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 Recall: the (p–1)-variable Multiple Linear 
Regression (MLR) model is
Yi = β0 + β1Xi1 + β2Xi2 + … + βp–1Xi,p–1 + εi

where εi ~ i.i.d.N(0, σ2);  i = 1 ,..., n.
 The MLR ANOVA decomposes SSTO into 

SSR + SSE.
 Consider: each Xk contributes its own 

particular sum of squares to the SSR term.  
Let’s explore this in more detail...

Extra Sums of Squares in MLR



Extra Sums of Squares (cont’d)

For instance in the SLR ANOVA, if we drill 
down into the calculations we find that X1 
contributes  
  SSR(X1) = ∑(b0 + b1Xi1 – 

—
Y)2  

to SSR, with 1 d.f.  We could write the SLR 
ANOVA decomposition as 
  SSTO = SSR(X1) + SSE(X1) 



Extra Sums of Squares (cont’d)

Recall that SSTO = ∑(Yi – 
—
Y)2 doesn't 

change with the Xk’s.  Say we add X2 to the 
model.  Then SSR is now SSR(X1,X2).   
But SSTO = SSR(X1,X2) + SSE(X1,X2) is 
fixed so  
 SSR(X1,X2) ↑ must force SSE(X1,X2) ↓ 

 SS info. has been transferred from SSE 
to SSR.



Extra Sums of Squares (cont’d)

Recall that SSTO = ∑(Yi – 
—
Y)2 doesn't 

change with the Xk’s.  Say we add X2 to the 
model.  Then SSR is now SSR(X1,X2).   
But SSTO = SSR(X1,X2) + SSE(X1,X2) is 
fixed so  
 SSR(X1,X2) ↑ must force SSE(X1,X2) ↓ 

 SS info. has been transferred from SSE 
to SSR.



Extra Sums of Squares (cont’d)

The additional SS moved from SSE to SSR is 
called an Extra Sum of Squares:

• For X1 already in the model, adding X2
generates an extra SS of SSR(X2|X1), so write

SSR(X1,X2) = SSR(X1) + SSR(X2|X1)
in SSTO = SSR(X1,X2) + SSE(X1,X2).

• Order is (usually) important, so 
SSR(X2|X1) ≠ SSR(X1|X2).  But we do see that

SSR(X1|X2) = SSE(X2) – SSE(X1,X2)
= SSR(X1,X2) – SSR(X2).



Extra Sums of Squares (cont’d)

Moving to p=4 with 3 Xk’s gives, e.g.,
SSR(X3|X1,X2) = SSE(X1,X2) – SSE(X1,X2,X3)

= SSR(X1,X2,X3) – SSR(X1,X2)

And, for that matter,
SSR(X2,X3|X1) = SSE(X1) – SSE(X1,X2,X3)

= SSR(X1,X2,X3) – SSR(X1)

(You get the idea...)



Extra Sums of Squares (cont’d)

Given a full model (FM) with p–1 Xk’s, the 
extra SS terms in effect decompose the full 
SSR:

SSR(F) = SSR(X1) + SSR(X2|X1) + …
+ SSR(Xp–1|X1,…,Xp–2)

Indeed, we can also write 
SSR(X2,…,Xp–1|X1) = SSR(X2|X1) + …

+ SSR(Xp–1|X1,…,Xp–2)
etc., etc.,...



ANOVA Table

Each indiv. term is 
called a sequential SS

The last sequential SS 
is called the partial SS

The ANOVA table becomes (Table 7.3): 
Source d.f.   SS  MS   
Regr. p–1   SSR(F) MSR(F) 
 X1  1  SSR(X1) MSR(X1) 
 X2|X1  1  SSR(X2|X1) MSR(X2|X1) 
   ⁞  ⁞    ⁞     ⁞ 
 Xp–1|X1…Xp–2 1  SSR(Xp–1|X1…Xp–2) 
 MSR(Xp–1|X1…Xp–2) 
Error n–p  SSE  MSE 
Total n–1  SSTO 



ANOVA Table (cont’d)

In the ANOVA table:
• Recall that order is important!  So, re-

arranging the order of where each Xk is fit 
will (usually) change the sequential SS 
terms.  

• Notice: the indiv. sequential MSR terms 
each have 1 d.f.  So, e.g., 

MSR(X2|X1) = SSR(X2|X1)/1.
• We can pool additive terms. For instance 

MSR(X2,X3|X1) = SSR(X2,X3|X1)/2
= ½{SSR(X2|X1) + SSR(X3|X1, X2)}



§7.2:  Hypothesis Testing

To test Ho:βk = 0 vs. Ha:βk ≠ 0 we already 
know that tk* = bk/s{bk} ~ t(n–p) (under Ho) 
provides a test statistic.  
It can be shown that  

(tk*)2 = SSR(Xk|X1‚…‚Xk–1‚Xk+1‚…‚Xp–1)/(1)
MSE  = Fk* 

has Fk* ~ F(1,n–p) (under Ho). 
(Notice that the SSR in the Fk* numerator is 
the kth partial SS.) 



t2-to-F equivalence

 So, we can reject Ho:βk = 0 vs. Ha:βk ≠ 0 
whenever Fk* > F(1–α;1,n–p).

 But since (tk*)2 = Fk* and we know 
t(n–p)2 = F(1,n–p), we see the kth partial F-
test and the kth t-test are equivalent!

 Which to use?  Whichever is handy (i.e., 
fastest on the computer...).

 But, for one-sided tests of, say, Ho:βk=0 vs. 
Ha:βk>0, can only use tk*.



Multi-d.f. F-tests

Now, recall that we can build multiple βk’s 
into the extra SSR terms.  From this, we 
can test multi-d.f. hypotheses. 
For instance, to test  
Ho:βk = βj = 0  vs. Ha:any difference, use 
Fkj* =  
 SSR(Xk‚Xj|X1‚…‚Xk–1‚Xk+1‚…‚Xj–1‚Xj+1‚…‚Xp–1)/(2)

MSE  

Under Ho, Fkj* ~ F(2,n–p) so reject Ho when 
Fkj* > F(1–α;2,n–p). 



Multi-d.f. F-tests (cont’d)

 Notice what this is doing:  the SSR in the 
numerator of the Fkj-statistic, 
SSR(Xk‚Xj|X1‚…‚Xk–1‚Xk+1‚…‚Xj–1‚Xj+1‚…‚Xp–1),
fits Xk and Xj last and is the 2 d.f. partial
SSR.

 Then, it builds the MSR and divides by the 
MSE to create a 2 d.f. partial F-test.

 (There is no equivalent 2 d.f. t-test here.)



Example: Body Fat Data (CH07TA01)

 Example: from table 7.1, let 
Y = % body fat in adult women
X1 = tricep thickness
X2 = thigh circumf.
X3 = midarm circumf.

 Sample size is n = 20. 

 Test if these predictor variables 
affect E{Y}. 



Body Fat Data (CH07TA01) (cont’d)

In the Body Fat Data example, p = 4 and we 
produce an overall ANOVA as seen earlier:
> CH07TA01.lm = lm( Y ~ X1 + X2 + X3 )
> anova( lm(Y ~ 1), CH07TA01.lm )

Analysis of Variance Table
Model 1: Y ~ 1
Model 2: Y ~ X1 + X2 + X3
Res.Df RSS Df [SSR]      F    Pr(>F)
1    19 495.39 
2    16  98.40  3 396.98 21.516 7.343e-06

F* = 21.516  tests  Ho:β1=β2=β3=0   (P = 7.3×10–6)



Body Fat Data (CH07TA01) (cont’d)

The sequential SSR terms (with the ANOVA 
decomposition) are found using:

> anova( CH07TA01.lm )

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value    Pr(>F)   
X1    1  352.27  352.27 57.2768 1.131e-06
X2    1 33.17   33.17  5.3931   0.03373  
X3    1 11.55   11.55  1.8773   0.18956    
Resid. 16 98.40    6.15 

Partial F3* = 1.8773  tests  Ho:β3=0   (P = .1896)



Body Fat Data (CH07TA01) (cont’d)

A 2 df partial F-test – using SSR(X2,X3|X1) – is 
also easy to produce:
> anova( lm(Y ~ X1), CH07TA01.lm )

Analysis of Variance Table
Model 1: Y ~ X1
Model 2: Y ~ X1 + X2 + X3
Res.Df RSS Df Sum of Sq F  Pr(>F)  
1  18 143.120                              
2  16  98.405  2    44.715 3.6352 0.04995

F* = 3.6352  tests  Ho:β2=β3=0   (P = 0.04995)



Sequential Sums of Squares

 After fitting X1, we can sequentially fit X2, and then 
X3, etc.  Each term produces a sequential SSR in 
the order that they are fit (so order is important):  
SSR(X2|X1), and SSR(X3|X1,X2).

 The sequential SSR terms add up to the full SSR 
available in the ANOVA:
SSR(F) = SSR(X1) + SSR(X2|X1) + SSR(X3|X1,X2)

= SSTO – SSE(F)
 Sequential SSR’s allow for “sequential” testing of 

the Xk’s in the order they enter the model, using the 
ANOVA decomposition.



Sequential Sums of Squares (cont’d)

Recall the (sequenced) ANOVA table: 
Source d.f.   SS  MS   
Regr. p–1   SSR(F) MSR(F) 
 X1  1  SSR(X1) MSR(X1) 
 X2|X1  1  SSR(X2|X1) MSR(X2|X1) 
   ⁞  ⁞    ⁞     ⁞ 
 Xp–2|X1…Xp–3 1  SSR(Xp–2|X1…Xp–3) 
 MSR(Xp–2|X1…Xp–3) 
 Xp–1|X1…Xp–2 1  SSR(Xp–1|X1…Xp–2) 
 MSR(Xp–1|X1…Xp–2) 
Error n–p  SSE  MSE 
Total n–1  SSTO



Sequential Sums of Squares (cont’d)

 In general, for sequential testing via the 
SSR’s:

 Step 1. Start at the bottom with the partial 
test of Ho:βp–1 = 0 vs. Ha:βp–1 ≠ 0 (all tests 
are two-sided).  Find 
Fp–1* = MSR(Xp–1|X1…Xp–2)/MSE.

 Step 2a. If Fp–1* > F(1–α;1,n–p) then reject 
Ho and STOP.  (Cannot proceed further 
‘up’.)



Sequential Sums of Squares (cont’d)

 Step 2b. But if Fp–1* ≤ F(1–α;1,n–p) then 
fail to reject Ho and conclude βp–1 = 0.

 Step 3. Now, if βp–1 = 0, view SSR(Xp–1| 
X1…Xp–2) as inconsequential and proceed 
‘up’ to test Ho:βp–2 = 0 via

Fp–2* = MSR(Xp–2|X1…Xp–3)/MSE.
[Technically, we really should resorb SSR(Xp–1| 
X1…Xp–2) back into SSE, so this is a bit of a 
short-cut approximation.]



Sequential Sums of Squares (cont’d)

 Step 4a. If Fp–2* > F(1–α;1,n–p) then reject 
Ho:βp–2 = 0  and STOP.  (Cannot proceed 
further ‘up’.)

 Step 4b. But if Fp–2* ≤ F(1–α;1,n–p) then fail 
to reject Ho and conclude βp–2 = 0.

 Step 5. Now, if βp–2 = 0, view SSR(Xp–2|X1…
Xp–3) as inconsequential and proceed ‘up’ 
to test Ho:βp–3 = 0 via

Fp–3* = MSR(Xp–3|X1…Xp–4)/MSE.



Sequential Sums of Squares (cont’d)
 Step 5+. Continue ‘up the ladder’ in this 

fashion until the first rejection occurs –
stop there.

 Note that there is an issue of multiplicity 
here (same data are used to perform all the 
sequential tests).  If felt to be an issue, can 
apply a Bonferroni correction, but...that’s 
awfully conservative!

 If the SSR terms are orthogonal (see 
below), then the Kimball Inequality may be 
applicable.



§7.3: Summary of βk Testing

(A) To test Ho:β1 = … = βp–1 = 0 use “full” 
F-test via F* = MSR(F)/MSE ~ F(p–1,n–p).

(B) To test a single Ho:βk = 0 use “partial” 
F-test via 
Fk* = MSR(Xk|X1‚…‚Xk–1‚Xk+1‚…‚Xp–1)/MSE
with Fk* ~ F(1,n–p)

 Equiv. to t* = bk/s{bk} ~ t(n–p).



βk Testing (cont’d)

(C) To test a subset of βk’s, say (after 
reordering) Ho:βq = βq+1 = … = βp–1 = 0 use 
the p–q d.f. partial F-test via 
Fp-q* = MSR(Xq‚…‚Xp–1|X1‚…‚Xq–1)/MSE
with Fp-q* ~ F(p–q,n–p).

(D) To test something funkier, e.g., 
Ho:β3 = β4, need to build a reduced model 
(RM) under Ho and apply the FM-RM 
discrepancy approach from (2.70).



§7.4: Partial R2

 The quantity R2 = SSR/(SSR + SSE) can be 
manipulated in similar “sequential” or 
“partial” fashion, since it derives from SSR 
and SSE.

 For instance, suppose p–1 Xk’s make up 
FM. Consider the 4 predictors Xk, Xℓ, Xm, Xq.  
The partial R2 for Xk, given Xℓ, Xm, Xq is
RYk|ℓ,m,q

2 = SSR(Xk|Xℓ,Xm,Xq)/SSE(Xℓ,Xm,Xq)



Partial R2 (cont’d)

 RYk|ℓ,m,q
2 is called a 

Coefficient of Partial Determination.  

 Interpretation: % variation in Y 
explained by Xk given that Xℓ,Xm,Xq
have already been fit in the MLR 
model.



The partial R2 values are available from the 
anova() components:  e.g.,           is
> CH07TA01.aov = anova(lm(Y~X1+X2+X3))

> CH07TA01.aov[3,2]/anova(lm(Y~X1+X2))[3,2]
[1] 0.1050097

while         is
> CH07TA01.aov[2,2]/anova(lm(Y~X1))[2,2]
[1] 0.2317564

etc.

RY3|12
2

RY2|1
2  

Body Fat Data (CH07TA01) (cont’d)



§7.6: Multicollinearity

 The MLR calculations run into trouble 
when two different Xk’s represent the same 
information.

 For instance, if X3 = 2X2, there is no new
info. in X3.  [Technically, rank(XX) < p.]  So, 
the ANOVA breaks down – cf. Table 7.8.  
Most programs spot this and just drop X3.

 But, this is pretty obvious...



Multicollinearity (cont’d)

 What if 2 (or more!) Xk’s represent almost
the same info.?  We can still fit them in the 
MLR model, but they aren't really helping 
that much.

 Usual consequence: the sequential SSR’s 
get all mucked up.  E.g., suppose X1 and X2
are highly correlated & represent very 
similar info.  We might find SSR(X1) = 
352.27, but SSR(X1|X2) = 3.47.  Weird?  No: 
X1 fits fine until it’s swamped out by X2.



Multicollinearity (cont’d)

 So, when SSR(X1) >> SSR(X1|X2), it’s 
possible that the conclusions of the 
sequential F-tests could rely solely on the 
order under which the X’s are fit.

 Seems capricious!

 We say then that X1 & X2 are Multicollinear
(a bad thing).



Effects of Multicollinearity

Multicollinearity can:
• substantially affect the partial F-tests and 

how ordering of the Xk’s impacts the 
inferences;

• destabilize point estimates of bk [since 
(XX)–1 is “ill-conditioned”];

• destabilize (usually inflate!) s{bk}, s{pred}, 
etc.;

• botch up the partial R2 values.



Example: Body Fat Data (CH07TA01)

Find the correlations between Y and the Xk
predictor variables via the cor() command:
> cor( CH07TA01.df )

Y        X1        X2         X3
Y   1.000000  0.843265  0.8780896  0.1424440
X1  0.843265  1.000000  0.9238425  0.4577772
X2  0.878090  0.923843  1.0000000  0.0846675
X3  0.142444  0.457777  0.0846675  1.0000000

Large correlation between X1 and X2
 possible multicollinearity!



Scatterplot Matrix 
via pairs(CH07TA01.df)

High linear 
relationship 
between 
X1 and X2



Body Fat Data (CH07TA01) (cont’d)

Multicollinearity between X1 and X2 disturbs 
inferences from the ANOVA.  Compare the 

lm( Y ~ X1 + X2 + X3 )

ordering with 

lm( Y ~ X3 + X2 + X1 ) 

in terms of the sequential SSR’s
(see next slides →)



Body Fat Data (CH07TA01) (cont’d)

> anova( lm(Y ~ X1 + X2 + X3) )

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value    Pr(>F)
X1      1  352.27  352.27 57.2768 1.131e-06
X2      1   33.17   33.17  5.3931   0.03373
X3      1   11.55   11.55  1.8773   0.18956
Resid. 16   98.40   6.15

Sequencing “up the ladder”:
X3 appears insignif., then X2 (weakly) significant 
(so stop there)



Body Fat Data (CH07TA01) (cont’d)

> anova( lm(Y ~ X3 + X2 + X1) )

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value Pr(>F)
X3   1  10.1    10.1   1.634 0.219
X2   1  374.2   374.2  60.847 7.68e-07
X1   1  12.7    12.7   2.066 0.170
Resid. 16   98.40    6.15

Sequencing “up the ladder”:
X1 appears insignif., then X2 (strongly) significant 
(so stop there)  multicollin. is quite confusing!



Multicollinearity Control

 Are there remedies for multicollinearity?  
Not really.  (Too bad!)

 If selection of the Xk’s can be controlled, 
we can try to minimize multicollinearity 
amongst them.  

 Easiest way: drive corr(Xk,Xm) → 0 so that 
Xk and Xm are orthogonal.



Multicollinearity Control (cont’d)

 In fact, when corr(Xk,Xm) = 0, SSR(Xk|Xm) = 
SSR(Xk) and  SSR(Xm|Xk) = SSR(Xm).  
 “the sequentials equal the partials” 

 If so, no multicollinearity exists between 
them! (A good thing.)

 Otherwise, can try manipulating the 
ANOVA sequencing order of the Xk’s to 
isolate any strange inferences/collinear 
effects.



Example: Work Crew Data

In the Work Crew Data example (CH07TA06), 
the  p–1 = 2  Xk-variables are uncorrelated:  
> X1 = c( rep(4,4),rep(6,4) )
> X2 = rep( c(2,2,3,3), 2 )
> Y = c(42, 39, 48, 51, 49, 53, 61, 60)
> cor( cbind(Y,X1,X2) )

Y         X1         X2
Y   1.0000000  0.7419309  0.6384057
X1  0.7419309  1.0000000  0.0000000
X2  0.6384057  0.0000000  1.0000000



Work Crew Data (CH07TA06) (cont’d)

X1 and X2 exhibit no collinearity, so the re-
sulting sequential SSRs are orthogonal and 
unaffected by entry order in the ANOVA.  
Start with X1-then-X2:
> anova( lm(Y ~ X1 + X2) )
Analysis of Variance Table
Response: Y

Df  Sum Sq Mean Sq F value   Pr(>F)
X1     1 231.125 231.125  65.567 0.000466
X2     1 171.125 171.125  48.546 0.000937
Resid  5  17.625   3.525



Work Crew Data (CH07TA06) (cont’d)

Now fit X2-then-X1:
> anova( lm(Y ~ X2 + X1) )
Analysis of Variance Table
Response: Y

Df  Sum Sq Mean Sq F value   Pr(>F)
X2     1 171.125 171.125  48.546 0.000937
X1     1 231.125 231.125  65.567 0.000466
Resid  5  17.625   3.525

Notice that SSR(X2) = SSR(X2|X1) and 
SSR(X1|X2) = SSR(X1) (see previous slide).



Work Crew Data (CH07TA06) (cont’d)

Now just fit X2:
> anova( lm(Y ~ X2) )
Analysis of Variance Table
Response: Y

Df  Sum Sq Mean Sq F value   Pr(>F)
X2     1 171.12  171.125  4.1276  0.08846
Resid  6 248.75   41.458

SSR(X2) is unchanged but SSR(X1|X2) has been 
absorbed into SSE ( MSE rises sharply, so β2 no 
longer significant at α = .05!); cf. Table 7.7.


