STAT 571A - Advanced Statistical Regression Analysis

Chapter 7 NOTES Multiple Regression - II

© 2015 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means - electronic, online, mechanical, photoreproduction, recording, or scanning - without the prior written consent of the course instructor.

Extra Sums of Squares in MLR

- Recall: the ($\mathrm{p}-1$)-variable Multiple Linear Regression (MLR) model is

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}+\varepsilon_{i}
$$

where $\varepsilon_{i} \sim$ i.i.d.N($0, \sigma^{2}$); $\mathbf{i}=1$,..., n.

- The MLR ANOVA decomposes SSTO into SSR + SSE.
- Consider: each X_{k} contributes its own particular sum of squares to the SSR term. Let's explore this in more detail...

Extra Sums of Squares (cont'd)

For instance in the SLR ANOVA, if we drill down into the calculations we find that X_{1} contributes

$$
\operatorname{SSR}\left(X_{1}\right)=\sum\left(b_{0}+b_{1} X_{i 1}-\bar{Y}\right)^{2}
$$

to SSR, with 1 d.f. We could write the SLR ANOVA decomposition as

$$
\operatorname{SSTO}=\operatorname{SSR}\left(X_{1}\right)+\operatorname{SSE}\left(X_{1}\right)
$$

Extra Sums of Squares (cont'd)

Recall that SSTO $=\Sigma\left(Y_{i}-\bar{Y}\right)^{2}$ doesn't change with the X_{k} 's. Say we add X_{2} to the model. Then SSR is now $\operatorname{SSR}\left(X_{1}, X_{2}\right)$. But SSTO = $\operatorname{SSR}\left(X_{1}, X_{2}\right)+\operatorname{SSE}\left(X_{1}, X_{2}\right)$ is fixed so
$\operatorname{SSR}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \uparrow$ must force $\operatorname{SSE}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \downarrow$

Extra Sums of Squares (cont'd)

Recall that SSTO $=\Sigma\left(Y_{i}-\bar{Y}\right)^{2}$ doesn't change with the X_{k} 's. Say we add X_{2} to the model. Then SSR is now $\operatorname{SSR}\left(X_{1}, X_{2}\right)$. But SSTO $=\operatorname{SSR}\left(X_{1}, X_{2}\right)+\operatorname{SSE}\left(X_{1}, X_{2}\right)$ is fixed so
$\operatorname{SSR}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \uparrow$ must force $\operatorname{SSE}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \downarrow$
\Rightarrow SS info. has been transferred from SSE to SSR.

Extra Sums of Squares (cont'd)

The additional SS moved from SSE to SSR is called an Extra Sum of Squares:

- For X_{1} already in the model, adding X_{2} generates an extra SS of $\operatorname{SSR}\left(X_{2} \mid X_{1}\right)$, so write

$$
\operatorname{SSR}\left(X_{1}, X_{2}\right)=\operatorname{SSR}\left(X_{1}\right)+\operatorname{SSR}\left(X_{2} \mid X_{1}\right)
$$ in SSTO $=\operatorname{SSR}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)+\operatorname{SSE}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$.

- Order is (usually) important, so $\operatorname{SSR}\left(X_{2} \mid X_{1}\right) \neq \operatorname{SSR}\left(X_{1} \mid X_{2}\right)$. But we do see that

$$
\begin{aligned}
\operatorname{SSR}\left(X_{1} \mid X_{2}\right) & =\operatorname{SSE}\left(X_{2}\right)-\operatorname{SSE}\left(X_{1}, X_{2}\right) \\
& =\operatorname{SSR}\left(X_{1}, X_{2}\right)-\operatorname{SSR}\left(X_{2}\right) .
\end{aligned}
$$

Extra Sums of Squares (cont'd)

Moving to $p=4$ with $3 X_{k}$'s gives, e.g., $\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right)=\operatorname{SSE}\left(X_{1}, X_{2}\right)-\operatorname{SSE}\left(X_{1}, X_{2}, X_{3}\right)$ $=\operatorname{SSR}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)-\operatorname{SSR}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$

And, for that matter, $\operatorname{SSR}\left(X_{2}, X_{3} \mid X_{1}\right)=\operatorname{SSE}\left(X_{1}\right)-\operatorname{SSE}\left(X_{1}, X_{2}, X_{3}\right)$ $=\operatorname{SSR}\left(X_{1}, X_{2}, X_{3}\right)-\operatorname{SSR}\left(X_{1}\right)$
(You get the idea...)

Extra Sums of Squares (cont'd)

Given a full model (FM) with p-1 X_{k} 's, the extra SS terms in effect decompose the full SSR:

$$
\begin{aligned}
\operatorname{SSR}(F)=\operatorname{SSR}\left(X_{1}\right) & +\operatorname{SSR}\left(X_{2} \mid X_{1}\right)+\ldots \\
& +\operatorname{SSR}\left(X_{p-1} \mid X_{1}, \ldots, X_{p-2}\right)
\end{aligned}
$$

Indeed, we can also write

$$
\begin{aligned}
\operatorname{SSR}\left(X_{2}, \ldots, X_{p-1} \mid X_{1}\right) & =\operatorname{SSR}\left(X_{2} \mid X_{1}\right)+\ldots \\
+ & \operatorname{SSR}\left(X_{p-1} \mid X_{1}, \ldots, X_{p-2}\right)
\end{aligned}
$$

etc., etc.,...

ANOVA Table

The ANOVA table becomes (Table 7.3):

Source	d.f.	SS	MS
Regr.	$\mathrm{p}-1$	SSR(F)	MSR(F)
X_{1}	1	$\int \operatorname{SSR}\left(\mathrm{X}_{1}\right)$	$\operatorname{MSR}\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{2} \mid \mathrm{X}_{1}$	1	$\xrightarrow{\operatorname{SSR}}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right)$	$\operatorname{MSR}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right)$
!		!	!
$\mathrm{X}_{\mathrm{p}-1} \mid \mathbf{X}$	$\mathrm{x}_{\mathrm{p}-2} 1$	$\operatorname{SSR}\left(\mathrm{X}_{\mathrm{p}-1} \mid \mathrm{X}\right.$	

ANOVA Table (cont'd)

In the ANOVA table:

- Recall that order is important! So, rearranging the order of where each X_{k} is fit will (usually) change the sequential SS terms.
- Notice: the indiv. sequential MSR terms each have 1 d.f. So, e.g., $\operatorname{MSR}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right)=\operatorname{SSR}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right) / 1$.
- We can pool additive terms. For instance

$$
\begin{aligned}
& \operatorname{MSR}\left(X_{2}, X_{3} \mid X_{1}\right)=\operatorname{SSR}\left(X_{2}, X_{3} \mid X_{1}\right) / 2 \\
& =1 / 2\left\{\operatorname{SSR}\left(X_{2} \mid X_{1}\right)+\operatorname{SSR}\left(X_{3} \mid X_{1}, X_{2}\right)\right\}
\end{aligned}
$$

§7.2: Hypothesis Testing

To test $H_{0}: \beta_{k}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \boldsymbol{\beta}_{\mathrm{k}} \neq 0$ we already know that $t_{k}{ }^{*}=b_{k} / s\left\{b_{k}\right\} \sim t(n-p)$ (under H_{o}) provides a test statistic.
It can be shown that
$\left(t_{k}{ }^{*}\right)^{2}=\frac{\operatorname{SSR}\left(X_{k} \mid X_{1}, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{p-1}\right) /(1)}{M S E}=F_{k}{ }^{*}$
has $F_{k}{ }^{*} \sim F(1, n-p)\left(\right.$ under $\left.H_{0}\right)$.
(Notice that the SSR in the $\mathrm{F}_{\mathrm{k}}{ }^{*}$ numerator is the k th partial SS.)

t²2-to-F equivalence

- So, we can reject $\mathrm{H}_{0}: \beta_{\mathrm{k}}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \beta_{\mathrm{k}} \neq 0$ whenever $F_{k}{ }^{*}>F(1-\alpha ; 1, n-p)$.
- But since $\left(t_{k}{ }^{*}\right)^{2}=F_{k}{ }^{*}$ and we know $\mathbf{t}(\mathrm{n}-\mathrm{p})^{2}=\mathrm{F}(1, \mathrm{n}-\mathrm{p})$, we see the k th partial F test and the k th t-test are equivalent!
- Which to use? Whichever is handy (i.e., fastest on the computer...).
- But, for one-sided tests of, say, $\mathrm{H}_{0}: \boldsymbol{\beta}_{\mathrm{k}}=0$ vs. $H_{a}: \beta_{k}>0$, can only use $t_{k}{ }^{*}$.

Multi-d.f. F-tests

Now, recall that we can build multiple $\boldsymbol{\beta}_{\mathrm{k}}$'s into the extra SSR terms. From this, we can test multi-d.f. hypotheses.
For instance, to test $H_{0}: \beta_{\mathrm{k}}=\beta_{\mathrm{j}}=0$ vs. H_{a} :any difference, use $\mathrm{F}_{\mathrm{kj}}{ }^{*}=$
$\operatorname{SSR}\left(\mathbf{X}_{k}, X_{j} \mid X_{1}, \ldots, X_{k-1}, X_{k+1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{p-1}\right) /(2)$ MSE
Under $H_{o}, F_{k j}{ }^{*} \sim F(2, n-p)$ so reject H_{o} when $F_{k j}{ }^{*}>F(1-\alpha ; 2, n-p)$.

Multi-d.f. F-tests (cont'd)

- Notice what this is doing: the SSR in the numerator of the $F_{k j}$-statistic, $\operatorname{SSR}\left(\mathrm{X}_{\mathrm{k}}, \mathrm{X}_{\mathrm{j}} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}-1}, \mathrm{X}_{\mathrm{k}+1}, \ldots, \mathrm{X}_{\mathrm{j}-1}, \mathrm{X}_{\mathrm{j}+1}, \ldots, \mathrm{X}_{\mathrm{p}-1}\right)$, fits X_{k} and X_{j} last and is the 2 d.f. partial SSR.
- Then, it builds the MSR and divides by the MSE to create a 2 d.f. partial F-test.
- (There is no equivalent 2 d.f. t-test here.)

Example: Body Fat Data (CH07TA01)

- Example: from table 7.1, let $\mathrm{Y}=\%$ body fat in adult women
$\mathrm{X}_{1}=$ tricep thickness
$X_{2}=$ thigh circumf. $X_{3}=$ midarm circumf.

■ Sample size is $\mathbf{n}=\mathbf{2 0}$.

- Test if these predictor variables affect $\mathrm{E}\{\mathrm{Y}\}$.

Body Fat Data (CH07TA01) (cont'd)

In the Body Fat Data example, $p=4$ and we produce an overall ANOVA as seen earlier:
> CH07TA01.lm = lm(Y ~ X1 + X2 + X3)
$>$ anova(lm(Y ~ 1), CH07TA01.lm)
Analysis of Variance Table
Model 1: Y ~ 1
Model 2: Y ~ X1 + X2 + X3
Res.Df RSS Df [SSR] F $\operatorname{Pr}(>F)$
$1 \quad 19495.39$
$216 \quad 98.40 \quad 3 \quad 396.98 \quad 21.516 \quad 7.343 \mathrm{e}-06$
$F^{*}=21.516$ tests $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0 \quad\left(P=7.3 \times 10^{-6}\right)$

Body Fat Data (CH07TA01) (cont'd)

The sequential SSR terms (with the ANOVA decomposition) are found using:
> anova(CH07TA01.lm)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>F)$
$\begin{array}{lllllll}\mathrm{X} 1 & 1 & 352.27 & 352.27 & 57.2768 & 1.131 \mathrm{e}-06\end{array}$
$\begin{array}{llllll}\mathrm{X} 2 & 1 & 33.17 & 33.17 & 5.3931 & 0.03373\end{array}$
$\begin{array}{llllll}\text { X3 } & 1 & 11.55 & 11.55 & 1.8773 & 0.18956\end{array}$
Resid. $16 \quad 98.40 \quad 6.15$

Partial $F_{3}{ }^{*}=1.8773$ tests $H_{0}: \beta_{3}=0 \quad(P=.1896)$

Body Fat Data (CH07TA01) (cont'd)

A 2 df partial F -test - using $\operatorname{SSR}\left(\mathrm{X}_{2}, \mathrm{X}_{3} \mid \mathrm{X}_{1}\right)$ - is also easy to produce:
> anova(lm(Y ~ X1), CH07TA01.lm)
Analysis of Variance Table
Model 1: Y ~ X1
Model 2: Y ~ X1 + X2 + X3
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)$
$1 \quad 18 \quad 143.120$
$2 \quad 16 \quad 98.405 \quad 2 \quad 44.715 \quad 3.63520 .04995$
$F^{*}=3.6352$ tests $H_{0}: \beta_{2}=\beta_{3}=0 \quad(P=0.04995)$

Sequential Sums of Squares

- After fitting X_{1}, we can sequentially fit X_{2}, and then X_{3}, etc. Each term produces a sequential SSR in the order that they are fit (so order is important): $\operatorname{SSR}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right)$, and $\operatorname{SSR}\left(\mathrm{X}_{3} \mid \mathrm{X}_{1}, \mathrm{X}_{2}\right)$.
- The sequential SSR terms add up to the full SSR available in the ANOVA:

```
SSR(F) = SSR(X ( ) + SSR(X (X }\mp@subsup{X}{1}{})+\operatorname{SSR}(\mp@subsup{X}{3}{}|\mp@subsup{X}{1}{},\mp@subsup{X}{2}{}
    = SSTO - SSE(F)
```

- Sequential SSR's allow for "sequential" testing of the X_{k} 's in the order they enter the model, using the ANOVA decomposition.

Sequential Sums of Squares (cont'd)

Recall the (sequenced) ANOVA table:

Source	d.f.	SS	MS
Regr.	p-1	SSR(F)	MSR(F)
X_{1}	1	$\operatorname{SSR}\left(\mathrm{X}_{1}\right)$	$\operatorname{MSR}\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{2} \mid \mathrm{X}_{1}$	1	$\operatorname{SSR}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right)$	$\operatorname{MSR}\left(\mathrm{X}_{2} \mid \mathrm{X}_{1}\right)$
1	!	!	:
$\mathrm{X}_{\mathrm{p}-2} \mid \mathbf{X}$	-3 1	$\operatorname{SSR}\left(\mathrm{X}_{\mathrm{p}-2} \mid \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{p}-3}\right)$	
$\operatorname{MSR}\left(\mathrm{X}_{\mathrm{p}-2} \mid \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{p}-3}\right)$			
$\mathrm{X}_{\mathrm{p}-1} \mid \mathbf{X}$	-2 1	$\boldsymbol{S S R}\left(\mathrm{X}_{\mathrm{p}-1} \mid \mathrm{X}^{\text {P }}\right.$	
$\operatorname{MSR}\left(\mathrm{X}_{\mathrm{p}-1} \mid \mathrm{X}_{1} \ldots\right.$			

Error
n-p SSE
MSE
Total
n-1 SSTO

Sequential Sums of Squares (cont'd)

- In general, for sequential testing via the SSR's:
- Step 1. Start at the bottom with the partial test of $\mathrm{H}_{0}: \beta_{\mathrm{p}-1}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \beta_{\mathrm{p}-1} \neq 0$ (all tests are two-sided). Find
$\mathrm{F}_{\mathrm{p}-1}{ }^{*}=\operatorname{MSR}\left(\mathrm{X}_{\mathrm{p}-1} \mid \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{p}-2}\right) / \mathrm{MSE}$.
- Step 2a. If $\mathrm{F}_{\mathrm{p}-1}{ }^{*}>\mathrm{F}(1-\alpha ; 1, \mathrm{n}-\mathrm{p})$ then reject H_{o} and STOP. (Cannot proceed further 'up'.)

Sequential Sums of Squares (cont'd)

- Step 2b. But if $\mathrm{F}_{\mathrm{p}-1}{ }^{*} \leq \mathrm{F}(1-\alpha ; 1, \mathrm{n}-\mathrm{p})$ then fail to reject H_{o} and conclude $\beta_{\mathrm{p}-1}=0$.
- Step 3. Now, if $\beta_{\mathrm{p}-1}=0$, view $\operatorname{SSR}\left(X_{\mathrm{p}-1} 1\right.$ $\mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{p}-2}$) as inconsequential and proceed 'up' to test $\mathrm{H}_{\mathrm{o}}: \beta_{\mathrm{p}-2}=0$ via

$$
\mathrm{F}_{\mathrm{p}-2}{ }^{*}=\operatorname{MSR}\left(\mathrm{X}_{\mathrm{p}-2} \mid \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{p}-3}\right) / \mathrm{MSE} .
$$

[Technically, we really should resorb $\operatorname{SSR}\left(X_{p-1}\right)$ $\mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{p}-2}$) back into SSE, so this is a bit of a short-cut approximation.]

Sequential Sums of Squares (cont'd)

- Step 4a. If $\mathrm{F}_{\mathrm{p}-2}{ }^{*}>\mathrm{F}(1-\alpha ; 1, \mathrm{n}-\mathrm{p})$ then reject $\mathrm{H}_{0}: \beta_{\mathrm{p}-2}=\mathbf{0}$ and STOP. (Cannot proceed further 'up'.)
- Step 4b. But if $\mathrm{F}_{\mathrm{p}-2}{ }^{*} \leq \mathrm{F}(1-\mathrm{a} ; 1, \mathrm{n}-\mathrm{p})$ then fail to reject H_{o} and conclude $\beta_{\mathrm{p}-2}=0$.
- Step 5. Now, if $\beta_{p-2}=0$, view $\operatorname{SSR}\left(X_{p-2} \mid X_{1} \ldots\right.$ X_{p-3}) as inconsequential and proceed 'up' to test $\mathrm{H}_{0}: \beta_{\mathrm{p}-3}=0$ via

$$
\mathrm{F}_{\mathrm{p}-3^{*}}=\operatorname{MSR}\left(\mathrm{X}_{\mathrm{p}-3} \mid \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{p}-4}\right) / \mathrm{MSE} .
$$

Sequential Sums of Squares (cont'd)

- Step 5+. Continue 'up the ladder' in this fashion until the first rejection occurs stop there.
- Note that there is an issue of multiplicity here (same data are used to perform all the sequential tests). If felt to be an issue, can apply a Bonferroni correction, but...that's awfully conservative!
- If the SSR terms are orthogonal (see below), then the Kimball Inequality may be applicable.

§7.3: Summary of $\boldsymbol{\beta}_{\mathrm{k}}$ Testing

(A) To test $\mathrm{H}_{0}: \beta_{1}=\cdots=\beta_{p-1}=0$ use "full" F-test via $F^{*}=\operatorname{MSR}(F) / M S E \sim F(p-1, n-p)$.
(B) To test a single $H_{0}: \beta_{k}=0$ use "partial" F-test via $\mathrm{F}_{\mathrm{k}}{ }^{*}=\operatorname{MSR}\left(\mathrm{X}_{\mathrm{k}} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}-1}, \mathrm{X}_{\mathrm{k}+1}, \ldots, \mathrm{X}_{\mathrm{p}-1}\right) / \mathrm{MSE}$ with $F_{k}{ }^{*} \sim F(1, n-p)$
\Leftrightarrow Equiv. to $t^{*}=b_{k} / s\left\{b_{k}\right\} \sim t(n-p)$.

$\boldsymbol{\beta}_{\mathrm{k}}$ Testing (cont'd)

(C) To test a subset of β_{k} 's, say (after reordering) $\mathrm{H}_{0}: \beta_{\mathrm{q}}=\beta_{\mathrm{q}+1}=\cdots=\beta_{\mathrm{p}-1}=0$ use the $p-q$ d.f. partial F-test via $F_{p-q}{ }^{*}=\operatorname{MSR}\left(X_{q}, \ldots, X_{p-1} \mid X_{1}, \ldots, X_{q-1}\right) / M S E$ with $F_{p-q}{ }^{*} \sim F(p-q, n-p)$.
(D) To test something funkier, e.g., $H_{0}: \beta_{3}=\beta_{4}$, need to build a reduced model (RM) under H_{o} and apply the FM-RM discrepancy approach from (2.70).

§7.4: Partial R²

- The quantity $\mathbf{R}^{\mathbf{2}}=\mathbf{S S R} /(\mathrm{SSR}+\mathrm{SSE})$ can be manipulated in similar "sequential" or "partial" fashion, since it derives from SSR and SSE.
- For instance, suppose $\mathrm{p}-1 \mathrm{X}_{\mathrm{k}}$'s make up FM. Consider the 4 predictors $X_{k}, X_{6}, X_{m}, X_{q}$. The partial R^{2} for X_{k}, given X_{t}, X_{m}, X_{q} is $\mathrm{R}_{\mathrm{Yk} \mid, \mathrm{m}, \mathrm{q}}{ }^{2}=\operatorname{SSR}\left(\mathrm{X}_{\mathrm{k}} \mid \mathrm{X}_{\mathrm{l}}, \mathrm{X}_{\mathrm{m}}, \mathrm{X}_{\mathrm{q}}\right) / \operatorname{SSE}\left(\mathrm{X}_{\mathrm{t}}, \mathrm{X}_{\mathrm{m}}, \mathrm{X}_{\mathrm{q}}\right)$

Partial R ${ }^{\mathbf{2}}$ (cont'd)

- $\mathrm{R}_{\mathrm{Yk\mid f} \mid \mathrm{m}, \mathrm{q}}{ }^{2}$ is called a Coefficient of Partial Determination.
- Interpretation: \% variation in Y explained by X_{k} given that X_{t}, X_{m}, X_{q} have already been fit in the MLR model.

Body Fat Data (CH07TA01) (cont'd)

The partial R^{2} values are available from the anova() components: e.g., $R_{Y 3112}^{2}$ is
$>$ CH07TA01.aov $=$ anova(lm(Y~X1+X2+X3))
$>$ CH07TA01. aov[3, 2]/anova(lm(Y~X1+X2)) $[3,2]$
[1] 0.1050097
while $R_{Y 2 \mid 1}^{2}$ is
$>$ CH07TA01. aov[2, 2]/anova(lm(Y~X1)) $[2,2]$
[1] 0.2317564
etc.

§7.6: Multicollinearity

- The MLR calculations run into trouble when two different X_{k} 's represent the same information.
- For instance, if $X_{3}=2 X_{2}$, there is no new info. in X_{3}. [Technically, $\operatorname{rank}\left(X^{\prime} X\right)$ < p.] So, the ANOVA breaks down - cf. Table 7.8. Most programs spot this and just drop X_{3}.
- But, this is pretty obvious...

Multicollinearity (cont'd)

- What if 2 (or more!) X_{k} 's represent almost the same info.? We can still fit them in the MLR model, but they aren't really helping that much.
- Usual consequence: the sequential SSR's get all mucked up. E.g., suppose X_{1} and X_{2} are highly correlated \& represent very similar info. We might find $\operatorname{SSR}\left(\mathrm{X}_{1}\right)=$ 352.27, but $\operatorname{SSR}\left(X_{1} \mid X_{2}\right)=3.47$. Weird? No: X_{1} fits fine until it's swamped out by X_{2}.

Multicollinearity (cont'd)

- So, when $\operatorname{SSR}\left(\mathrm{X}_{1}\right) \gg \operatorname{SSR}\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}\right)$, it's possible that the conclusions of the sequential F-tests could rely solely on the order under which the X 's are fit.
\Rightarrow Seems capricious!
- We say then that $X_{1} \& X_{2}$ are Multicollinear (a bad thing).

Effects of Multicollinearity

Multicollinearity can:

- substantially affect the partial F-tests and how ordering of the X_{k} 's impacts the inferences;
- destabilize point estimates of b_{k} [since ($\left.\mathrm{X}^{\prime} \mathrm{X}\right)^{-1}$ is "ill-conditioned"];
- destabilize (usually inflate!) $\mathbf{s}\left\{\mathrm{b}_{\mathrm{k}}\right\}$, $\mathbf{s}\{\mathrm{pred}\}$, etc.;
- botch up the partial $\mathbf{R}^{\mathbf{2}}$ values.

Example: Body Fat Data (CH07TA01)

Find the correlations between Y and the X_{k} predictor variables via the cor () command:
$>$ cor (CH07TA01.df)

	Y	X1	X2	X3
Y	1.000000	0.843265	0.8780896	0.1424440
X1	0.843265	1.000000	0.9238425	0.4577772
X2	0.878090	0.923843	1.0000000	0.0846675
X3	0.142444	0.457777	0.0846675	1.0000000

Large correlation between X_{1} and X_{2}
 \Rightarrow possible multicollinearity!

Scatterplot Matrix via pairs(CH07TA01.df)

High linear relationship between X_{1} and X_{2}

Body Fat Data (CH07TA01) (cont'd)

Multicollinearity between X_{1} and X_{2} disturbs inferences from the ANOVA. Compare the

$$
\operatorname{lm}(Y \sim X 1+X 2+X 3)
$$

ordering with

$$
\operatorname{lm}(Y \sim X 3+X 2+X 1)
$$

in terms of the sequential SSR's
(see next slides \rightarrow)

Body Fat Data (CH07TA01) (cont'd)

> anova(lm(Y ~ X1 + X2 + X3))
Analysis of Variance Table
Response: Y

	Df	Sum Sq	Mean Sq	F value	Pr (>F)
X1	1	352.27	352.27	57.2768	$1.131 \mathrm{e}-06$
X2	1	33.17	33.17	5.3931	0.03373
X3	1	11.55	11.55	1.8773	0.18956
Resid.	16	98.40	6.15		

Sequencing "up the ladder":
X_{3} appears insignif., then X_{2} (weakly) significant (so stop there)

Body Fat Data (CH07TA01) (cont'd)

> anova(lm(Y ~ X3 + X2 + X1))
Analysis of Variance Table
Response: Y

	Df	Sum Sq	Mean Sq F value	Pr (>F)	
X3	1	10.1	10.1	1.634	0.219
X2	1	374.2	374.2	60.847	$7.68 \mathrm{e}-07$
X1	1	12.7	12.7	2.066	0.170
Resid.	16	98.40	6.15		

Sequencing "up the ladder":
X_{1} appears insignif., then X_{2} (strongly) significant (so stop there) \Rightarrow multicollin. is quite confusing!

Multicollinearity Control

■ Are there remedies for multicollinearity? Not really. (Too bad!)

- If selection of the X_{k} 's can be controlled, we can try to minimize multicollinearity amongst them.
- Easiest way: drive $\operatorname{corr}\left(X_{k}, X_{m}\right) \rightarrow 0$ so that X_{k} and X_{m} are orthogonal.

Multicollinearity Control (cont'd)

- In fact, when $\operatorname{corr}\left(X_{k}, X_{m}\right)=0, \operatorname{SSR}\left(X_{k} \mid X_{m}\right)=$ $\operatorname{SSR}\left(X_{k}\right)$ and $\operatorname{SSR}\left(X_{m} \mid X_{k}\right)=\operatorname{SSR}\left(X_{m}\right)$. \Rightarrow "the sequentials equal the partials"
- If so, no multicollinearity exists between them! (A good thing.)
- Otherwise, can try manipulating the ANOVA sequencing order of the X_{k} 's to isolate any strange inferences/collinear effects.

Example: Work Crew Data

In the Work Crew Data example (CH07TA06), the $\mathrm{p}-1=2 \quad \mathrm{X}_{\mathrm{k}}$-variables are uncorrelated:
> $\mathrm{X} 1=\mathrm{c}(\operatorname{rep}(4,4), \operatorname{rep}(6,4)$)
$>X 2=\operatorname{rep}(c(2,2,3,3), 2)$
$>Y=c(42,39,48,51,49,53,61,60)$
$>\operatorname{cor}(\operatorname{cbind}(Y, X 1, X 2)$)

	Y	X1	X2
Y	1.0000000	0.7419309	0.6384057
X1	0.7419309	1.0000000	0.0000000
X2	0.6384057	0.0000000	1.0000000

Work Crew Data (CH07TA06) (cont'd)

X_{1} and X_{2} exhibit no collinearity, so the resulting sequential SSRs are orthogonal and unaffected by entry order in the ANOVA. Start with X_{1}-then- X_{2} :
> anova($\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2)$) Analysis of Variance Table Response: Y

Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
X1 1231.125 231.125 65.567 0.000466 $\begin{array}{llllll}\text { X2 } & 171.125 & 171.125 & 48.546 & 0.000937\end{array}$ Resid 5 17.625 3.525

Work Crew Data (CH07TA06) (cont'd)

Now fit \mathbf{X}_{2}-then- \mathbf{X}_{1} :
> anova($\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 2+\mathrm{X} 1)$) Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lllll}X 2 & 171.125 & 171.125 & 48.546 & 0.000937\end{array}$
$\begin{array}{llllll}X 1 & 1 & 231.125 & 231.125 & 65.567 & 0.000466\end{array}$
Resid $5 \quad 17.625 \quad 3.525$
Notice that $\operatorname{SSR}\left(X_{2}\right)=\operatorname{SSR}\left(X_{2} \mid X_{1}\right)$ and $\operatorname{SSR}\left(X_{1} \mid X_{2}\right)=\operatorname{SSR}\left(X_{1}\right)$ (see previous slide).

Work Crew Data (CH07TA06) (cont'd)

Now just fit $X_{\mathbf{2}}$:

> anova($\operatorname{lm}(\mathrm{Y} \sim \mathrm{X} 2)$)
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{llllll}X 2 & 171.12 & 171.125 & 4.1276 & 0.08846\end{array}$
Resid 6248.7541 .458
$\operatorname{SSR}\left(\mathrm{X}_{2}\right)$ is unchanged but $\operatorname{SSR}\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}\right)$ has been absorbed into SSE (\Rightarrow MSE rises sharply, so β_{2} no longer significant at $\alpha=.05!$); cf. Table 7.7.

