

STAT 571A — Advanced Statistical Regression Analysis

<u>Chapter 8 NOTES</u> Quantitative and Qualitative Predictors for MLR

© 2017 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, photoreproduction, recording, or scanning — without the prior written consent of the course instructor.

§8.1: Polynomial Regression

Mentioned in passing in §6.1, we now study polynomial regression in more detail.

This is technically a special form of MLR, since it has more than one β_k parameter.

Simplest case: 2nd-order/single predictor model:

$$Y_{i} = \beta_{0} + \beta_{1}(X_{i} - \overline{X}) + \beta_{2}(X_{i} - \overline{X})^{2} + \varepsilon_{i}$$

i = 1,...,n) with $\varepsilon_{i} \sim i.i.d.N(0,\sigma^{2}).$

Polynomial Regression (cont'd)

For simplicity, write $x_i = (X_i - \overline{X})$:

$$\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}\boldsymbol{x}_{i} + \boldsymbol{\beta}_{2}\boldsymbol{x}_{i}^{2} + \boldsymbol{\varepsilon}_{i}$$

(Why? Centering usually reduces multicollinearity with 2nd-order, and higher, predictors. Just do it.)

This quadratic regression can be a useful approximation to data that deviate from strict linearity. See Fig. 8.1 \rightarrow

Quadratic Regression

Cubic Regression

(Fig. 8.2. Examples of 3rd-order, cubic regression polynomials.)

2nd-Order Response Surface (Fig. 8.3. Examples of 2nd-order response surface, as in §6.1.)

Testing Polynomial Models

Sequential testing: for testing purposes, we <u>start</u> with the highest-order term and work down the order ('up the ladder').

■ Suppose E{Y_i} = $\beta_0 + \beta_1 x_i + \beta_{11} x_i^2 + \beta_{111} x_i^3$

- First test $H_0:\beta_{111}=0$ via partial F-test and SSR($x_3|x_1,x_2$). If signif., STOP and conclude cubic polynomial is significant.
- If $H_o:\beta_{111}=0$ is NOT signif., drop β_{111} and go 'up ladder' to test $H_{o:}\beta_{11}=0$ via $SSR(x_2|x_1)$.

Polynomial Regression (cont'd)

 $\blacksquare E\{Y_i\} = \beta_0 + \beta_1 x_i + \beta_{11} x_i^2 + \beta_{111} x_i^3 \quad (cont'd)$

- If $H_o:\beta_{11}=0$ is signif., STOP and conclude quadratic polynomial is significant.
- If $H_o:\beta_{11}=0$ is NOT signif., drop β_{11} and go 'up ladder' to test $H_o:\beta_1=0$ via $SSR(x_1)$.
- If $H_o:\beta_1=0$ is signif., STOP and conclude simple linear model is significant. Etc.
- Once sequential testing is complete, we usually go back and fit the final model in terms of the orig. X_k's to get cleaner b_k's and std. errors.

Example: Power Cell Data (CH08TA01)

Power Cell Data example: $Y = \{\# \text{ cycles}\}\)$ and we have 2 predictors ($X_1 = \text{charge rate}\)$ & $X_2 = \text{temp.}$); see Table 8.1. Consider a 2nd-order "response surface" MLR:

```
> Y = c(150, 86, 49, ..., 279, 235, 224)
> X1 = c(0.6, 1.0, 1.4, ..., 0.6, 1.0, 1.4)
> X2 = c( rep(10,3), rep(20,5), rep(30,3) )
> x1 = (X1 - mean(X1))/0.4
> x2 = (X2 - mean(X2))/min(X2)
> 
> x1sq = x1*x1
> x2sq = x2*x2
> x1x2 = x1*x2
```

Selection of X_1 and X_2 was controlled.

 \Rightarrow note the zero/near-zero correlations among the (transformed) *x*-variables:

> cor(cbind(x1, x2, x1sq, x2sq, x1x2))

	x1	x 2	xlsq	x2sq	x1x2
x 1	1.00e+00	0.00e+00	-4.04e-16	-1.99e-17	0.00e+00
x 2	0.00e+00	1.00e+00	0.00e+00	0.00e+00	-9.06e-17
x1sq	-4.04e-16	0.00e+00	1.00e+00	2.67e-01	0.00e+00
x2sq	-1.99e-17	0.00e+00	2.67e-01	1.00e+00	0.00e+00
x1x2	0.00e+00	-9.06e-17	0.00e+00	0.00e+00	1.00e+00

Compare this to (non-trivial) correlations among orig. X_k s, etc :

> cor(cbind(X1, X2, X1sq, X2sq, X1X2))

	X1	X2	Xlsq	X2sq	X1X2
X1	1.00e+00	0.000	0.9910	-4.2e-18	0.605
X2	0.00e+00	1.000	0.0000	0.09861	0.757
Xlsq	9.91e-01	0.000	1.0000	0.00592	0.600
X2sq	-4.16e-18	0.986	0.0059	1.0e+00	0.746
X1X2	6.05e-01	0.757	0.5999	7.5e-01	1.000

Full 2nd-order model fit with transfrm'd x's:

> summary(lm(Y ~ x1 + x2 + x1sq + x2sq + x1x2))
Call:
lm(formula = Y ~ x1 + x2 + x1sq + x2sq + x1x2)
Coefficients:

	Estimate	Std.Error	t value	Pr(> t)
(Intercept)	162.84	16.6	9.81	0.00019
x 1	-55.83	13.2	-4.22	0.00829
x 2	75.50	13.2	5.71	0.00230
xlsq	27.39	20.3	1.35	0.23586
x2sq	-10.61	20.3	-0.52	0.62435
x1x2	11.50	16.2	0.71	0.50918

Residual analysis shows no serious issues:

- > plot(resid(CH08TA01.lm) ~ fitted(CH08TA01.lm))
- > abline(h=0)
- > qqnorm(resid(CH08TA01.lm))

Norml. prob. plot

Lack of Fit test. Only joint replication is at $x_1 = x_2 = 0$, so need to set up the factor term <u>carefully</u> in R:

```
> anova( CH08TA01.lm, lm(Y ~ LOFfactor) )
```

LOF stat. is $F^* = 1.82$ (P = 0.374). No signif. lack of fit.

Partial F-test of 2nd-order terms $(H_0; \beta_{11} = \beta_{22} = \beta_{12} = 0);$ > anova(lm(Y ~ x1+x2), CH08TA01.lm) Analysis of Variance Table Model 1: $Y \sim x1 + x2$ Model 2: $Y \sim x1 + x2 + x1sq + x2sq + x1x2$ Res.Df RSS Df Sum of Sq F Pr(>F) 1 8 7700.33 5 5240.44 3 2459.89 0.782 0.553 2 Partial 3 df F-statistic is $F^* = 0.78$ (P = 0.553). No signif. deviation from 0 seen in 2nd-order terms.

Fit reduced 1st-order model:

```
> summary( lm(Y ~ x1+x2) )
Call:
lm(formula = Y \sim x1 + x2)
Coefficients:
          Estimate Std.Error t value Pr(>|t|)
(Intercept) 172.00 9.3543 18.3872 7.88e-08
\mathbf{x1}
           -55.83 12.6658 -4.4082 0.002262
             75.50 12.6658 5.9609 0.000338
\mathbf{x2}
Multiple R-squared: 0.87294
Adjusted R-squared: 0.84118
F-stat.: 27.482 on 2 and 8 DF, p-val.: 0.00026
```

Bonferroni-adjusted simultaneous conf. intervals on 1st-order β-parameters (using original X-variables):

X1-212.6020565-66.564610X24.629251110.470749

(cf. Textbook p. 305)

Interaction Terms

Interaction cross-product terms can be included in any MLR to allow for interactions between the X_k-variables.

$$\blacksquare E.g., E{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

The cross-product creates a <u>departure</u> <u>from additivity</u> in the mean response. If β₃= 0, the mean response is strictly additive in X₁ and X₂.

Interaction Terms (cont'd)

- Notice that the usual interpretation for the β_k parameters is muddled here.
 - What does it mean to increase X₁ by +1 unit while holding X₁X₂ fixed?!?
- Alt. interpretation: cross-product terms allow for 'synergistic' or 'antagonistic' interactions between the X_k-variables.
- It's a special kind of departure from additivity: <u>synergy</u> occurs for $β_3 > 0$, <u>antagonism</u> for $β_3 < 0$.

Figure 8.8

Graphics for (a) additive, (b) synergistic, or (c) antagonistic response surfaces.

Interaction Caveats

Need to be careful with interactions.

- If they exist <u>and</u> they are ignored, <u>very poor</u> inferences on E{Y} will result.
- On the other hand, adding a 'kitchen sink' of all possible interactions can overwhelm the MLR.
 - \rightarrow With 3 X_k-variables there are 3 possible pairwise interactions (<u>not</u> incl. the tri-way!)
 - \rightarrow With 8 X_k-variables there are 28 possible pairwise interactions (<u>not</u> incl. multi-ways!)
 - \rightarrow Things get unwieldy fast...

- To the 3 original X_k-variables now include all pairwise interactions.
- Center each X-variable (about its mean) first to assuage problems with multicollinearity: $x_{ik} = X_{ik} - \overline{X}_k$ (k = 1,2,3)
- MLR now has six predictor terms and p=7 β-parameters: E{Y} = β_0 + $\beta_1 x_1$ + $\beta_2 x_2$ + $\beta_3 x_3$ + $\beta_4 x_1 x_2$ + $\beta_5 x_1 x_3$ + $\beta_6 x_2 x_3$

R can fit interaction terms using a special * operator:
e q x1*x2 fits x1 and x2 and x1·x2

e.g., x1*x2 fits x1 and x2 and x1:x2 all with just 1 term.

- For the Body Fat data, construct centered x-variables as x1 = X1 - mean(X1), etc. Then call
 - > anova(lm(Y ~ x1 + x2 + x3),lm(Y ~ x1*x2 + x1*x3 + x2*x3))

Output follows \rightarrow

Output from partial F-test of all pairwise interactions:

Analys	sis	of V	Varia	nce	Та	ble					
Model	1:	Ү~	x1 +	• x2	+	x 3					
Model	2:	Υ~	x1 *	x 2	+	x 1	* 2	c3 +	x 2	*	x 3
Res.	Df	F	RSS I	of Su	ım	of	Sq		F	Pr	(>F)
1	16	98.4	05								
2	13	87.6	590	3	1	.0.7	15	0.5	295	0.	6699
Partial 3 df F-statistic is <i>F</i> * = 0.53 (<i>P</i> = 0.670). No signif. pairwise interactions are seen.											

Can also include tri-way interactions:

> anova(lm(Y ~ x1+x2+x3), lm(Y ~ x1*x2*x3)) Analysis of Variance Table Model 1: $Y \sim x1 + x2 + x3$ Model 2: $Y \sim x1 * x2 * x3$ Res.Df RSS Df Sum of Sq F Pr(>F) 16 98.405 1 12 85.571 4 12.834 0.4499 0.7707 2 4 d.f. partial F-statistic is $F^* = 0.45$ (P = 0.771). \Rightarrow no signif. pairwise or tri-way interactions.

Qualitative Predictors

- We've seen cases where the X-variable was either 0 or 1 (called a binary indicator). If this indicated a qualitative state (say, 1 = ♀ or 0 = ♂) then the numbering is arbitrary. The predictor is actually qualitative, not quantitative.
- (Still 0 vs. 1 is usually as good a pseudoquantification as any.)
- Question: What happens when binary indicators are combined with true quantitative predictors?

Example: Insur. Innov'n Data

- Suppose we study
 - Y = Insurance method adoption time (mos.) in insurance companies, with
 - **X**₁ = size of firm (quantitative)
 - X_2 = type of firm: 1 = stock, 0 otherwise
 - X_3 = type of firm: 1 = mutual, 0 otherwise

Design matrix is (n = 4):
$$\underbrace{\begin{array}{c} "X_0" \ X_1 \ X_2 \ X_3} \\
 \hline
 \begin{bmatrix}
 1 \ X_{11} \ 1 \ 0 \\
 1 \ X_{21} \ 1 \ 0 \\
 1 \ X_{31} \ 0 \ 1 \\
 1 \ X_{41} \ 0 \ 1
 \end{bmatrix}}$$

Design Matrix Problem

- But wait, there's a problem with this design matrix X. Notice that X₀ = X₂ + X₃ so the predictors are not linearly independent: rank(X'X) = 3 < 4 = p. (See p. 314.)</p>
 - The MLR will fail!
- Solution is (usually) to eliminate X_3 and model E{Y} = $\beta_0 + \beta_1 X_1 + \beta_2 X_2$.
- Model interpretation here is actually sorta' intriguing →

Two Straight Lines

- For E{Y} = β_0 + $\beta_1 X_1$ + $\beta_2 X_2$, with X_1 quantitative and X_2 a 0-1 indicator, consider:
 - When $X_2 = 0$ (mutual firm), E{Y} = $\beta_0 + \beta_1 X_1$, an SLR on X_1 with slope β_1 and Y-intercept β_0 .
 - When $X_2 = 1$ (stock firm), $E{Y} = (\beta_0 + \beta_2) + \beta_1 X_1$, an SLR on X_1 with same slope β_1 but new Y-intercept ($\beta_0 + \beta_2$).
- So we have two parallel straight lines—each with same σ²—one for stock firms (X₂ = 1) and one for mutual firms (X₂ = 0).

ANCOVA Graphic

Tests in Equal-Slopes ANCOVA

- For this equal-slopes ANCOVA model, some obvious hypotheses are
 - (first) $H_o: \beta_2 = 0$ (i.e., no diff. between type \Rightarrow lines are same)
 - (next) $H_o: \beta_1 = 0$ (i.e., no effect of size \Rightarrow lines are flat)

■ Data are in Table 8.2; n = 20. R code/analysis follows →

Insur. Innov'n Data (CH08TA02)

Y = Insurance method adoption time X_1 = size of firm X_2 = type of firm (mutual vs. stock) > Y = c(17, 26, ..., 30, 14)> X1 = c(151, 92, ..., 124, 246)> X2 = c(rep(0,10), rep(1,10)) Scatterplot using > plot($Y \sim X1$, pch=1+(18*X2)) (next slide \rightarrow) shows two separate scatterlines, one for each type of firm.

Insur. Innov'n Data (CH08TA02) Scatterplot

Equal-slopes ANCOVA in R:

```
> CH08TA02.lm = lm( Y ~ X1 + X2 )
```

> summary(CH08TA02.lm)

Call:

```
lm(formula = Y ~ X1 + X2)
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	33.874069	1.813858	18.675	9.15e-13
X1	-0.101742	0.008891	-11.443	2.07e-09
X2	8.055469	1.459106	5.521	3.74e-05

Multiple R-squared: 0.8951, Adjusted R-squ.: 0.8827 F-statistic: 72.5 on 2 and 17 DF, p-value: 4.77e-09

ANOVA table (with sequential SSRs):

- > CH08TA02.lm = lm(Y ~ X1 + X2)
- > anova(CH08TA02.lm)

Analysis of Variance Table							
Response: Y							
	Df	Sum Sq	Mean Sq	F value	Pr(>F)		
X1	1	1188.17	1188.17	114.51	5.68e-09		
X2	1	316.25	316.25	30.48	3.74e-05		
Resid.	17	176.39	10.38		Ĵ		

Partial F^* = 30.48 for X₂ (P = 3.7×10⁻⁵), so the two 'types' are signif. different (cf. Table 8.3).

<u>Pointwise</u> conf. intervals from ANCOVA:

> CH08TA02.lm = lm(Y ~ X1 + X2)
> confint(CH08TA02.lm)

	2.5 %	97.5 %
(Intercept)	30.0471625	37.70097553
X1	-0.1205009	-0.08298329
X2	4.9770253	11.13391314

So, e.g., if interest is in effect of type of firm (X_2) , we see stock firms take between $4.98 \le \beta_2 \le 11.13$ months longer to adopt the innovation.

Multiple-Level ANCOVA

If more than 2 levels are represented by the qualitative factor, just include more (parallel) lines: one line for each level of the factor. See, e.g., **Fig. 8.13**

Unequal-Slopes ANCOVA

- How to incorporate differential slopes in a (two-factor/two-level) ANCOVA?
- Easy! Just add an X_1X_2 interaction term: E{Y} = β_0 + β_1X_1 + β_2X_2 + $\beta_3X_1X_2$.
 - When $X_2 = 0$, $E\{Y\} = \beta_0 + \beta_1 X_1$, an SLR on X_1 with slope β_1 and Y-intercept β_0 .
 - When $X_2 = 1$, $E\{Y\} = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_1$, an SLR on X_1 with new slope $(\beta_1 + \beta_3)$ and new Y-intercept $(\beta_0 + \beta_2)$.

Unequal-Slopes ANCOVA

<u>Un</u>equal-slopes ANCOVA in R, via interaction term and * operator:

```
> summary( lm(Y ~ X1*X2) )
```

Call:

```
lm(formula = Y ~ X1 * X2)
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	33.8383695	2.4406498	13.864	2.47e-10
X1	-0.1015306	0.0130525	-7.779	7.97e-07
X2	8.1312501	3.6540517	2.225	0.0408
X1:X2	-0.0004171	0.0183312	-0.023	0.9821
Multiple R-	squared: 0.8		ced R-squ	.: 0.8754
F-statistic	: 45.49 on 3	3 and 16 DF	p-val.:	4.68e-08

ANOVA table (with sequential SSRs) for unequalslopes ANCOVA model:

X1*X2 interaction P-value > .05, so no signif. departure from equal slopes is indicated (cf. Table 8.4)

§8.6: Multi-Factor ANCOVA

- The ANCOVA model can be extended to more than one quantitative X-variable.
- The concepts are essentially unchanged, just in a higher-dimensional space: the hyperplanes are all parallel and the qualitative predictor changes locations of the hyper-intercepts.
- Sounds trickier, but not really that different and not much harder to program.

Only Qualitative Predictors

- What if <u>all</u> the predictor variables are qualitative (0-1) indicators?
- In effect, the model structure is more circumspect, since we are now just comparing the mean responses across the levels of each qualitative factor.
- This is known as ANOVA modeling, and is studied in STAT 571B.

§8.7: Comparing Multiple Regression Curves

- Let's do a fully coordinated example of how to compare two regression functions.
- Example: Production Line Data (CH08TA05) with
 - Y = Soap Production 'Scrap'
 - **X₁ = Product'n Line Speed**
 - X₂ = Line Indicator (Line 1 vs. Line 2)

• Start with a scatterplot \rightarrow

Sec. 8.7: Product'n Line Data (CH08TA05) Scatterplot

<u>Un</u>equal-slopes ANCOVA in R, via interaction term and * operator:

```
> summary( lm(Y ~ X1*X2) )
Call:
lm(formula = Y ~ X1 * X2)
Coefficients:
           Estimate Std. Error t value Pr(> t )
(Intercept) 7.57446 20.86970 0.363 0.71996
           1.32205 0.09262 14.273 6.45e-13
X1
         90.39086 28.34573 3.189 0.00409
X2
        -0.17666 0.12884 -1.371 0.18355
X1:X2
Multiple R-squ.: 0.9447, Adjusted R-squ.: 0.9375
F-statistic: 130.9 on 3 and 23 DF, p-val.: 1.34e-14
```

Per-line residual plots (cf. Fig. 8.17):

(a) Production Line 1

(b) Production Line 2

Brown-Forsythe test for equal σ^2 between the two product'n lines shows insignif. *P* = 0.53:

```
> library( lawstat )
```

> BF.htest = levene.test(resid(CH08TA05.lm), group=X2, location="median")

ANOVA table (with sequential SSRs) for unequalslopes model:

X1:X2 1 810 810 1.8802 0.1835 Residuals 23 9904 431

(cf. Table 8.6)

ANOVA partial F-test for identity of lines ($H_0:\beta_2=\beta_3=0$):

```
> anova( lm(Y ~ X1), lm(Y ~ X1*X2) )
```

2 d.f. partial F^* = 22.65 (P = 3.7×10⁻⁶), so two lines are significantly different (somehow).

ANOVA partial F-test for identity of slopes (H_0 : $\beta_3 = 0$):

```
> anova( lm(Y ~ X1+X2), lm(Y ~ X1*X2) )
```

```
Analysis of Variance Table

Model 1: Y ~ X1 + X2

Model 2: Y ~ X1 * X2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 24 10713.7

2 23 9904.1 1 809.62 1.8802 0.1835
```

1 d.f. partial F^* = 1.88 (P = 0.18⁵35), so two lines have insignificantly different slopes.

(NB: Should adjust the 2 inferences on β_2 and β_3 for multiplicity.)