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§8.1: Polynomial Regression

Mentioned in passing in §6.1, we now 
study polynomial regression in more 
detail.   
This is technically a special form of MLR, 
since it has more than one βk parameter. 
Simplest case: 2nd-order/single predictor 
model:  
    Yi = β0 + β1(Xi – 

—
X) + β2(Xi – 

—
X)2 + εi 

(i = 1,...,n) with εi ~ i.i.d.N(0,σ2).   



Polynomial Regression (cont’d)

For simplicity, write xi = (Xi – 
—
X): 

     Yi = β0 + β1xi + β2xi
2 + εi 

(Why?  Centering usually reduces multi-
collinearity with 2nd-order, and higher, 
predictors. Just do it.) 
This quadratic regression can be a useful 
approximation to data that deviate from 
strict linearity.  See Fig. 8.1  → 



Quadratic Regression



Cubic Regression

(Fig. 8.2.  Examples of 3rd-order, cubic 
regression polynomials.)



2nd-Order Response Surface
(Fig. 8.3.  Examples of 2nd-order response 
surface, as in §6.1.)



Testing Polynomial Models

 Sequential testing: for testing purposes, 
we start with the highest-order term and 
work down the order (‘up the ladder’).

 Suppose E{Yi} = β0 + β1xi + β11xi
2 + β111xi

3

• First test Ho:β111=0 via partial F-test and 
SSR(x3|x1,x2).  If signif., STOP and conclude 
cubic polynomial is significant.
• If Ho:β111=0 is NOT signif., drop β111 and go 

‘up ladder’ to test Ho:β11=0 via SSR(x2|x1).



Polynomial Regression (cont’d)

 E{Yi} = β0 + β1xi + β11xi
2 + β111xi

3 (cont’d)
• If Ho:β11=0 is signif., STOP and conclude 

quadratic polynomial is significant.
• If Ho:β11=0 is NOT signif., drop β11 and go 

‘up ladder’ to test Ho:β1=0 via SSR(x1).
• If Ho:β1=0 is signif., STOP and conclude 

simple linear model is significant.  Etc.
 Once sequential testing is complete, we 

usually go back and fit the final model in terms 
of the orig. Xk’s to get cleaner bk’s and std. 
errors.



Example: Power Cell Data (CH08TA01)

Power Cell Data example: Y = {# cycles} 
and we have 2 predictors (X1 = charge rate 
& X2 = temp.); see Table 8.1. Consider a 
2nd-order “response surface” MLR:
> Y = c(150, 86, 49, ..., 279, 235, 224)
> X1 = c(0.6, 1.0, 1.4, ..., 0.6, 1.0, 1.4)
> X2 = c( rep(10,3), rep(20,5), rep(30,3) )
> x1 = (X1 - mean(X1))/0.4
> x2 = (X2 - mean(X2))/min(X2)
>
> x1sq = x1*x1
> x2sq = x2*x2
> x1x2 = x1*x2



Power Cell Data (CH08TA01) (cont’d)

Selection of X1 and X2 was controlled.
 note the zero/near-zero correlations 
among the (transformed) x-variables:
> cor( cbind(x1, x2, x1sq, x2sq, x1x2) )

x1        x2      x1sq      x2sq      x1x2
x1    1.00e+00  0.00e+00 -4.04e-16 -1.99e-17  0.00e+00
x2    0.00e+00  1.00e+00  0.00e+00  0.00e+00 -9.06e-17
x1sq -4.04e-16  0.00e+00  1.00e+00  2.67e-01  0.00e+00
x2sq -1.99e-17  0.00e+00  2.67e-01  1.00e+00  0.00e+00
x1x2  0.00e+00 -9.06e-17  0.00e+00  0.00e+00 1.00e+00



Power Cell Data (CH08TA01) (cont’d)

Compare this to (non-trivial) correlations 
among orig. Xks, etc :
> cor( cbind(X1, X2, X1sq, X2sq, X1X2) )

X1     X2    X1sq     X2sq   X1X2

X1     1.00e+00  0.000  0.9910 -4.2e-18  0.605

X2     0.00e+00  1.000  0.0000  0.09861  0.757

X1sq   9.91e-01  0.000  1.0000  0.00592  0.600

X2sq  -4.16e-18  0.986  0.0059  1.0e+00  0.746

X1X2   6.05e-01  0.757  0.5999  7.5e-01  1.000



Power Cell Data (CH08TA01) (cont’d)

Full 2nd-order model fit with transfrm’d x’s:
> summary( lm(Y ~ x1 + x2 + x1sq + x2sq + x1x2) )
Call:
lm(formula = Y ~ x1 + x2 + x1sq + x2sq + x1x2)
Coefficients:

Estimate  Std.Error t value  Pr(>|t|)    
(Intercept)   162.84       16.6    9.81  0.00019
x1            -55.83       13.2   -4.22  0.00829 
x2             75.50       13.2    5.71  0.00230 
x1sq           27.39       20.3    1.35  0.23586
x2sq          -10.61       20.3   -0.52  0.62435
x1x2           11.50       16.2    0.71  0.50918



Power Cell Data (CH08TA01) (cont’d)
Residual analysis shows no serious issues:
> plot( resid(CH08TA01.lm) ~ fitted(CH08TA01.lm) )
> abline( h=0 )
> qqnorm( resid(CH08TA01.lm) )



Lack of Fit test.  Only joint replication is at x1=x2=0, 
so need to set up the  factor term carefully in R:
> LOFfactor = factor( c(seq(-4,-1), rep(0,3), 

seq(1,4)) )
> anova( CH08TA01.lm, lm(Y ~ LOFfactor) )

Analysis of Variance Table
Model 1: Y ~ x1 + x2 + x1sq + x2sq + x1x2
Model 2: Y ~ LOFfactor
Res.Df RSS  Df Sum of Sq F Pr(>F)

1      5 5240.4
2      2 1404.7   3  3835.8  1.82  0.374

LOF stat. is F* = 1.82 (P = 0.374).  No signif. lack of fit.

Power Cell Data (CH08TA01) (cont’d)



Partial F-test of 2nd-order terms 
(Ho:β11 = β22 = β12 = 0):
> anova( lm(Y ~ x1+x2), CH08TA01.lm )

Analysis of Variance Table
Model 1: Y ~ x1 + x2
Model 2: Y ~ x1 + x2 + x1sq + x2sq + x1x2

Res.Df RSS Df Sum of Sq F Pr(>F)
1      8 7700.33                             
2      5 5240.44  3   2459.89 0.782  0.553

Partial 3 df F-statistic is F* = 0.78 (P = 0.553).  
No signif. deviation from 0 seen in 2nd-order terms.

Power Cell Data (CH08TA01) (cont’d)



Fit reduced 1st-order model:
> summary( lm(Y ~ x1+x2) )
Call:
lm(formula = Y ~ x1 + x2)
Coefficients:

Estimate Std.Error t value  Pr(>|t|)    
(Intercept) 172.00     9.3543 18.3872 7.88e-08
x1          -55.83    12.6658 -4.4082 0.002262 
x2           75.50    12.6658  5.9609 0.000338

Multiple R-squared: 0.87294
Adjusted R-squared: 0.84118
F-stat.: 27.482 on 2 and 8 DF, p-val.: 0.00026

Power Cell Data (CH08TA01) (cont’d)



Bonferroni-adjusted simultaneous conf. 
intervals on 1st-order β-parameters (using 
original X-variables):
> g = length( coef(lm(Y ~ X1+X2)) ) - 1
> confint( lm(Y ~ X1+X2), 

level = 1-(.10/g) )

X1          -212.6020565 -66.564610
X2             4.6292511  10.470749

(cf. Textbook p. 305)

Power Cell Data (CH08TA01) (cont’d)



 Interaction cross-product terms can be 
included in any MLR to allow for 
interactions between the Xk-variables.

 E.g., E{Y} = β0 + β1X1 + β2X2 + β3X1X2

 The cross-product creates a departure 
from additivity in the mean response.  
If β3= 0, the mean response is strictly 
additive in X1 and X2.

Interaction Terms



Interaction Terms (cont’d)

 Notice that the usual interpretation for the 
βk parameters is muddied here.
• What does it mean to increase X1 by +1 unit 

while holding X1X2 fixed?!?
 Alt. interpretation: cross-product terms 

allow for ‘synergistic’ or ‘antagonistic’ 
interactions between the Xk-variables.

 It’s a special kind of departure from 
additivity:  synergy occurs for β3 > 0, 
antagonism for β3 < 0.



Figure 8.8
Graphics for (a) additive, (b) synergistic, or 
(c) antagonistic response surfaces.



Interaction Caveats
Need to be careful with interactions.
• If they exist and they are ignored, very poor

inferences on E{Y} will result.
• On the other hand, adding a ‘kitchen sink’ of 

all possible interactions can overwhelm the 
MLR.
 With 3 Xk-variables there are 3 possible 

pairwise interactions (not incl. the tri-way!)
 With 8 Xk-variables there are 28 possible 

pairwise interactions (not incl. multi-ways!)
 Things get unwieldy fast...



Body Fat Data (CH07TA01) (cont’d)

 To the 3 original Xk-variables now include 
all pairwise interactions.

 Center each X-variable (about its mean) 
first to assuage problems with multi-
collinearity: xik = Xik – k   (k = 1,2,3)

 MLR now has six predictor terms and p=7 
β-parameters: E{Y} = β0 + β1x1 + β2x2 + β3x3

+ β4x1x2 + β5x1x3 + β6x2x3

—
X 



 R can fit interaction terms using a special 
* operator:  
e.g.,  x1*x2 fits  x1 and x2 and x1:x2 
all with just 1 term.

 For the Body Fat data, construct centered 
x-variables as x1 = X1 – mean(X1), etc.  
Then call
> anova( lm(Y ~ x1 + x2 + x3), 

lm(Y ~ x1*x2 + x1*x3 + x2*x3) )

Output follows →

Body Fat Data (CH07TA01) (cont’d)



Output from partial F-test of all pairwise 
interactions:  
Analysis of Variance Table
Model 1: Y ~ x1 + x2 + x3
Model 2: Y ~ x1 * x2 + x1 * x3 + x2 * x3

Res.Df    RSS Df Sum of Sq      F Pr(>F)
1     16 98.405
2     13 87.690  3    10.715 0.5295 0.6699

Body Fat Data (CH07TA01) (cont’d)

Partial 3 df F-statistic is F* = 0.53 (P = 0.670).  
No signif. pairwise interactions are seen.



Can also include tri-way interactions:  
> anova( lm(Y ~ x1+x2+x3), lm(Y ~ x1*x2*x3) )
Analysis of Variance Table
Model 1: Y ~ x1 + x2 + x3
Model 2: Y ~ x1 * x2 * x3

Res.Df    RSS Df Sum of Sq      F Pr(>F)
1     16 98.405
2     12 85.571  4    12.834 0.4499 0.7707

Body Fat Data (CH07TA01) (cont’d)

4 d.f. partial F-statistic is F* = 0.45 (P = 0.771).  
 no signif. pairwise or tri-way interactions.



Qualitative Predictors
 We’ve seen cases where the X-variable 

was either 0 or 1 (called a binary
indicator).  If this indicated a qualitative 
state (say, 1 = ♀ or 0 = ♂) then the 
numbering is arbitrary.  The predictor is 
actually qualitative, not quantitative.

 (Still 0 vs. 1 is usually as good a pseudo-
quantification as any.)

 Question: What happens when binary 
indicators are combined with true 
quantitative predictors?



Example: Insur. Innov’n Data 

 Suppose we study 
Y = Insurance method adoption time (mos.)

in insurance companies, with 
X1 = size of firm (quantitative) 
X2 = type of firm: 1 = stock, 0 otherwise 
X3 = type of firm: 1 = mutual, 0 otherwise

 Design matrix is (n = 4): “X0”  X1 X2 X3

X = 










1 X11 1 0

1 X21 1 0
1 X31 0 1
1 X41 0 1

 



Design Matrix Problem

 But wait, there’s a problem with this design 
matrix X.  Notice that X0 = X2 + X3 so the 
predictors are not linearly independent: 
rank(X′X) = 3 < 4 = p. (See p. 314.)
• The MLR will fail!

 Solution is (usually) to eliminate X3 and 
model  E{Y} = β0 + β1X1 + β2X2.

 Model interpretation here is actually sorta’ 
intriguing  →



Two Straight Lines
 For E{Y} = β0 + β1X1 + β2X2, with X1 quantita-

tive and X2 a 0-1 indicator, consider:
• When X2 = 0 (mutual firm), E{Y} = β0 + β1X1, an 

SLR on X1 with slope β1 and Y-intercept β0.
• When X2 = 1 (stock firm), 

E{Y} = (β0 + β2) + β1X1, an SLR on X1 with 
same slope β1 but new Y-intercept (β0 + β2).

 So we have two parallel straight lines—each 
with same σ2—one for stock firms (X2 = 1) 
and one for mutual firms (X2 = 0).



ANCOVA Graphic



Tests in Equal-Slopes ANCOVA

 For this equal-slopes ANCOVA model, 
some obvious hypotheses are
• (first) Ho: β2 = 0  

(i.e., no diff. between type  lines are same)
• (next) Ho: β1 = 0  

(i.e., no effect of size  lines are flat)

 Data are in Table 8.2; n = 20.
R code/analysis follows  →



Insur. Innov’n Data (CH08TA02) 

Y = Insurance method adoption time
X1 = size of firm
X2 = type of firm (mutual vs. stock)
> Y = c(17, 26, ..., 30, 14)
> X1 = c(151, 92 , ..., 124, 246)
> X2 = c( rep(0,10), rep(1,10) )

Scatterplot using
> plot( Y ~ X1, pch=1+(18*X2) )

(next slide →) shows two separate 
scatterlines, one for each type of firm.



Insur. Innov’n Data 
(CH08TA02) Scatterplot

Plot shows 
dual linear 
relationship, 
indexed by 
type of firm



Insur. Innov’n (CH08TA02) (cont’d)

Equal-slopes ANCOVA in R:
> CH08TA02.lm = lm( Y ~ X1 + X2 )
> summary( CH08TA02.lm )

Call:
lm(formula = Y ~ X1 + X2)

Coefficients:
Estimate Std. Error t value  Pr(>|t|)    

(Intercept) 33.874069   1.813858  18.675  9.15e-13
X1          -0.101742   0.008891 -11.443  2.07e-09
X2           8.055469   1.459106   5.521  3.74e-05 

Multiple R-squared: 0.8951, Adjusted R-squ.: 0.8827 
F-statistic: 72.5 on 2 and 17 DF, p-value: 4.77e-09



Insur. Innov’n (CH08TA02) (cont’d)

ANOVA table (with sequential SSRs):
> CH08TA02.lm = lm( Y ~ X1 + X2 )
> anova( CH08TA02.lm )

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value  Pr(>F)
X1      1 1188.17 1188.17  114.51 5.68e-09
X2      1  316.25 316.25   30.48 3.74e-05
Resid. 17  176.39 10.38

Partial F* = 30.48 for X2 (P = 3.7×10–5), so the two ‘types’ are 
signif. different (cf. Table 8.3).



Insur. Innov’n (CH08TA02) (cont’d)

Pointwise conf. intervals from ANCOVA:
> CH08TA02.lm = lm( Y ~ X1 + X2 )
> confint( CH08TA02.lm )

2.5 %      97.5 %
(Intercept) 30.0471625 37.70097553
X1          -0.1205009 -0.08298329
X2           4.9770253 11.13391314

So, e.g., if interest is in effect of type of firm (X2), 
we see stock firms take between 

4.98 ≤ β2 ≤ 11.13 
months longer to adopt the innovation.



Insur. Innov’n Data (CH08TA02) (cont’d)

Scatterplot  
with separate, 
equal-slope 
lines overlaid 
(cf. Fig. 8.12)



Multiple-Level ANCOVA

If more than 2 
levels are 
represented by 
the qualitative 
factor, just 
include more 
(parallel) lines: 
one line for each 
level of the 
factor. See, e.g., 
Fig. 8.13



Unequal-Slopes ANCOVA

 How to incorporate differential slopes in a 
(two-factor/two-level) ANCOVA?

 Easy! Just add an X1X2 interaction term:
E{Y} = β0 + β1X1 + β2X2 + β3X1X2.

• When X2 = 0, E{Y} = β0 + β1X1, an SLR on X1
with slope β1 and Y-intercept β0.
• When X2 = 1, E{Y} = (β0 + β2) + (β1 + β3)X1, an 

SLR on X1 with new slope (β1 + β3) and new 
Y-intercept (β0 + β2).



Unequal-Slopes ANCOVA

For instance, with 
the Insur. Innov’n 
Data (CH08TA02), Fig. 
8.14 conceptualizes 
the unequal-slopes 
model  →



Insur. Innov’n (CH08TA02) (cont’d)

Unequal-slopes ANCOVA in R, via interaction 
term and * operator:
> summary( lm(Y ~ X1*X2) )

Call:
lm(formula = Y ~ X1 * X2)

Coefficients:
Estimate Std. Error t value  Pr(>|t|)    

(Intercept) 33.8383695  2.4406498  13.864  2.47e-10
X1          -0.1015306  0.0130525  -7.779  7.97e-07
X2           8.1312501  3.6540517   2.225    0.0408  
X1:X2       -0.0004171  0.0183312  -0.023    0.9821

Multiple R-squared: 0.8951, Adjusted R-squ.: 0.8754 
F-statistic: 45.49 on 3 and 16 DF, p-val.: 4.68e-08



Insur. Innov’n (CH08TA02) (cont’d)

ANOVA table (with sequential SSRs) for unequal-
slopes ANCOVA model:
> anova( lm(Y ~ X1*X2) )

Analysis of Variance Table
Response: Y

Df Sum Sq Mean Sq F value Pr(>F)
X1      1 1188.17 1188.17 107.7819 1.63e-08
X2      1  316.25  316.25  28.6875 6.43e-05
X1:X2   1    0.01    0.01   0.0005   0.9821
Resid. 16  176.38   11.02 

X1*X2 interaction P-value > .05, so no signif. departure 
from equal slopes is indicated (cf. Table 8.4)



§8.6:  Multi-Factor ANCOVA

 The ANCOVA model can be extended to 
more than one quantitative X-variable.

 The concepts are essentially unchanged, 
just in a higher-dimensional space: the 
hyperplanes are all parallel and the 
qualitative predictor changes locations of 
the hyper-intercepts.

 Sounds trickier, but not really that different 
and not much harder to program.



Only Qualitative Predictors

 What if all the predictor variables are quali-
tative (0-1) indicators?

 In effect, the model structure is more 
circumspect, since we are now just 
comparing the mean responses across the 
levels of each qualitative factor.

 This is known as ANOVA modeling, and is 
studied in STAT 571B.



§8.7: Comparing Multiple Regression 
Curves

 Let’s do a fully coordinated example of 
how to compare two regression functions.

 Example: Production Line Data (CH08TA05)
with 
Y = Soap Production ‘Scrap’
X1 = Product’n Line Speed
X2 = Line Indicator (Line 1 vs. Line 2)

 Start with a scatterplot  →



Sec. 8.7: Product’n Line Data 
(CH08TA05) Scatterplot

Plot shows 
dual linear 
relationship, 
indexed by 
prod’n line



Product’n Line Data (CH08TA05) (cont’d)

Unequal-slopes ANCOVA in R, via interaction 
term and * operator:
> summary( lm(Y ~ X1*X2) )

Call:
lm(formula = Y ~ X1 * X2)

Coefficients:
Estimate Std. Error t value  Pr(>|t|)    

(Intercept)  7.57446   20.86970   0.363   0.71996    
X1           1.32205    0.09262  14.273  6.45e-13
X2          90.39086   28.34573   3.189   0.00409 
X1:X2       -0.17666    0.12884  -1.371   0.18355

Multiple R-squ.: 0.9447,  Adjusted R-squ.: 0.9375 
F-statistic: 130.9 on 3 and 23 DF, p-val.: 1.34e-14



Product’n Line Data (CH08TA05) (cont’d)

Per-line residual plots (cf. Fig. 8.17):



Product’n Line Data (CH08TA05) (cont’d)

Brown-Forsythe test for equal σ2 between the two 
product’n lines shows insignif. P = 0.53:
> library( lawstat )
> BF.htest = levene.test( resid( CH08TA05.lm ),

group=X2, location=“median” )

modified robust Brown-Forsythe Levene-type test 
based on the absolute deviations from the median

data:  ei 
Test Statistic = 0.4047, p-value = 0.5304 

> sqrt( BF.htest$statistic )
Test Statistic 

0.6361795       #BF t*-stat. (cf. p.333)



Product’n Line Data (CH08TA05) (cont’d)

ANOVA table (with sequential SSRs) for unequal-
slopes model:
> anova( lm(Y ~ X1*X2) )

Analysis of Variance Table
Response: Y

Df  Sum Sq Mean Sq F value    Pr(>F)
X1         1 149661  149661 347.5548 2.224e-15
X2         1  18694   18694  43.4129 1.009e-06
X1:X2      1    810     810   1.8802    0.1835    
Residuals 23   9904     431

(cf. Table 8.6)



Product’n Line Data (CH08TA05) (cont’d)

ANOVA partial F-test for identity of lines (Ho:β2=β3=0):
> anova( lm(Y ~ X1), lm(Y ~ X1*X2) )

Analysis of Variance Table
Model 1: Y ~ X1
Model 2: Y ~ X1 * X2

Res.Df     RSS Df Sum of Sq      F    Pr(>F)
1     25 29407.8
2     23  9904.1  2     19504 22.646 3.669e-06 

2 d.f. partial F* = 22.65 (P = 3.7×10–6), so two lines are 
significantly different (somehow).



Product’n Line Data (CH08TA05) (cont’d)

ANOVA partial F-test for identity of slopes (Ho:β3 = 0):
> anova( lm(Y ~ X1+X2), lm(Y ~ X1*X2) )

Analysis of Variance Table
Model 1: Y ~ X1 + X2
Model 2: Y ~ X1 * X2
Res.Df RSS Df Sum of Sq F Pr(>F)

1     24 10713.7
2     23  9904.1  1    809.62 1.8802 0.1835 

1 d.f. partial F* = 1.88 (P = 0.1835), so two lines have 
insignificantly different slopes.
(NB: Should adjust the 2 inferences on β2 and β3 for multiplicity.)


