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§8.1: Polynomial Regression

Mentioned in passing in §6.1, we now 
study polynomial regression in more 
detail.   
This is technically a special form of MLR, 
since it has more than one βk parameter. 
Simplest case: 2nd-order/single predictor 
model:  
    Yi = β0 + β1(Xi – 

—
X) + β2(Xi – 

—
X)2 + εi 

(i = 1,...,n) with εi ~ i.i.d.N(0,σ2).   



Polynomial Regression (cont’d)

For simplicity, write xi = (Xi – 
—
X): 

     Yi = β0 + β1xi + β2xi
2 + εi 

(Why?  Centering usually reduces multi-
collinearity with 2nd-order, and higher, 
predictors. Just do it.) 
This quadratic regression can be a useful 
approximation to data that deviate from 
strict linearity.  See Fig. 8.1  → 



Quadratic Regression



Cubic Regression

(Fig. 8.2.  Examples of 3rd-order, cubic 
regression polynomials.)



2nd-Order Response Surface
(Fig. 8.3.  Examples of 2nd-order response 
surface, as in §6.1.)



Testing Polynomial Models

 Sequential testing: for testing purposes, 
we start with the highest-order term and 
work down the order (‘up the ladder’).

 Suppose E{Yi} = β0 + β1xi + β11xi
2 + β111xi

3

• First test Ho:β111=0 via partial F-test and 
SSR(x3|x1,x2).  If signif., STOP and conclude 
cubic polynomial is significant.
• If Ho:β111=0 is NOT signif., drop β111 and go 

‘up ladder’ to test Ho:β11=0 via SSR(x2|x1).



Polynomial Regression (cont’d)

 E{Yi} = β0 + β1xi + β11xi
2 + β111xi

3 (cont’d)
• If Ho:β11=0 is signif., STOP and conclude 

quadratic polynomial is significant.
• If Ho:β11=0 is NOT signif., drop β11 and go 

‘up ladder’ to test Ho:β1=0 via SSR(x1).
• If Ho:β1=0 is signif., STOP and conclude 

simple linear model is significant.  Etc.
 Once sequential testing is complete, we 

usually go back and fit the final model in terms 
of the orig. Xk’s to get cleaner bk’s and std. 
errors.



Example: Power Cell Data (CH08TA01)

Power Cell Data example: Y = {# cycles} 
and we have 2 predictors (X1 = charge rate 
& X2 = temp.); see Table 8.1. Consider a 
2nd-order “response surface” MLR:
> Y = c(150, 86, 49, ..., 279, 235, 224)
> X1 = c(0.6, 1.0, 1.4, ..., 0.6, 1.0, 1.4)
> X2 = c( rep(10,3), rep(20,5), rep(30,3) )
> x1 = (X1 - mean(X1))/0.4
> x2 = (X2 - mean(X2))/min(X2)
>
> x1sq = x1*x1
> x2sq = x2*x2
> x1x2 = x1*x2



Power Cell Data (CH08TA01) (cont’d)

Selection of X1 and X2 was controlled.
 note the zero/near-zero correlations 
among the (transformed) x-variables:
> cor( cbind(x1, x2, x1sq, x2sq, x1x2) )

x1        x2      x1sq      x2sq      x1x2
x1    1.00e+00  0.00e+00 -4.04e-16 -1.99e-17  0.00e+00
x2    0.00e+00  1.00e+00  0.00e+00  0.00e+00 -9.06e-17
x1sq -4.04e-16  0.00e+00  1.00e+00  2.67e-01  0.00e+00
x2sq -1.99e-17  0.00e+00  2.67e-01  1.00e+00  0.00e+00
x1x2  0.00e+00 -9.06e-17  0.00e+00  0.00e+00 1.00e+00



Power Cell Data (CH08TA01) (cont’d)

Compare this to (non-trivial) correlations 
among orig. Xks, etc :
> cor( cbind(X1, X2, X1sq, X2sq, X1X2) )

X1     X2    X1sq     X2sq   X1X2

X1     1.00e+00  0.000  0.9910 -4.2e-18  0.605

X2     0.00e+00  1.000  0.0000  0.09861  0.757

X1sq   9.91e-01  0.000  1.0000  0.00592  0.600

X2sq  -4.16e-18  0.986  0.0059  1.0e+00  0.746

X1X2   6.05e-01  0.757  0.5999  7.5e-01  1.000



Power Cell Data (CH08TA01) (cont’d)

Full 2nd-order model fit with transfrm’d x’s:
> summary( lm(Y ~ x1 + x2 + x1sq + x2sq + x1x2) )
Call:
lm(formula = Y ~ x1 + x2 + x1sq + x2sq + x1x2)
Coefficients:

Estimate  Std.Error t value  Pr(>|t|)    
(Intercept)   162.84       16.6    9.81  0.00019
x1            -55.83       13.2   -4.22  0.00829 
x2             75.50       13.2    5.71  0.00230 
x1sq           27.39       20.3    1.35  0.23586
x2sq          -10.61       20.3   -0.52  0.62435
x1x2           11.50       16.2    0.71  0.50918



Power Cell Data (CH08TA01) (cont’d)
Residual analysis shows no serious issues:
> plot( resid(CH08TA01.lm) ~ fitted(CH08TA01.lm) )
> abline( h=0 )
> qqnorm( resid(CH08TA01.lm) )



Lack of Fit test.  Only joint replication is at x1=x2=0, 
so need to set up the  factor term carefully in R:
> LOFfactor = factor( c(seq(-4,-1), rep(0,3), 

seq(1,4)) )
> anova( CH08TA01.lm, lm(Y ~ LOFfactor) )

Analysis of Variance Table
Model 1: Y ~ x1 + x2 + x1sq + x2sq + x1x2
Model 2: Y ~ LOFfactor
Res.Df RSS  Df Sum of Sq F Pr(>F)

1      5 5240.4
2      2 1404.7   3  3835.8  1.82  0.374

LOF stat. is F* = 1.82 (P = 0.374).  No signif. lack of fit.

Power Cell Data (CH08TA01) (cont’d)



Partial F-test of 2nd-order terms 
(Ho:β11 = β22 = β12 = 0):
> anova( lm(Y ~ x1+x2), CH08TA01.lm )

Analysis of Variance Table
Model 1: Y ~ x1 + x2
Model 2: Y ~ x1 + x2 + x1sq + x2sq + x1x2

Res.Df RSS Df Sum of Sq F Pr(>F)
1      8 7700.33                             
2      5 5240.44  3   2459.89 0.782  0.553

Partial 3 df F-statistic is F* = 0.78 (P = 0.553).  
No signif. deviation from 0 seen in 2nd-order terms.

Power Cell Data (CH08TA01) (cont’d)



Fit reduced 1st-order model:
> summary( lm(Y ~ x1+x2) )
Call:
lm(formula = Y ~ x1 + x2)
Coefficients:

Estimate Std.Error t value  Pr(>|t|)    
(Intercept) 172.00     9.3543 18.3872 7.88e-08
x1          -55.83    12.6658 -4.4082 0.002262 
x2           75.50    12.6658  5.9609 0.000338

Multiple R-squared: 0.87294
Adjusted R-squared: 0.84118
F-stat.: 27.482 on 2 and 8 DF, p-val.: 0.00026

Power Cell Data (CH08TA01) (cont’d)



Bonferroni-adjusted simultaneous conf. 
intervals on 1st-order β-parameters (using 
original X-variables):
> g = length( coef(lm(Y ~ X1+X2)) ) - 1
> confint( lm(Y ~ X1+X2), 

level = 1-(.10/g) )

X1          -212.6020565 -66.564610
X2             4.6292511  10.470749

(cf. Textbook p. 305)

Power Cell Data (CH08TA01) (cont’d)



 Interaction cross-product terms can be 
included in any MLR to allow for 
interactions between the Xk-variables.

 E.g., E{Y} = β0 + β1X1 + β2X2 + β3X1X2

 The cross-product creates a departure 
from additivity in the mean response.  
If β3= 0, the mean response is strictly 
additive in X1 and X2.

Interaction Terms



Interaction Terms (cont’d)

 Notice that the usual interpretation for the 
βk parameters is muddied here.
• What does it mean to increase X1 by +1 unit 

while holding X1X2 fixed?!?
 Alt. interpretation: cross-product terms 

allow for ‘synergistic’ or ‘antagonistic’ 
interactions between the Xk-variables.

 It’s a special kind of departure from 
additivity:  synergy occurs for β3 > 0, 
antagonism for β3 < 0.



Figure 8.8
Graphics for (a) additive, (b) synergistic, or 
(c) antagonistic response surfaces.



Interaction Caveats
Need to be careful with interactions.
• If they exist and they are ignored, very poor

inferences on E{Y} will result.
• On the other hand, adding a ‘kitchen sink’ of 

all possible interactions can overwhelm the 
MLR.
 With 3 Xk-variables there are 3 possible 

pairwise interactions (not incl. the tri-way!)
 With 8 Xk-variables there are 28 possible 

pairwise interactions (not incl. multi-ways!)
 Things get unwieldy fast...



Body Fat Data (CH07TA01) (cont’d)

 To the 3 original Xk-variables now include 
all pairwise interactions.

 Center each X-variable (about its mean) 
first to assuage problems with multi-
collinearity: xik = Xik – k   (k = 1,2,3)

 MLR now has six predictor terms and p=7 
β-parameters: E{Y} = β0 + β1x1 + β2x2 + β3x3

+ β4x1x2 + β5x1x3 + β6x2x3

—
X 



 R can fit interaction terms using a special 
* operator:  
e.g.,  x1*x2 fits  x1 and x2 and x1:x2 
all with just 1 term.

 For the Body Fat data, construct centered 
x-variables as x1 = X1 – mean(X1), etc.  
Then call
> anova( lm(Y ~ x1 + x2 + x3), 

lm(Y ~ x1*x2 + x1*x3 + x2*x3) )

Output follows →

Body Fat Data (CH07TA01) (cont’d)



Output from partial F-test of all pairwise 
interactions:  
Analysis of Variance Table
Model 1: Y ~ x1 + x2 + x3
Model 2: Y ~ x1 * x2 + x1 * x3 + x2 * x3

Res.Df    RSS Df Sum of Sq      F Pr(>F)
1     16 98.405
2     13 87.690  3    10.715 0.5295 0.6699

Body Fat Data (CH07TA01) (cont’d)

Partial 3 df F-statistic is F* = 0.53 (P = 0.670).  
No signif. pairwise interactions are seen.



Can also include tri-way interactions:  
> anova( lm(Y ~ x1+x2+x3), lm(Y ~ x1*x2*x3) )
Analysis of Variance Table
Model 1: Y ~ x1 + x2 + x3
Model 2: Y ~ x1 * x2 * x3

Res.Df    RSS Df Sum of Sq      F Pr(>F)
1     16 98.405
2     12 85.571  4    12.834 0.4499 0.7707

Body Fat Data (CH07TA01) (cont’d)

4 d.f. partial F-statistic is F* = 0.45 (P = 0.771).  
 no signif. pairwise or tri-way interactions.



Qualitative Predictors
 We’ve seen cases where the X-variable 

was either 0 or 1 (called a binary
indicator).  If this indicated a qualitative 
state (say, 1 = ♀ or 0 = ♂) then the 
numbering is arbitrary.  The predictor is 
actually qualitative, not quantitative.

 (Still 0 vs. 1 is usually as good a pseudo-
quantification as any.)

 Question: What happens when binary 
indicators are combined with true 
quantitative predictors?



Example: Insur. Innov’n Data 

 Suppose we study 
Y = Insurance method adoption time (mos.)

in insurance companies, with 
X1 = size of firm (quantitative) 
X2 = type of firm: 1 = stock, 0 otherwise 
X3 = type of firm: 1 = mutual, 0 otherwise

 Design matrix is (n = 4): “X0”  X1 X2 X3

X = 










1 X11 1 0

1 X21 1 0
1 X31 0 1
1 X41 0 1

 



Design Matrix Problem

 But wait, there’s a problem with this design 
matrix X.  Notice that X0 = X2 + X3 so the 
predictors are not linearly independent: 
rank(X′X) = 3 < 4 = p. (See p. 314.)
• The MLR will fail!

 Solution is (usually) to eliminate X3 and 
model  E{Y} = β0 + β1X1 + β2X2.

 Model interpretation here is actually sorta’ 
intriguing  →



Two Straight Lines
 For E{Y} = β0 + β1X1 + β2X2, with X1 quantita-

tive and X2 a 0-1 indicator, consider:
• When X2 = 0 (mutual firm), E{Y} = β0 + β1X1, an 

SLR on X1 with slope β1 and Y-intercept β0.
• When X2 = 1 (stock firm), 

E{Y} = (β0 + β2) + β1X1, an SLR on X1 with 
same slope β1 but new Y-intercept (β0 + β2).

 So we have two parallel straight lines—each 
with same σ2—one for stock firms (X2 = 1) 
and one for mutual firms (X2 = 0).



ANCOVA Graphic



Tests in Equal-Slopes ANCOVA

 For this equal-slopes ANCOVA model, 
some obvious hypotheses are
• (first) Ho: β2 = 0  

(i.e., no diff. between type  lines are same)
• (next) Ho: β1 = 0  

(i.e., no effect of size  lines are flat)

 Data are in Table 8.2; n = 20.
R code/analysis follows  →



Insur. Innov’n Data (CH08TA02) 

Y = Insurance method adoption time
X1 = size of firm
X2 = type of firm (mutual vs. stock)
> Y = c(17, 26, ..., 30, 14)
> X1 = c(151, 92 , ..., 124, 246)
> X2 = c( rep(0,10), rep(1,10) )

Scatterplot using
> plot( Y ~ X1, pch=1+(18*X2) )

(next slide →) shows two separate 
scatterlines, one for each type of firm.



Insur. Innov’n Data 
(CH08TA02) Scatterplot

Plot shows 
dual linear 
relationship, 
indexed by 
type of firm



Insur. Innov’n (CH08TA02) (cont’d)

Equal-slopes ANCOVA in R:
> CH08TA02.lm = lm( Y ~ X1 + X2 )
> summary( CH08TA02.lm )

Call:
lm(formula = Y ~ X1 + X2)

Coefficients:
Estimate Std. Error t value  Pr(>|t|)    

(Intercept) 33.874069   1.813858  18.675  9.15e-13
X1          -0.101742   0.008891 -11.443  2.07e-09
X2           8.055469   1.459106   5.521  3.74e-05 

Multiple R-squared: 0.8951, Adjusted R-squ.: 0.8827 
F-statistic: 72.5 on 2 and 17 DF, p-value: 4.77e-09



Insur. Innov’n (CH08TA02) (cont’d)

ANOVA table (with sequential SSRs):
> CH08TA02.lm = lm( Y ~ X1 + X2 )
> anova( CH08TA02.lm )

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value  Pr(>F)
X1      1 1188.17 1188.17  114.51 5.68e-09
X2      1  316.25 316.25   30.48 3.74e-05
Resid. 17  176.39 10.38

Partial F* = 30.48 for X2 (P = 3.7×10–5), so the two ‘types’ are 
signif. different (cf. Table 8.3).



Insur. Innov’n (CH08TA02) (cont’d)

Pointwise conf. intervals from ANCOVA:
> CH08TA02.lm = lm( Y ~ X1 + X2 )
> confint( CH08TA02.lm )

2.5 %      97.5 %
(Intercept) 30.0471625 37.70097553
X1          -0.1205009 -0.08298329
X2           4.9770253 11.13391314

So, e.g., if interest is in effect of type of firm (X2), 
we see stock firms take between 

4.98 ≤ β2 ≤ 11.13 
months longer to adopt the innovation.



Insur. Innov’n Data (CH08TA02) (cont’d)

Scatterplot  
with separate, 
equal-slope 
lines overlaid 
(cf. Fig. 8.12)



Multiple-Level ANCOVA

If more than 2 
levels are 
represented by 
the qualitative 
factor, just 
include more 
(parallel) lines: 
one line for each 
level of the 
factor. See, e.g., 
Fig. 8.13



Unequal-Slopes ANCOVA

 How to incorporate differential slopes in a 
(two-factor/two-level) ANCOVA?

 Easy! Just add an X1X2 interaction term:
E{Y} = β0 + β1X1 + β2X2 + β3X1X2.

• When X2 = 0, E{Y} = β0 + β1X1, an SLR on X1
with slope β1 and Y-intercept β0.
• When X2 = 1, E{Y} = (β0 + β2) + (β1 + β3)X1, an 

SLR on X1 with new slope (β1 + β3) and new 
Y-intercept (β0 + β2).



Unequal-Slopes ANCOVA

For instance, with 
the Insur. Innov’n 
Data (CH08TA02), Fig. 
8.14 conceptualizes 
the unequal-slopes 
model  →



Insur. Innov’n (CH08TA02) (cont’d)

Unequal-slopes ANCOVA in R, via interaction 
term and * operator:
> summary( lm(Y ~ X1*X2) )

Call:
lm(formula = Y ~ X1 * X2)

Coefficients:
Estimate Std. Error t value  Pr(>|t|)    

(Intercept) 33.8383695  2.4406498  13.864  2.47e-10
X1          -0.1015306  0.0130525  -7.779  7.97e-07
X2           8.1312501  3.6540517   2.225    0.0408  
X1:X2       -0.0004171  0.0183312  -0.023    0.9821

Multiple R-squared: 0.8951, Adjusted R-squ.: 0.8754 
F-statistic: 45.49 on 3 and 16 DF, p-val.: 4.68e-08



Insur. Innov’n (CH08TA02) (cont’d)

ANOVA table (with sequential SSRs) for unequal-
slopes ANCOVA model:
> anova( lm(Y ~ X1*X2) )

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value Pr(>F)
X1      1 1188.17 1188.17 107.7819 1.63e-08
X2      1  316.25  316.25  28.6875 6.43e-05
X1:X2   1    0.01    0.01   0.0005   0.9821
Resid. 16  176.38   11.02 

X1*X2 interaction P-value > .05, so no signif. departure 
from equal slopes is indicated (cf. Table 8.4)



§8.6:  Multi-Factor ANCOVA

 The ANCOVA model can be extended to 
more than one quantitative X-variable.

 The concepts are essentially unchanged, 
just in a higher-dimensional space: the 
hyperplanes are all parallel and the 
qualitative predictor changes locations of 
the hyper-intercepts.

 Sounds trickier, but not really that different 
and not much harder to program.



Only Qualitative Predictors

 What if all the predictor variables are quali-
tative (0-1) indicators?

 In effect, the model structure is more 
circumspect, since we are now just 
comparing the mean responses across the 
levels of each qualitative factor.

 This is known as ANOVA modeling, and is 
studied in STAT 571B.



§8.7: Comparing Multiple Regression 
Curves

 Let’s do a fully coordinated example of 
how to compare two regression functions.

 Example: Production Line Data (CH08TA05)
with 
Y = Soap Production ‘Scrap’
X1 = Product’n Line Speed
X2 = Line Indicator (Line 1 vs. Line 2)

 Start with a scatterplot  →



Sec. 8.7: Product’n Line Data 
(CH08TA05) Scatterplot

Plot shows 
dual linear 
relationship, 
indexed by 
prod’n line



Product’n Line Data (CH08TA05) (cont’d)

Unequal-slopes ANCOVA in R, via interaction 
term and * operator:
> summary( lm(Y ~ X1*X2) )

Call:
lm(formula = Y ~ X1 * X2)

Coefficients:
Estimate Std. Error t value  Pr(>|t|)    

(Intercept)  7.57446   20.86970   0.363   0.71996    
X1           1.32205    0.09262  14.273  6.45e-13
X2          90.39086   28.34573   3.189   0.00409 
X1:X2       -0.17666    0.12884  -1.371   0.18355

Multiple R-squ.: 0.9447,  Adjusted R-squ.: 0.9375 
F-statistic: 130.9 on 3 and 23 DF, p-val.: 1.34e-14



Product’n Line Data (CH08TA05) (cont’d)

Per-line residual plots (cf. Fig. 8.17):



Product’n Line Data (CH08TA05) (cont’d)

Brown-Forsythe test for equal σ2 between the two 
product’n lines shows insignif. P = 0.53:
> library( lawstat )
> BF.htest = levene.test( resid( CH08TA05.lm ),

group=X2, location=“median” )

modified robust Brown-Forsythe Levene-type test 
based on the absolute deviations from the median

data:  ei 
Test Statistic = 0.4047, p-value = 0.5304 

> sqrt( BF.htest$statistic )
Test Statistic 

0.6361795       #BF t*-stat. (cf. p.333)



Product’n Line Data (CH08TA05) (cont’d)

ANOVA table (with sequential SSRs) for unequal-
slopes model:
> anova( lm(Y ~ X1*X2) )

Analysis of Variance Table
Response: Y

Df  Sum Sq Mean Sq F value    Pr(>F)
X1         1 149661  149661 347.5548 2.224e-15
X2         1  18694   18694  43.4129 1.009e-06
X1:X2      1    810     810   1.8802    0.1835    
Residuals 23   9904     431

(cf. Table 8.6)



Product’n Line Data (CH08TA05) (cont’d)

ANOVA partial F-test for identity of lines (Ho:β2=β3=0):
> anova( lm(Y ~ X1), lm(Y ~ X1*X2) )

Analysis of Variance Table
Model 1: Y ~ X1
Model 2: Y ~ X1 * X2

Res.Df     RSS Df Sum of Sq      F    Pr(>F)
1     25 29407.8
2     23  9904.1  2     19504 22.646 3.669e-06 

2 d.f. partial F* = 22.65 (P = 3.7×10–6), so two lines are 
significantly different (somehow).



Product’n Line Data (CH08TA05) (cont’d)

ANOVA partial F-test for identity of slopes (Ho:β3 = 0):
> anova( lm(Y ~ X1+X2), lm(Y ~ X1*X2) )

Analysis of Variance Table
Model 1: Y ~ X1 + X2
Model 2: Y ~ X1 * X2
Res.Df RSS Df Sum of Sq F Pr(>F)

1     24 10713.7
2     23  9904.1  1    809.62 1.8802 0.1835 

1 d.f. partial F* = 1.88 (P = 0.1835), so two lines have 
insignificantly different slopes.
(NB: Should adjust the 2 inferences on β2 and β3 for multiplicity.)


