-D scatterplots of Y vs. pairs of X,’s.
If available, apply real-time rotation. (In R, use
plot3d() function from external rgl package.)




MLR Residual Plots

Residual plots remain a mainstay:

e plot e; vs. Y, (the usual resid. plot)

oeplote =Y, — ?i vs. Xk at every k =
1,....p—1

« graph histograms/boxplots of the e;’s

o check NP plot of the e;’s

(Same interpretations apply as in the SLR
case.)




Brown-Forsythe Test

The Brown-Forsythe test for constant o?
remains valid with the MLR model:

(a) Divide e;’s into two groups: group 1 has
e;’s from small fitted values, Y;,

(b) and group 2 has e;’s from large fitted
values, Y.

(c) Then construct the tze-statistic as in §3.6.
Conclude significant departure from
homogeneous variance if

|tee| > t(1-3; n-2).

(d) P-value is 2P[ t(n-2) > |tgF]| .




Other Diagnostics/Remediation

m To test for Lack of Fit (LOF), can apply F-
tests similar to those seen in §3.7.

* Need to have appropriate form(s) of
replication among the X, ’s.

e Can get tricky! See p. 235.

m If serious departures from normality or
from variance homogeneity are observed,
can apply Box-Cox power transformation
to Y;, as in §3.9.




§6.9: MLR Example —
Dwaine Studios (CHO6FI05)

m Example: p=3 (two predictors) with
e Y = portrait studio sales
» X, = target popl’n below 16 yrs. old
* X, = per cap. disposable income

m Data in Fig. 6.5.

m Start with: (a) scatterplot matrix, and
(b) quick check of pairwise correlations.




Dwaine Studios (CHO6FI05)
Scatterplot Matrix

For the Scatterplot Matrix in R, apply the
pairs() command to a data frame

containing the variables:

> CHOG6FI105.df = data.frame( Y_SALES,
X1 TARGPOP, X2 DISPINC )

> pairs( CHO6FI05.df )




Dwaine Studios Data (CHO06FI05)
Scatterplot Matrix

Y_SALES
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Dwaine Studios (CHOG6FI05)
Correlation Matrix

For the correlations between Y and the

multiple X, predictor variables, in R apply the
cor () command to the data frame:

> cor( CHO6FI05.df )

Y SALES X1 TARGPOP X2 DISPINC
Y SALES 1.0000000 0.9445543  0.8358025
X1 TARGPOP 0.9445543  1.0000000 0.7812993
X2 DISPINC 0.8358025 0.7812993  1.0000000




Dwaine Studios (CHO6FI05) (cont’d)

Fit MLR model with p—1 = 2 predictors:

> CHOB6F105.Im = Im( Y_SALES -~
X1 TARGPOP + X2 DISPINC )

> coef( CHOGFIO5.1Im )
(Intercept) X1 TARGPOP X2 DISPINC
-68.85707 1.45456 9.36550

> summary( CHO6FI105.Im )$r.squared
$r.squared

RZ
[1] 0.9167465 < _—

> summary( CHO6FI105.Im )$adj.r.squared
$adj .r.squared

Ra2
[1] 0.9074961 —




Dwaine Studios (CHO6FI05) (cont’d)

Fit MLR model with p—1 = 2 predictors:

> CHOGFIOS5.Im = Im( Y_SALES ~
X1 TARGPOP + X2 DISPINC )
> coef( CHOGFIO5.1Im )

(Intercept) X1 TARGPOP X2 DISPINC
~68.85707 1.45456 9.36550

So, e.g., a unit ($K) increasemx2 = {dispos.
income} generates a $9.3655K incr. in sales,
when X, = target popin. size is held fixed.




Dwaine Studios (CHO6FI05) (cont’d)

Residual plot (e; = Y, —Qi VS. Qi):

> plot( resid(CHOGFIOS5.Im) ~ fitted(CHOGFI05.1Im) )
> abline( h=0 )

o
o

Residual

I I |
160 180 200

Predicted value




Dwaine Studios (CHO6FI05) (cont’d)

Per-predictor residual plots (e; = Y. —Qi VS.
each X, ):

> par( mfrow=c(1,2) )

> plot( resid(CHOGFI05.1Im) ~ X1 TARGPOP,
pch=19, xlab=expression(X[1]),
ylab="Residual ")

> abline( h=0 )

> plot( resid(CHOGFIO5.1Im) ~ X2 DISPINC,
pch=19, xlab=expression(X[2]),
ylab="Residual”™ )

> abline( h=0 )

Plots follow —




Dwaine Studios (CHO6FI05) (cont’d)

Per-predictor residual plots (cf. Fig. 6.8):
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Dwaine Studios (CHO6FI05) (cont’d)

Can also plot residuals against functions of
the X, s; e.g., plot e, vs. potential interaction
term X., X,,:

> X3 = X1 _TARGPOP * X2 DISPINC

> plot( resid(CHO6FIO5.0Im) ~ X3,
pch=19, ylab="Residual”,
xlab=expression(X[1]1*X[2]) )

> abline( h=0 )

A systematic pattern in the plot suggests a need for the
interaction term in the full MLR model —




Dwaine Studios (CHO6FI05) (cont’d)

Interaction-predictor residual plot shows no
systematic pattern (cf. Fig. 6.8d):
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Dwaine Studios (CHO6FI05) (cont’d)

ANOVA for testing full MLR model with p—1 = 2
predictors:

> anova( Im(Y_SALES ~ 1), CHOGFIOS5.0Im )
Model 1: Y _SALES ~ 1
Model 2: Y _SALES ~ X1 TARGPOP + X2 DISPINC

Res.Df RSS Df Sum of Sg F Pr(>F)
1 20 26196.2
2 18 2180.9 2 24015 99.103 1.921e-10
_—

* = 99.1 with highly signif. P-value = 1.9x10~"°.




Dwaine Studios (CHOG6FI05) (cont’d)

Pointwise conf. intervals on 3, and 3, are
available via confint( CHOGFIO5.Im ).

For Bonferroni-corrected simultaneous contf.
intervals, adjust via the level= option:
> g = length( coef(CHOGFIOS.Im) ) - 1

> alpha = .10
> confint( CHO6FIOS5.0Im, level=1-( ) )I2:3,]

[ lower] [upper]
X1 TARGPOP 1.0096226 1.899497

X2 _DISPINC 0.8274411 17.903560

(cf. p. 245)




Dwaine Studios (CHO6FI05) (cont’d)

m Pointwise conf. intervals on E{Y,} at single
future value of predictor vector
X' =X X4 Xl =[1 65.4 17.6]:

m In R, need to define new data frame con-
taining desired X,, value(s):

> newdata.df = data.frame( X1 _TARGPOP=65.4,
X2 DISPINC=17.6 )

m Then, employ predict. Im() function:

> predict.Im( CHO6FI05.1Im, newdata=newdata.df,
se.fi1t=T, 1nterval="confidence” )




Dwaine Studios (CHO6FI05) (cont’d)

Output from predict. Im():

> predict. Im( CHO6FIO5.Im, newdata=newdata.df,
se.f1t=T, 1nterval="confidence" )
$Fit
it Iwr upr
1 191.1039 185.2911 196.9168

$se.fit \\\\

[1] 2.766798 Lower and upper 95% limits

$df Yh

[1] 18

std. error, s{?h}




Dwaine Studios (CHO6FI05) (cont’d)

m Pointwise prediction intervals on Y, at
single future value of predictor vector
Xy ' =[Xon X4y X501 =[1 654 17.6]:

m In R, continue to employ predict.Im()
function with newdata.df data frame, but
change interval= option:

> predict. Im( CHO6FIO5.Im, newdata=newdata.df,
se.TIt=T,




Dwaine Studios (CHO6FI05) (cont’d)

Prediction from predict.Im():

> predict.Im( CHO6FI05.1Im, newdata=newdata.df,
interval="prediction” )
fit lwr upr
1 191.1039 167.2589 214.949

( )

Lower and upper
95% prediction limits

This is a pointwise prediction interval. For
multiple X,’s, correction for simultaneity is
required.




Dwaine Studios (CHOG6FI05) (cont’d)

Simultaneous prediction intervals on Y, at
g = 2 future values of predictor vector:

1 1
Xh =654 53.1
1 17.6]1 [17.7_

> newdata.df = data.frame( X1 _TARGPOP=c(65.4,53.1),
X2 DISPINC=c(17.6,17.7) )

> g = nrow( newdata.df )




Dwaine Studios (CHO6FI05) (cont’d)

m Simultaneous 90% prediction intervals on Y,

m Begin with check of Scheffe vs. Bonferroni
critical points:

> alpha = .10
> Spoint = sqrt( g*qf(l-alpha, g,
CHO6F105. Im$df.residual) )
[1] 2.290828

> Bpoint = qt( 1-(.5*(alpha/Zg)),
CHOGFI05. Im$df.residual )
[1] 2.100922

m B=210=<S =2.29, so apply Bonferroni adjustment




Dwaine Studios (CHO6FI05) (cont’d)

Simultaneous 90% prediction intervals on Y, with
Bonferroni critical point at g=2:

> newdata.df

X1 TARGPOP X2 DISPINC
1 65.4 17.6
2 53.1 17.7

> predict.Im( CHO6FI05.1Im, newdata=newdata.df,
interval="prediction”®,

level=1-( ) )

fit lwr upr
1 191.1039 167.2589 214.9490
2 174.1494 149.0867 199.2121




