STAT 571A - Advanced Statistical Regression Analysis

Chapter 8 NOTES Quantitative and Qualitative Predictors for MLR

© 2017 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means - electronic, online, mechanical, photoreproduction, recording, or scanning - without the prior written consent of the course instructor.

§8.1: Polynomial Regression

Mentioned in passing in §6.1, we now study polynomial regression in more detail.

This is technically a special form of MLR, since it has more than one β_{k} parameter. Simplest case: 2nd-order/single predictor model:

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1}\left(X_{i}-\bar{X}\right)+\beta_{2}\left(X_{i}-\bar{X}\right)^{2}+\varepsilon_{i} \\
& (i=1, \ldots, n) \text { with } \varepsilon_{i} \sim \text { i.i.d.N }\left(0, \sigma^{2}\right) .
\end{aligned}
$$

Polynomial Regression (cont'd)

For simplicity, write $x_{i}=\left(X_{i}-\bar{X}\right)$:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\varepsilon_{i}
$$

(Why? Centering usually reduces multicollinearity with 2nd-order, and higher, predictors. Just do it.)
This quadratic regression can be a useful approximation to data that deviate from strict linearity. See Fig. $8.1 \longrightarrow$

Quadratic Regression

FIGURE 8.1
Examples of Second-Order Polynomial Response Functions.

(a)

(b)

Cubic Regression

(Fig. 8.2. Examples of 3rd-order, cubic regression polynomials.)

(a)

(b)

2nd-Order Response Surface

(Fig. 8.3. Examples of 2nd-order response surface, as in §6.1.)

Testing Polynomial Models

- Sequential testing: for testing purposes, we start with the highest-order term and work down the order ('up the ladder').
- Suppose $E\left\{Y_{i}\right\}=\beta_{0}+\beta_{1} x_{i}+\beta_{11} x_{i}^{2}+\beta_{111} x_{i}^{3}$
- First test $\mathrm{H}_{0}: \beta_{111}=0$ via partial F-test and $\operatorname{SSR}\left(x_{3} \mid x_{1}, x_{2}\right)$. If signif., STOP and conclude cubic polynomial is significant.
- If $\mathrm{H}_{0}: \boldsymbol{\beta}_{111}=0$ is NOT signif., drop β_{111} and go 'up ladder' to test $\mathrm{H}_{0}: \beta_{11}=0$ via $\operatorname{SSR}\left(x_{2} \mid x_{1}\right)$.

Polynomial Regression (cont'd)

- $E\left\{Y_{i}\right\}=\beta_{0}+\beta_{1} x_{i}+\beta_{11} x_{i}^{2}+\beta_{111} x_{i}^{3} \quad$ (cont'd)
- If $\mathrm{H}_{0}: \beta_{11}=0$ is signif., STOP and conclude quadratic polynomial is significant.
- If $H_{0}: \beta_{11}=0$ is NOT signif., drop β_{11} and go 'up ladder' to test $\mathrm{H}_{0}: \beta_{1}=0$ via $\operatorname{SSR}\left(x_{1}\right)$.
- If $\mathrm{H}_{0}: \beta_{1}=0$ is signif., STOP and conclude simple linear model is significant. Etc.
- Once sequential testing is complete, we usually go back and fit the final model in terms of the orig. X_{k} 's to get cleaner b_{k} 's and std. errors.

Example: Power Cell Data (CH08TA01)

Power Cell Data example: $\mathrm{Y}=\{\#$ cycles $\}$ and we have 2 predictors ($\mathrm{X}_{1}=$ charge rate \& $X_{2}=$ temp.); see Table 8.1. Consider a 2nd-order "response surface" MLR:
> Y = c(150, 86, 49, ..., 279, 235, 224)
$>\mathrm{X1}=\mathrm{c}(0.6,1.0,1.4, \ldots, 0.6,1.0,1.4)$
$>x 2$ = c(rep(10,3), rep(20,5), rep(30,3))
$>x 1=(X 1-m e a n(X 1)) / 0.4$
$>x 2=(X 2-m e a n(X 2)) / m i n(X 2)$
$>$
> x1sq = x1*x1
> x2sq = x2*x2
$>x 1 x 2=x 1 * x 2$

Power Cell Data (CH08TA01) (cont'd)

Selection of X_{1} and X_{2} was controlled.
\Rightarrow note the zero/near-zero correlations among the (transformed) x-variables:
$>\operatorname{cor}(\mathrm{cbind}(x 1, x 2, x 1 s q, x 2 s q, x 1 x 2)$)

	x1	x2	x1sq	x2sq	x1x2
x1	1.00e+00	0.00e+00	-4.04e-16	-1.99e-17	$0.00 \mathrm{e}+00$
x2	0.00e+00	$1.00 \mathrm{e}+00$	0.00e+00	0.00e+00	-9.06e-17
x1sq	-4.04e-16	$0.00 \mathrm{e}+00$	$1.00 \mathrm{e}+00$	2.67e-01	$0.00 \mathrm{e}+00$
x2sq	-1.99e-17	$0.00 \mathrm{e}+00$	2.67e-01	$1.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$
x1x2	0.00e+00	-9.06e-17	0.00e+00	0.00e+00	1.00e+00

Power Cell Data (CH08TA01) (cont'd)

Compare this to (non-trivial) correlations among orig. $X_{k} \mathrm{~s}$, etc :
$>\operatorname{cor}(\mathrm{cbind}(\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 1 \mathrm{sq}, \mathrm{X} 2 \mathrm{sq}, \mathrm{X} 1 \mathrm{X} 2)$)
X1 X2 X1sq X2sq X1X2

X1	$1.00 \mathrm{e}+00$	0.000	0.9910	$-4.2 \mathrm{e}-18$	0.605
X2	$0.00 \mathrm{e}+00$	1.000	0.0000	0.09861	0.757
X 1 sq	$9.91 \mathrm{e}-01$	0.000	1.0000	0.00592	0.600
X2sq	$-4.16 \mathrm{e}-18$	0.986	0.0059	$1.0 \mathrm{e}+00$	0.746
X1X2	$6.05 \mathrm{e}-01$	0.757	0.5999	$7.5 \mathrm{e}-01$	1.000

Power Cell Data (CH08TA01) (cont'd)

Full 2nd-order model fit with transfrm'd x 's:

> summary(lm(Y ~ x1 + x2 + x1sq + x2sq + x1x2)) Call:
lm(formula = Y ~ x1 + x2 + x1sq + x2sq + x1x2) Coefficients:

Estimate Std.Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

(Intercept)	162.84	16.6	9.81	0.00019
x1	-55.83	13.2	-4.22	0.00829
x2	75.50	13.2	5.71	0.00230
x1sq	27.39	20.3	1.35	0.23586
x2sq	-10.61	20.3	-0.52	0.62435
x1x2	11.50	16.2	0.71	0.50918

Power Cell Data (CH08TA01) (cont'd)

Residual analysis shows no serious issues:

> plot(resid(CH08TA01.lm) ~ fitted(CH08TA01.lm))
> abline(h=0)
> qqnorm(resid(CH08TA01.lm))

Predicted value

Power Cell Data (CH08TA01) (cont'd)

Lack of Fit test. Only joint replication is at $x_{1}=x_{2}=0$, so need to set up the factor term carefully in R :
> LOFfactor $=$ factor $(c(s e q(-4,-1), ~ r e p(0,3)$, $\operatorname{seq}(1,4))$)
> anova(CH08TA01.lm, lm(Y ~ LOFfactor))
Analysis of Variance Table
Model 1: Y ~ x1 + x2 + x1sq + x2sq + x1x2
Model 2: Y ~ LOFfactor
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
$1 \quad 5 \quad 5240.4$
2
21404.7

3
3835.81 .82
0.374

LOF stat. is $F^{*}=1.82(P=0.374)$. No signif. lack of fit.

Power Cell Data (CH08TA01) (cont'd)

Partial F-test of 2nd-order terms
$\left(H_{0}: \beta_{11}=\beta_{22}=\beta_{12}=0\right)$:
> anova($\operatorname{lm}(\mathrm{Y} \sim \mathrm{x} 1+\mathrm{x} 2)$, CH08TA01.lm)
Analysis of Variance Table
Model 1: Y ~ x1 + x2
Model 2: Y ~ x1 + x2 + x1sq + x2sq + x1x2
Res.Df RSS Df Sum of Sq F Pr(>F)
1
87700.33
$\begin{array}{llllllll}1 & 5 & 5240.44 & 3 & 2459.89 & 0.782 & 0.553\end{array}$
Partial 3 df F -statistic is $F^{*}=0.78(P=0.553)$.
No signif. deviation from 0 seen in $2 n d-o r d e r$ terms.

Power Cell Data (CH08TA01) (cont'd)

Fit reduced 1st-order model:

> summary(lm(Y ~ x1+x2))
Call:
lm(formula = Y ~ x1 + x2)
Coefficients:
Estimate Std.Error t value $\operatorname{Pr}(>|\mathrm{t}|)$ (Intercept) $172.00 \quad 9.354318 .38727 .88 \mathrm{e}-08$ $\begin{array}{llllll}\mathrm{x} 1 & -55.83 & 12.6658 & -4.4082 & 0.002262\end{array}$
$\begin{array}{llll}x 2 & 75.50 & 12.6658 & 5.9609 \\ 0.000338\end{array}$
Multiple R-squared: 0.87294
Adjusted R-squared: 0.84118
F-stat.: 27.482 on 2 and 8 DF, p-val.: 0.00026

Power Cell Data (CH08TA01) (cont'd)

Bonferroni-adjusted simultaneous conf. intervals on 1st-order β-parameters (using original X-variables):
> g = length(coef(lm(Y ~X1+X2))) - 1
> confint(lm(Y ~ X1+X2),

$$
\text { level }=1-(.10 / \mathrm{g}))
$$

X1
X2

$$
\begin{array}{rr}
-212.6020565 & -66.564610 \\
4.6292511 & 10.470749
\end{array}
$$

(cf. Textbook p. 305)

Interaction Terms

- Interaction cross-product terms can be included in any MLR to allow for interactions between the X_{k}-variables.
- E.g., $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}$
- The cross-product creates a departure from additivity in the mean response. If $\beta_{3}=0$, the mean response is strictly additive in X_{1} and X_{2}.

Interaction Terms (cont'd)

- Notice that the usual interpretation for the β_{k} parameters is muddied here.
- What does it mean to increase X_{1} by +1 unit while holding $\mathrm{X}_{1} \mathrm{X}_{2}$ fixed?!?
- Alt. interpretation: cross-product terms allow for 'synergistic' or 'antagonistic' interactions between the X_{k}-variables.
- It's a special kind of departure from additivity: synergy occurs for $\beta_{3}>0$, antagonism for $\beta_{3}<0$.

Figure 8.8

Graphics for (a) additive, (b) synergistic, or (c) antagonistic response surfaces.

Interaction Caveats

Need to be careful with interactions.

- If they exist and they are ignored, very poor inferences on E\{Y\} will result.
- On the other hand, adding a 'kitchen sink' of all possible interactions can overwhelm the MLR.
\rightarrow With $3 X_{k}$-variables there are 3 possible pairwise interactions (not incl. the tri-way!)
\rightarrow With $8 \mathrm{X}_{\mathrm{k}}$-variables there are 28 possible pairwise interactions (not incl. multi-ways!)
\rightarrow Things get unwieldy fast...

Body Fat Data (CH07TA01) (cont'd)

- To the 3 original X_{k}-variables now include all pairwise interactions.
- Center each X-variable (about its mean) first to assuage problems with multicollinearity: $x_{i k}=X_{i k}-\bar{X}_{k} \quad(k=1,2,3)$
- MLR now has six predictor terms and $\mathrm{p}=7$ β-parameters: $E\{Y\}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$ $+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{3}+\beta_{6} x_{2} x_{3}$

Body Fat Data (CH07TA01) (cont'd)

- R can fit interaction terms using a special * operator:
e.g., $x 1^{*} x 2$ fits $x 1$ and $x 2$ and $x 1: x 2$ all with just 1 term.
- For the Body Fat data, construct centered x-variables as xi = X1 - mean (X1), etc. Then call
> anova($\operatorname{lm}(Y \sim x 1+x 2+x 3)$,

$$
\left.\operatorname{lm}\left(Y \sim x 1^{*} x 2+x 1^{*} x 3+x 2^{*} x 3\right)\right)
$$

Output follows \rightarrow

Body Fat Data (CH07TA01) (cont'd)

Output from partial F-test of all pairwise interactions:

Analysis of Variance Table
Model 1: Y ~ x1 + x2 + x3
Model 2: Y ~ x1 * x2 + x1 * x3 + x2 * x3
Res.Df RSS Df Sum of Sq F Pr(>F)
$1 \quad 1698.405$
$2 \quad 1387.690 \quad 3 \quad 10.715 \quad 0.5295 \quad 0.6699$
Partial 3 df F-statistic is $F^{*}=0.53(P=0.670)$.
No signif. pairwise interactions are seen.

Body Fat Data (CH07TA01) (cont'd)

Can also include tri-way interactions:
> anova(lm(Y ~ x1+x2+x3), lm(Y ~ x1*x2*x3))
Analysis of Variance Table
Model 1: Y ~ x1 + x2 + x3
Model 2: Y ~ x1 * x2 * x3
Res.Df RSS Df Sum of Sq F Pr(>F)
$1 \quad 1698.405$
$2 \quad 1285.571 \quad 4 \quad 12.834 \quad 0.4499 \quad 0.7707$
4 d.f. partial F-statistic is $F^{*}=0.45(P=0.771)$.
\Rightarrow no signif. pairwise or tri-way interactions.

Qualitative Predictors

- We've seen cases where the X-variable was either 0 or 1 (called a binary indicator). If this indicated a qualitative state (say, $\mathbf{1}=q$ or $\mathbf{0}=\delta^{\lambda}$) then the numbering is arbitrary. The predictor is actually qualitative, not quantitative.
- (Still 0 vs. 1 is usually as good a pseudoquantification as any.)
- Question: What happens when binary indicators are combined with true quantitative predictors?

Example: Insur. Innov'n Data

- Suppose we study
$\mathrm{Y}=$ Insurance method adoption time (mos.) in insurance companies, with $\mathrm{X}_{1}=$ size of firm (quantitative)
$\mathrm{X}_{2}=$ type of firm: 1 = stock, 0 otherwise $X_{3}=$ type of firm: $1=$ mutual, 0 otherwise
- Design matrix is $(\mathbf{n}=4): \begin{array}{lllll}" X_{0} " & X_{1} & X_{2} & X_{3} \\ X & =\left[\begin{array}{llll}1 & X_{11} & 1 & 0 \\ 1 & X_{21} & 1 & 0 \\ 1 & X_{31} & 0 & 1 \\ 1 & X_{41} & 0 & 1\end{array}\right]\end{array}$

Design Matrix Problem

- But wait, there's a problem with this design matrix X. Notice that $X_{0}=X_{2}+X_{3}$ so the predictors are not linearly independent: $\operatorname{rank}\left(X^{\prime} X\right)=3<4=p$. (See p. 314.)
- The MLR will fail!
- Solution is (usually) to eliminate X_{3} and model $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$.
- Model interpretation here is actually sorta' intriguing \rightarrow

Two Straight Lines

■ For $E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$, with X_{1} quantitative and X_{2} a-1 indicator, consider:

- When $X_{2}=0$ (mutual firm), $E\{Y\}=\beta_{0}+\beta_{1} X_{1}$, an SLR on X_{1} with slope β_{1} and Y-intercept β_{0}.
- When $X_{2}=1$ (stock firm),
$E\{Y\}=\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{1}$, an SLR on X_{1} with same slope β_{1} but new Y-intercept ($\beta_{0}+\beta_{2}$).
- So we have two parallel straight lines-each with same σ^{2}-one for stock firms ($X_{2}=1$) and one for mutual firms ($\mathrm{X}_{2}=0$).

ANCOVA Graphic

FIGURE 8.11
Illustration of Meaning of Regression Coefficients for Regression Model (8.33) with Indicator Variable
X_{2}-Insurance Innovation Example.

Tests in Equal-Slopes ANCOVA

- For this equal-slopes ANCOVA model, some obvious hypotheses are
- (first) $\mathrm{H}_{0}: \boldsymbol{\beta}_{2}=0$
(i.e., no diff. between type \Rightarrow lines are same)
- (next) H_{0} : $\boldsymbol{\beta}_{1}=0$
(i.e., no effect of size \Rightarrow lines are flat)
- Data are in Table 8.2; $\mathrm{n}=20$.

R code/analysis follows \rightarrow

Insur. Innov'n Data (CH08TA02)

$\mathrm{Y}=$ Insurance method adoption time
$X_{1}=$ size of firm
$X_{2}=$ type of firm (mutual vs. stock)
> Y = c(17, 26, ..., 30, 14)
$>\mathrm{X} 1=c(151,92, \ldots, 124,246)$
$>X 2=c(\operatorname{rep}(0,10), \operatorname{rep}(1,10))$
Scatterplot using
> plot(Y ~ X1, pch=1+(18*X2))
(next slide \rightarrow) shows two separate scatterlines, one for each type of firm.

Insur. Innov'n Data (CH08TA02) Scatterplot

Plot shows dual linear relationship, indexed by type of firm $\xrightarrow{\longrightarrow}$

Insur. Innov'n (CH08TA02) (cont'd)

Equal-slopes ANCOVA in R:

> CH08TA02.lm = lm(Y ~ X1 + X2)
> summary(CH08TA02.lm)
Call:
lm(formula = Y ~ X1 + X2)
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $33.874069 \quad 1.813858 \quad 18.675 \quad 9.15 \mathrm{e}-13$
X1 -0.101742 0.008891 -11.443 2.07e-09
$\begin{array}{lllll}\mathrm{X2} & 8.055469 & 1.459106 & 5.521 & 3.74 \mathrm{e}-05\end{array}$
Multiple R-squared: 0.8951, Adjusted R-squ.: 0.8827 F-statistic: 72.5 on 2 and 17 DF, p-value: 4.77e-09

Insur. Innov'n (CH08TA02) (cont'd)

ANOVA table (with sequential SSRs):
> CH08TA02.lm = lm(Y ~ X1 + X2)
> anova(CH08TA02.lm)
Analysis of Variance Table Response: Y

Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>F)$
$\begin{array}{llllll}\text { X1 } & 1188.17 & 1188.17 & 114.51 & 5.68 e-09\end{array}$
$\begin{array}{lllllll}\mathrm{X} 2 & 1 & 316.25 & 316.25 & 30.48 & 3.74 \mathrm{e}-05\end{array}$
Resid. $17176.39 \quad 10.38$
Partial $F^{*}=30.48$ for $X_{2}\left(P=3.7 \times 10^{-5}\right)$, so the two 'types' are signif. different (cf. Table 8.3).

Insur. Innov'n (CH08TA02) (cont'd)

Pointwise conf. intervals from ANCOVA:
> CH08TA02.lm = lm(Y ~ X1 + X2)
> confint(CH08TA02.lm)

$$
\begin{array}{lrr}
& 2.5 \% & 97.5 \% \\
\text { (Intercept) } & 30.0471625 & 37.70097553 \\
\text { X1 } & -0.1205009 & -0.08298329 \\
\text { X2 } & 4.9770253 & 11.13391314
\end{array}
$$

So, e.g., if interest is in effect of type of firm (X_{2}), we see stock firms take between

$$
4.98 \leq \beta_{2} \leq 11.13
$$

months longer to adopt the innovation.

Insur. Innov'n Data (CH08TA02) (cont'd)

Scatterplot with separate, equal-slope lines overlaid (cf. Fig. 8.12)

Multiple-Level ANCOVA

If more than 2 levels are represented by the qualitative factor, just include more (parallel) lines: one line for each level of the
factor. See, e.g.,
Fig. 8.13

Unequal-Slopes ANCOVA

- How to incorporate differential slopes in a (two-factor/two-level) ANCOVA?
- Easy! Just add an $X_{1} X_{2}$ interaction term:

$$
E\{Y\}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2} .
$$

- When $X_{2}=0, E\{Y\}=\beta_{0}+\beta_{1} X_{1}$, an SLR on X_{1} with slope β_{1} and Y-intercept β_{0}.
- When $X_{2}=1, E\{Y\}=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) X_{1}$, an SLR on X_{1} with new slope ($\beta_{1}+\beta_{3}$) and new Y -intercept $\left(\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{2}\right)$.

Unequal-Slopes ANCOVA

For instance, with the Insur. Innov'n Data (CH08TA02), Fig. 8.14 conceptualizes the unequal-slopes model \rightarrow

Insur. Innov'n (CH08TA02) (cont'd)

Unequal-slopes ANCOVA in R, via interaction term and * operator:

> summary(lm(Y ~ X1*X2))
Call:
lm(formula = Y ~ X1 * X2)
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $33.8383695 \quad 2.4406498 \quad 13.864 \quad 2.47 \mathrm{e}-10$

| X 1 | -0.1015306 | 0.0130525 | -7.779 | $7.97 \mathrm{e}-07$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\text { X2 } & 8.1312501 & 3.6540517 & 2.225 & 0.0408\end{array}$
$\begin{array}{lllll}\text { X1:X2 } & -0.0004171 & 0.0183312 & -0.023 & 0.9821\end{array}$
Multiple R-squared: 0.8951, Adjusted R-squ.: 0.8754 F-statistic: 45.49 on 3 and 16 DF, p-val.: 4.68e-08

Insur. Innov'n (CH08TA02) (cont'd)

ANOVA table (with sequential SSRs) for unequalslopes ANCOVA model:
> anova(lm(Y ~ X1*X2))
Analysis of Variance Table Response: Y

	Df	Sum Sq Mean Sq	F value	$\operatorname{Pr}(>F)$	
X1	1	1188.17	1188.17	107.7819	$1.63 \mathrm{e}-08$
X2	1	316.25	316.25	28.6875	$6.43 \mathrm{e}-05$
X1:X2	1	0.01	0.01	0.0005	0.9821
Resid.	16	176.38	11.02		

X1*X2 interaction P-value > .05, so no signif. departure from equal slopes is indicated (cf. Table 8.4)

§8.6: Multi-Factor ANCOVA

- The ANCOVA model can be extended to more than one quantitative X -variable.
- The concepts are essentially unchanged, just in a higher-dimensional space: the hyperplanes are all parallel and the qualitative predictor changes locations of the hyper-intercepts.
- Sounds trickier, but not really that different and not much harder to program.

Only Qualitative Predictors

- What if all the predictor variables are qualitative (0-1) indicators?
- In effect, the model structure is more circumspect, since we are now just comparing the mean responses across the levels of each qualitative factor.
- This is known as ANOVA modeling, and is studied in STAT 571B.

§8.7: Comparing Multiple Regression Curves

- Let's do a fully coordinated example of how to compare two regression functions.
- Example: Production Line Data (CH08TA05) with
Y = Soap Production 'Scrap'
$X_{1}=$ Product'n Line Speed
$X_{2}=$ Line Indicator (Line 1 vs. Line 2)
- Start with a scatterplot \rightarrow

Sec. 8.7: Product'n Line Data (CH08TA05) Scatterplot

Plot shows dual linear relationship, indexed by prod'n line

Product'n Line Data (CH08TA05) (cont'd)

 Unequal-slopes ANCOVA in R, via interaction term and * operator:> summary (lm(Y ~ X1*X2))
Call:
lm(formula = Y ~ X1 * X2)
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $7.57446 \quad 20.86970 \quad 0.363 \quad 0.71996$

X1	1.32205	0.09262	14.273	$6.45 e-13$

$X 2$	90.39086	28.34573	3.189	0.00409

X1:X2 -0.17666 0.12884 -1.371 0.18355
Multiple R-squ.: 0.9447, Adjusted R-squ.: 0.9375 F-statistic: 130.9 on 3 and 23 DF, p-val.: 1.34e-14

Product'n Line Data (CH08TA05) (cont'd)

Per-line residual plots (cf. Fig. 8.17):
(a) Production Line 1

(b) Production Line 2

Product'n Line Data (CH08TA05) (cont'd)

Brown-Forsythe test for equal σ^{2} between the two product'n lines shows insignif. $\boldsymbol{P}=0.53$:
> library(lawstat)
> BF.htest = levene.test(resid(CH08TA05.lm), group=X2, location="median")
modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median
data: ei
Test Statistic $=0.4047$, p-value $=0.5304$
> sqrt(BF.htest\$statistic)
Test Statistic
0.6361795 \#BF t*-stat. (cf. p.333)

Product'n Line Data (CH08TA05) (cont'd)

ANOVA table (with sequential SSRs) for unequalslopes model:
> anova(lm(Y ~ X1*X2))
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>F)$
$\begin{array}{lllllll}\text { X1 } & 149661 & 149661 & 347.5548 & 2.224 e-15\end{array}$
X2
$\begin{array}{llllll}\text { X1:X2 } & 1 & 810 & 810 & 1.8802 & 0.1835\end{array}$
Residuals 239904431
(cf. Table 8.6)

Product'n Line Data (CH08TA05) (cont'd)

ANOVA partial F-test for identity of lines ($\mathrm{H}_{0}: \beta_{2}=\beta_{3}=0$):
> anova(lm(Y ~ X1), lm(Y ~ X1*X2))
Analysis of Variance Table
Model 1: Y ~ X1
Model 2: Y ~ X1 * X2
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
$1 \quad 2529407.8$
$2 \quad 23 \quad 9904.1 \quad 2 \quad 1950422.646$ 3.669e-06
2 d.f. partial $F^{*}=22.65\left(P=3.7 \times 10^{-6}\right)$, so two lines are significantly different (somehow).

Product'n Line Data (CH08TA05) (cont'd)

ANOVA partial F-test for identity of slopes ($\mathrm{H}_{0}: \beta_{3}=0$):

```
> anova( lm(Y ~ X1+X2), lm(Y ~ X1*X2) )
```

Analysis of Variance Table
Model 1: Y ~ X1 + X2
Model 2: Y ~ X1 * X2
Res.Df RSS Df Sum of Sq F Pr(>F)
$1 \quad 2410713.7$
$\begin{array}{llllllllll}2 & 23 & 9904.1 & 1 & 809.62 & 1.8802 & 0.1835\end{array}$
1 d.f. partial $F^{*}=1.88(P=0.1835)$, so two lines have insignificantly different slopes.
(NB: Should adjust the 2 inferences on β_{2} and β_{3} for multiplicity.)

