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§9.1:  Model-Building

 If all the Xk-variables are known and 
validated, building the MLR model is easy.

 But if there are questions as to which Xk’s 
to use, it becomes a model-building 
process:

• Data collection
• Variable reduction
• Model refinement
• Model validation

 See (!) Fig. 9.1  →



Figure 9.1
Strategy 

for 
building 
an MLR 
model



§9.3: Model Selection

 We could approach model building from a 
(semi-)automated perspective.

 Suppose there are P–1 < n possible X-
variables available (incl. powers, 
transforms, interactions: Xk

2, Xk
1/2, log(Xk), 

XkXm, you name it)!

 The goal is to select a parsimonious 
subset of p–1 < P–1 predictors for the MLR 
model.



Variable Selection

 For simplicity, we always include β0. Thus 
if there are P–1 variables available, we have 
2P–1 possible models.

 This gets big, fast:
• P–1 = 4  16 possible models (cf. Table 9.2)
• P–1 = 10  1024 possible models

 How to do this?  Possible metrics from the 
book include:  (a) R2, (b) Ra

2, (c) Cp, 
(d) AIC/BIC, (e) PRESS.

 We study each, in turn.



(a) Maximum Rp
2

 One obvious way to measure the quality of 
a set of p–1 predictor variables is to 
compute the R2 from their MLR.

  Among a group of different possible 
models, each with p parameters (p–1 
predictors), choose the model with the 
highest Rp

2.

 (Notice:  since R2 = 1 – (SSE/SSTO), this is 
identical to choosing the smallest SSEp.)



Maximum Rp
2 (cont’d) 

p − 1

 But recall that every time we add a variable 
to an MLR model, R2 cannot decrease!  So, 
Rp

2 is a nondecreasing function of p.  This 
will always lead to choosing p = P.

 In practice, we look for 
a diminishing return: 
after a certain p, the 
increase in Rp

2 should 
essentially flatten.



Example: Surgical Unit Data (CH09TA01)

• Y = ln{Survival time}

• X1 = Blood clotting score

• X2 = Prognostic index

• X3 = Enzyme test

• X4 = Liver test

• Goal: determine best combination of 
Xk-variables for modeling E{Y}



Surgical Unit Data (CH09TA01) (cont’d)

Rp
2 plot via R:

> library( leaps ) 
> CH09TA01.r2 = leaps( x=cbind(X1,X2,X3,X4),

y=Yprime, method='r2' )
> p = seq( min(CH09TA01.r2$size), 

max(CH09TA01.r2$size) )
> plot( CH09TA01.r2$r2 ~ CH09TA01.r2$size , 

ylab=expression(R^2), xlab='p' ) 
> Rp2 = by( data=CH09TA01.r2$r2,

INDICES=factor(CH09TA01.r2$size), FUN=max )
> lines( Rp2 ~ p )



Surgical Unit Data (CH09TA01) (cont’d)

Rp
2 plot (cf. Fig. 9.4a): flattens at p=4  use X1,X2,X3



(b) Maximum Rap
2

 To mitigate the increasing nature of Rp
2, we 

can move to the adjusted R2, 
Ra

2 = 1 – (MSE/MSTO).
 Recall that Ra

2 adjusts for arbitrary 
inclusion of variables.  Thus we could aim 
to maximize Rap

2 over increasing p (  min-
imize MSEp).

 The pattern will usually be very similar to 
Rp

2, but at least it is not guaranteed to 
always increase.



Surgical Unit Data (CH09TA01) (cont’d)

Rap plot: use  method='adjr2' in call to 
leaps() (cf. Fig. 9.4b).  Best subset is X1,X2,X3

2



(c) Mallow’s Cp

A statistic due to C. Mallows is designed to 
find subsets of the P–1 variables that 
minimize a form of mean squared 
deviation; see equ. (9.8). 

The target quantity is estimated by 

  Cp = SSEp
MSE(X1…XP–1) – (n – 2p) 

and is known as Mallow’s Cp. 



Mallow’s Cp (cont’d)

 As Cp drops, the quality of the fit improves, 
up to a point:  when the expected fitted 
values roughly equal the mean responses, 

E{Cp} ≈ p.

 So, plot Cp against p and look for 
(i) small Cp where 
(ii) Cp ≈ p.

 (Values where Cp < p are attributed to 
sampling variation and ignored.)



Surgical Unit Data (CH09TA01) (cont’d)
Cp plot: use  method=‘Cp’ in call to  leaps() 
(cf. Fig. 9.4c).  Best subset is again X1,X2,X3



An increasingly popular measure in statistics 
is the Information Criterion (IC). 
The earliest was Akaike’s IC (“AIC”): 
 AICp = n log{SSEp} - n log{n} + 2p 
         minimization target  penalty term 
Select that p-parameter subset that minimizes 
AICp. 
(Careful:  some authors multiply by –2 or by  
–½ and then maximize.) 

(d) AIC and BIC



Schwarz’ BIC
A popular alternative is Schwarz’ Bayesian 
Criterion (SBC), also called the BIC:

BICp = n log{SSEp} - n log{n}  +  p log{n}
minimization target penalty term

Select that p-parameter subset that minimi-
zes BICp.

(BIC tends to more heavily penalize models 
with larger p.)



Surgical Unit Data (CH09TA01) (cont’d)

 Xk-variable selection search using AICp
in R:

 Define baseline ‘full model’:
> fmCH09TA01.lm = lm( Yprime ~ X1+X2+X3+X4 )

 Use step() function (go ‘backward’ if start-
ing with full model).  k=2 option calls AICp:

> step( fmCH09TA01.lm, direction=“backward”,
k=2 )

Output follows →



Surgical Unit Data (CH09TA01) (cont’d)

Xk-variable search using AICp via step():
Start:  AIC=-144.59
Yprime ~ X1 + X2 + X3 + X4

Df Sum of Sq    RSS     AIC
- X4    1    0.0244 3.1085 -146.16
<none>              3.0841 -144.59
- X1    1    0.5309 3.6150 -138.01
- X2    1    1.8857 4.9698 -120.82
- X3    1    3.4842 6.5683 -105.76

Output continues →



Surgical Unit Data (CH09TA01) (cont’d)

step() search ends with selected min-AIC 
model:  Y ~ X1 + X2 + X3:
Step:  AIC=-146.16
Yprime ~ X1 + X2 + X3

Df Sum of Sq    RSS      AIC
<none>              3.1085 -146.161
- X1    1    1.2044 4.3129 -130.479
- X2    1    2.6740 5.7825 -114.644
- X3    1    6.3286 9.4371  -88.194
Call:
lm(formula = Yprime ~ X1 + X2 + X3)
Coefficients:
(Intercept)           X1           X2           X3  

3.76644      0.09547      0.01334      0.01644



Surgical Unit Data (CH09TA01) (cont’d)

 Xk-variable selection search using BICp.
 Define baseline ‘full model’:

> fmCH09TA01.lm = lm( Yprime ~ X1+X2+X3+X4 )

 Use step() function (go ‘backward’ if start-
ing with full model).  k=log(n) option uses 
BICp:
> n = length(Yprime)
> step( fmCH09TA01.lm, direction="backward",

k=log(n) )

Output follows →



Surgical Unit Data (CH09TA01) (cont’d)

Xk-variable search using BICp via step():
Start:  AIC=-134.64
Yprime ~ X1 + X2 + X3 + X4

Df Sum of Sq RSS      AIC
- X4    1    0.0244 3.1085 -138.205
<none>              3.0841 -134.642
- X1    1    0.5309 3.6150 -130.055
- X2    1    1.8857 4.9698 -112.867
- X3    1    3.4842 6.5683  -97.807

(Output lists ‘AIC’ throughout, but numbers are BICp, 
based on use of  k=log(n) option.)



Surgical Unit Data (CH09TA01) (cont’d)

step() search ends with selected min-BIC 
model (even though it says ‘AIC’):  
Y ~ X1 + X2 + X3:
Step:  AIC=-138.21
Yprime ~ X1 + X2 + X3

Df Sum of Sq    RSS      AIC
<none>              3.1085 -138.205
- X1    1    1.2044 4.3129 -124.512
- X2    1    2.6740 5.7825 -108.677
- X3    1    6.3286 9.4371  -82.227
Call:
lm(formula = Yprime ~ X1 + X2 + X3)
Coefficients:
(Intercept)         X1         X2         X3  

3.76644    0.09547    0.01334    0.01644



(e) PRESS

When prediction of a future Ŷi is a central 
goal, we can study the prediction error for 
each observation. 

Let Ŷi(i) be the value predicted at observation i 
after leaving Yi out of the MLR calculations. 
(A “leave-one-out,” or LOO, predictor: a kind 
of cross-validation). 

If the model predicts Ŷi(i) well – even without 
Yi being fit – it could be a good model. 



PRESS (cont’d)

Do this LOO calculation for every Yi.  If the 
differences (Ŷi – Ŷi(i)) are all small, the 
model predicts well.   
To avoid +/– cancelations, square the 
differences and sum into a Prediction Sum 
of Squares:  PRESSp = ∑(Ŷi – Ŷi(i))2. 
Goal is to find the p-parameter subset that 
minimizes PRESSp. 



Surgical Unit Data (CH09TA01) (cont’d)

PRESSp plot via R and external MPV package:
> library( MPV ) 
> PRESSp = numeric( length(CH09TA01.r2$size) )
> PRESSp[1] = PRESS( lm( Yprime ~ X1 ) )

�
> PRESSp[14] = PRESS( lm( Yprime ~ X2+X3+X4 ) )
> PRESSp[15] = PRESS( fmCH09TA01.lm )
> plot( PRESSp ~ CH09TA01.r2$size , 

ylab=expression(PRESS[p]), xlab='p' ) 
> minPRESSp = by( data=PRESSp,

INDICES=factor(CH09TA01.r2$size), FUN=min )
> lines(minPRESSp ~ p )



Surgical Unit Data (CH09TA01) (cont’d)

PRESSp plot (cf. Fig. 9.4f): best is again X1,X2,X3



“Best” Subset Selection

 To select a subset of  p–1 ≥ 1 predictor 
variables for further study, “best” subset 
algorithms perform automated searches 
among all possible MLR models under 
some optimality criterion.

 The automation seems intensive, but clever 
‘branch-and-bound’ algorithms exist to 
speed the calculations.

 And let’s face it: the computer won’t care...



“Best” Subset Selection (cont’d)

 To perform best subset selection, select 
some optimality criterion, such as max.-Rp

2

or min.-Cp, 
 Ask the computer to find the best 5 (say) 

possible subsets under that measure.
 The analyst can then further study the 

given subset(s) to determine an appropri-
ate final model.

 Never, never, never, cede final decision-
making to the computer!



Surgical Unit Data (CH09TA01) (cont’d)

Now, include all  P–1 = 8  Xk-variables for 
subset selection.  Can use leaps()
function with  nbest= option.  (Apply Cp
as optimality criterion.) 
> library( leaps ) 

> Xmtx = cbind(X1,X2,X3,X4,X5,X6,X7,X8)

> subCH09TA01.cp = leaps( x=Xmtx, y=Yprime,
nbest=5, method='Cp' )

nbest=5 produces 5 best (smallest Cp) X-variable 
subsets for each p–1 = 1,2,...,8.



Surgical Unit Data (CH09TA01) (cont’d)

R code for Cp plot:
> plot( subCH09TA01.cp$Cp ~ 

subCH09TA01.cp$size , 
ylab=expression(C[p]), 

xlab='p' ) 

> subCp = by( data=subCH09TA01.cp$Cp, 
INDICES=factor(subCH09TA01.cp$size),

FUN=min )
> lines( subCp ~ seq(2,9) )
> curve(0 + 1*x, lty=2, add=T) #p=p line



Surgical Unit Data (CH09TA01) (cont’d)
Cp plot with all 8 Xk-variables and (just) 5 best models 
at each p (cf. Fig. 9.5c): 



Surgical Unit Data (CH09TA01) (cont’d)

Find min-Cp:
> minCp = min( subCH09TA01.cp$Cp ); minCp
[1] 5.528174

Find corresp. p (incl. β0): 
> best.index = which( subCH09TA01.cp$Cp == minCp )
> subCH09TA01.cp$size[ best.index ]
[1] 6

Find corresp. Xk-variables: 
> subCH09TA01.cp$which[ best.index, ]
1     2     3    4     5 6    7 8 
TRUE  TRUE  TRUE FALSE FALSE TRUE FALSE TRUE 

 add’l study of subset (X1,X2,X3,X6,X8) warranted.



Stepwise Variable Selection

 Can formalize the selection 
procedure in a simpler, algorithmic 
fashion.

 There are two basic formats: 
• Forward Stepwise Selection, and 
• Backward Elimination.



Forward Stepwise Selection

Step 0: Start with all P–1 Xk variables.

Step 1: Test each SLR of Ho:βk = 0 via 
tk* = bk/s{bk} 

(k = 1,...,P–1) and find the Xk with the max. 
|tk*|  (i.e., smallest 2-sided P-value). Select 
that Xk if Pk < αe. Call this Xk1.
(If no Pk < αe, stop and select NO X variables.  
αe is the α-to-enter level.)

cont’d  →



Forward Stepwise Selection (cont’d)

Step 2: Test every possible p–1=2 variable 
model with Xk1 and (every other) Xk (k ≠ k1).  
Find all partial t-statistics tk* = bk/s{bk|bk1} with 
partial P-value Pk.  Select the 2nd Xk as that with 
the smallest partial Pk if Pk < αe. Call this Xk2.
(If no Pk < αe, stop and select only Xk1.)

Step 3: Check if Xk1 is still signif. with Xk2
included.  Find the partial t* = bk1/s{bk1|bk2} and 
remove Xk1 if the corresp. Pk1 > αr.  
(αr is the α-to-remove level.)

cont’d  →



Forward Stepwise Selection (cont’d)

Step 4: Go to Step 2 and keep “entering” Xk’s 
until no Pk is smaller than αe. Also include 
Step 3 for possible removal.

Note: Be sure to keep αe and αr fixed 
throughout.  (Don’t change in mid-stream.)
Also, always have αe < αr to avoid cycling.

NB: this is clearly an exploratory method.  It 
is not designed for inferential or confirma-
tory science.



Forward Selection and 
Backward Elimination

 A special version of Forward Stepwise 
Selection exists where no removal step is 
employed.  (So there is no αr.)
• This is called Forward Selection.

 Another alternative is Backward 
Elimination: start with all P–1 X-variables 
and cull down until no P-val. is above αr.
• A ‘backward selection’ variant allows for 

variables to re-enter.



Backward Elimination
Many analysts favor Backward Elimination:
• It can be more stable
• It often produces more accurate MSE’s
• It retains more pertinent predictors 
 In early forward stepwise stages, some 

important predictors have yet to enter into the 
model. This inflates the MSE, which in turn 
drives the entry t-statistics closer to zero. 
 step-up selection can lose important 
predictors along the way...



Surgical Unit Data (CH09TA01) (cont’d)

Example: Select subsets via Backward Elimination.
(a) Use step() with min-AICp (option k=2) as 

optimality measure:
> step( fm8CH09TA01.lm, direction=“backward”,

k=2 )

(b) Use fastbw() from external rms package with 
P > αr = 0.10 (option sls=0.10) as removal 
criterion:

> library( rms )
> fm8.ols = ols( Yprime ~

X1+X2+X3+X4+X5+X6+X7+X8 )
> fastbw( fit=fm8.ols, rule=“p”,

type=“individual”, sls=.10 )



Surgical Unit Data (CH09TA01) (cont’d)
(a) Backward elim. using AICp via step():
Start:  AIC=-160.78
Yprime ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8

Df Sum of Sq    RSS     AIC
- X4    1   0.00126 1.9718 -162.74
- X7    1   0.03159 2.0021 -161.92
- X5    1   0.07359 2.0441 -160.80
<none>              1.9705 -160.78
- X6    1   0.08403 2.0545 -160.52
- X1    1   0.31845 2.2890 -154.69
- X8    1   0.84489 2.8154 -143.51
- X2    1   2.09285 4.0634 -123.70
- X3    1   2.98863 4.9591 -112.94

Output continues →



Surgical Unit Data (CH09TA01) (cont’d)

step() search ends with selected 
min-AIC model:
Step:  AIC=-163.86

Yprime ~ X1 + X2 + X3 + X5 + X6 + X8
Df Sum of Sq RSS      AIC

<none>              2.0043 -163.858
- X5    1    0.0769 2.0812 -163.826
- X6    1    0.0975 2.1018 -163.293
- X1    1    0.6284 2.6327 -151.133
- X8    1    0.9011 2.9054 -145.810
- X2    1    2.7644 4.7688 -119.052
- X3    1    5.0752 7.0795  -97.716

 add’l study warranted of subset 
(X1,X2,X3,X5,X6,X8).



Surgical Unit Data (CH09TA01) (cont’d)

(b) Backward elim. using P-val. via  
fastbw() (output edited):

Deleted Chi-Sq d.f. P       AIC    R2   
X4      0.03   1    0.865  -1.97  0.846
X7      0.74   1    0.389  -3.23  0.843
X5      1.76   1    0.185  -3.47  0.837
X6      2.21   1    0.138  -3.27  0.830

Factors in Final Model
[1] X1 X2 X3 X8

 add’l study of subset (X1,X2,X3,X8) warranted.



Forward Selection and 
Backward Elimination in R

• One can also explore/select regression 
subsets among the P–1 Xk-variables 
using other R commands and program-
ming.

• The R functions add1() and drop1()
and/or addterm() and dropterm()
allow for various sorts of manipulations 
of the MLR model variables. 


