

STAT 571A — Advanced Statistical Regression Analysis

<u>Chapter 9 NOTES</u> Model Building – I: Variable Selection

© 2018 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, photoreproduction, recording, or scanning — without the prior written consent of the course instructor.

§9.1: Model-Building

- If all the X_k-variables are known and validated, building the MLR model is easy.
- But if there are questions as to which X_k's to use, it becomes a model-building process:
 - Data collection —
 - Variable reduction
 - Model refinement
 - Model validation

See (!) Fig. 9.1 \rightarrow

§9.3: Model Selection

- We could approach model building from a (semi-)automated perspective.
- Suppose there are P–1 < n possible Xvariables available (incl. powers, transforms, interactions: X_k², X_k^{1/2}, log(X_k), X_kX_m, you name it)!
- The goal is to select a parsimonious subset of p-1 < P-1 predictors for the MLR model.

Variable Selection

- For simplicity, we always include β₀. Thus if there are P–1 variables available, we have 2^{P-1} possible models.
- This gets big, fast:
 - P–1 = 4 \Rightarrow 16 possible models (cf. Table 9.2)
 - P–1 = 10 \Rightarrow 1024 possible models
- How to do this? Possible metrics from the book include: (a) R², (b) R_a², (c) C_p, (d) AIC/BIC, (e) PRESS.
- We study each, in turn.

(a) Maximum R_p^2

- One obvious way to measure the quality of a set of p–1 predictor variables is to compute the R² from their MLR.
- ⇒ Among a group of different possible models, each with p parameters (p–1 predictors), choose the model with the <u>highest</u> R_p^2 .
- (Notice: since R² = 1 (SSE/SSTO), this is identical to choosing the smallest SSE_p.)

Maximum R_p² (cont'd)

- But recall that every time we add a variable to an MLR model, R² cannot decrease! So, R_p² is a nondecreasing function of p. This will always lead to choosing p = P.
- In practice, we look for a diminishing return: after a certain p, the increase in R_p² should essentially flatten.

Example: Surgical Unit Data (CH09TA01)

- Y' = *ln*{Survival time}
- X₁ = Blood clotting score
- X₂ = Prognostic index
- X₃ = Enzyme test
- X₄ = Liver test
- Goal: determine best combination of X_k-variables for modeling E{Y'}

R_p^2 plot via R:

> library(leaps)

- > CH09TA01.r2 = leaps(x=cbind(X1,X2,X3,X4),
 - y=Yprime, method='r2')

```
> p = seq( min(CH09TA01.r2$size),
```

- max(CH09TA01.r2\$size))
- > plot(CH09TA01.r2\$r2 ~ CH09TA01.r2\$size ,
 - ylab=expression(R^2), xlab='p')
- > Rp2 = by(data=CH09TA01.r2\$r2, INDICES=factor(CH09TA01.r2\$size), FUN=max)
- > lines(Rp2 ~ p)

(b) Maximum R_{ap}^{2}

- To mitigate the increasing nature of R_p^2 , we can move to the adjusted R^2 , $R_a^2 = 1 - (MSE/MSTO)$.
- Recall that R_a² adjusts for arbitrary inclusion of variables. Thus we could aim to maximize R_{ap}² over increasing p (⇔ minimize MSE_p).
- The pattern will usually be very similar to R_p², but at least it is not guaranteed to always increase.

 R_{ap}^{2} plot: use method='adjr2' in call to leaps() (cf. Fig. 9.4b). Best subset is X_{1}, X_{2}, X_{3}

(c) Mallow's C_p

A statistic due to C. Mallows is designed to find subsets of the P–1 variables that minimize a form of mean squared deviation; see equ. (9.8).

The target quantity is estimated by

$$C_{p} = \frac{SSE_{p}}{MSE(X_{1}...X_{P-1})} - (n - 2p)$$

and is known as Mallow's C_p.

Mallow's C_p (cont'd)

- As C_p drops, the quality of the fit improves, up to a point: when the expected fitted values roughly equal the mean responses, $E\{C_p\} \approx p.$
- So, plot C_p against p and look for
 (i) small C_p where
 (ii) C_p ≈ p.
- (Values where C_p sampling variation and ignored.)

 C_p plot: use method='Cp' in call to leaps() (cf. Fig. 9.4c). Best subset is again X_1, X_2, X_3

(d) AIC and BIC

An increasingly popular measure in statistics is the Information Criterion (IC).

The earliest was Akaike's IC ("AIC"):

Select that p-parameter subset that minimizes AIC_p.

(Careful: some authors multiply by -2 or by $-\frac{1}{2}$ and then maximize.)

Schwarz' BIC

A popular alternative is Schwarz' Bayesian Criterion (SBC), also called the **BIC**:

$$BIC_{p} = n \log\{SSE_{p}\} - n \log\{n\} + p \log\{n\}$$

minimization target penalty term

Select that p-parameter subset that minimizes BIC_p.

(BIC tends to more heavily penalize models with larger p.)

- X_k-variable selection search using AIC_p in R:
- Define baseline 'full model':
- > fmCH09TA01.lm = lm(Yprime ~ X1+X2+X3+X4)

Use step() function (go 'backward' if starting with full model). k=2 option calls AIC_p:

Output follows \rightarrow

X_k -variable search using AIC_p via step():

Start: AIC=-144.59 Yprime ~ X1 + X2 + X3 + X4

	Df	Sum of Sq	RSS	AIC
- X4	1	0.0244	3.1085	-146.16
<none></none>			3.0841	-144.59
- X1	1	0.5309	3.6150	-138.01
- X2	1	1.8857	4.9698	-120.82
- X3	1	3.4842	6.5683	-105.76

Output continues \rightarrow

step() search ends with selected min-AIC model: $Y' \sim X_1 + X_2 + X_3$:

```
Step: AIC=-146.16
Yprime ~ X1 + X2 + X3
       Df Sum of Sq RSS
                              AIC
                   3.1085 - 146.161
<none>
- X1 1 1.2044 4.3129 -130.479
- X2 1 2.6740 5.7825 -114.644
- X3 1 6.3286 9.4371 -88.194
Call:
lm(formula = Yprime ~ X1 + X2 + X3)
Coefficients:
                   X1
                                            X3
(Intercept)
                                X2
   3.76644 0.09547 0.01334
                                       0.01644
```

- X_k-variable selection search using BIC_p.
 Define baseline 'full model':
 - > fmCH09TA01.lm = lm(Yprime ~ X1+X2+X3+X4)
- Use step() function (go 'backward' if starting with full model). k=log(n) option uses BIC_p:
 - > n = length(Yprime)
 - > step(fmCH09TA01.lm, direction="backward",
 - k=log(n))

```
Output follows \rightarrow
```

 X_k -variable search using BIC_p via step():

Start: AIC=-134.64

Yprime ~ X1 + X2 + X3 + X4

	Df	Sum of Sq	RSS	AIC
- X4	1	0.0244	3.1085	-138.205
<none></none>			3.0841	-134.642
- X1	1	0.5309	3.6150	-130.055
- X2	1	1.8857	4.9698	-112.867
- X3	1	3.4842	6.5683	-97.807

(Output lists 'AIC' throughout, but numbers are BIC_p , based on use of k=log(n) option.)

step() search ends with selected min-BIC model (even though it says 'AIC'):

```
\mathbf{Y}' \sim \mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3:
```

```
Step: AIC=-138.21
Yprime ~ X1 + X2 + X3
      Df Sum of Sq RSS
                             AIC
                  3.1085 - 138.205
<none>
- X1 1 1.2044 4.3129 -124.512
- X2 1 2.6740 5.7825 -108.677
- X3 1 6.3286 9.4371 -82.227
Call:
lm(formula = Yprime ~ X1 + X2 + X3)
Coefficients:
                                      X3
(Intercept)
                  X1
                            X2
   3.76644 0.09547 0.01334
                                 0.01644
```

(e) PRESS

When prediction of a future \hat{Y}_i is a central goal, we can study the prediction error for each observation.

Let $\hat{Y}_{i(i)}$ be the value predicted at observation *i* after <u>leaving</u> Y_i <u>out</u> of the MLR calculations. (A "leave-one-out," or LOO, predictor: a kind of cross-validation).

If the model predicts $\hat{Y}_{i(i)}$ well – even without Y_i being fit – it could be a good model.

PRESS (cont'd)

Do this LOO calculation for every Y_i . If the differences $(\hat{Y}_i - \hat{Y}_{i(i)})$ are all small, the model predicts well.

To avoid +/– cancelations, square the differences and sum into a Prediction Sum of Squares: PRESS_p = $\sum (\hat{Y}_i - \hat{Y}_{i(i)})^2$.

Goal is to find the p-parameter subset that minimizes PRESS_p.

PRESS_p plot via R and external *MPV* package:

> library(MPV) > PRESSp = numeric(length(CH09TA01.r2\$size)) > PRESSp[1] = PRESS(lm(Yprime ~ X1)) > PRESSp[14] = PRESS(lm(Yprime ~ X2+X3+X4))> PRESSp[15] = PRESS(fmCH09TA01.lm) > plot(PRESSp ~ CH09TA01.r2\$size , ylab=expression(PRESS[p]), xlab='p') > minPRESSp = by(data=PRESSp, INDICES=factor(CH09TA01.r2\$size), FUN=min) > lines(minPRESSp ~ p)

PRESS_p **plot** (cf. Fig. 9.4f): best is again X₁,X₂,X₃

"Best" Subset Selection

- To select a subset of p-1 ≥ 1 predictor variables for further study, "best" subset algorithms perform automated searches among all possible MLR models under some optimality criterion.
- The automation seems intensive, but clever 'branch-and-bound' algorithms exist to speed the calculations.
- And let's face it: the computer won't care...

"Best" Subset Selection (cont'd)

- To perform best subset selection, select some optimality criterion, such as max.-R_p² or min.-C_p,
- Ask the computer to find the best 5 (say) possible subsets under that measure.
- The analyst can then further study the given subset(s) to determine an appropriate final model.
- Never, never, never, cede final decisionmaking to the computer!

Now, include all P-1 = 8 X_k -variables for subset selection. Can use leaps() function with nbest= option. (Apply C_p as optimality criterion.)

- > library(leaps)
- > Xmtx = cbind(X1,X2,X3,X4,X5,X6,X7,X8)
- > subCH09TA01.cp = leaps(x=Xmtx, y=Yprime, ____nbest=5, method='Cp')

nbest=5 produces 5 best (smallest C_p) X-variable subsets for each p-1 = 1,2,...,8.

R code for C_p plot:

```
INDICES=factor(subCH09TA01.cp$size),
FUN=min )
```

```
> lines( subCp ~ seq(2,9) )
```

> curve(0 + 1*x, lty=2, add=T) #p=p line

 C_p plot with all 8 X_k -variables and (just) 5 best models at each p (cf. Fig. 9.5c):

Find min-C_p:
> minCp = min(subCH09TA01.cp\$Cp); minCp
[1] 5.528174

Find corresp. p (incl. \$\beta_0\$):
> best.index = which(subCH09TA01.cp\$Cp == minCp)
> subCH09TA01.cp\$size[best.index]
[1] 6

Find corresp. X_k-variables:

> subCH09TA01.cp\$which[best.index,]

 1
 2
 3
 4
 5
 6
 7
 8

 TRUE
 TRUE
 TRUE
 FALSE
 FALSE
 TRUE
 FALSE
 TRUE

 \Rightarrow add'l study of subset (X₁,X₂,X₃,X₆,X₈) warranted.

Stepwise Variable Selection

- Can formalize the selection procedure in a simpler, algorithmic fashion.
- There are two basic formats:
 - Forward Stepwise Selection, and
 - Backward Elimination.

Forward Stepwise Selection

<u>Step 0</u>: Start with all P–1 X_k variables.

<u>Step 1</u>: Test each SLR of $H_o:\beta_k = 0$ via $t_k^* = b_k/s\{b_k\}$

(k = 1,...,P–1) and find the X_k with the max. |t_k*| (i.e., smallest 2-sided *P*-value). Select that X_k if P_k < α_e . Call this X_{k1}. (If <u>no</u> P_k < α_e , stop and select NO X variables. α_e is the α -to-enter level.)

Forward Stepwise Selection (cont'd)

<u>Step 2</u>: Test every possible p–1=2 variable model with X_{k_1} and (every other) X_k ($k \neq k_1$). Find all <u>partial</u> t-statistics $t_k^* = b_k/s\{b_k|b_{k_1}\}$ with partial *P*-value P_k . Select the 2nd X_k as that with the smallest partial P_k if $P_k < \alpha_e$. Call this X_{k_2} . (If <u>no</u> $P_k < \alpha_e$, stop and select only X_{k_1} .)

<u>Step 3</u>: *Check* if X_{k_1} is still signif. with X_{k_2} included. Find the partial $t^* = b_{k_1}/s\{b_{k_1}|b_{k_2}\}$ and <u>remove</u> X_{k_1} if the corresp. $P_{k_1} > \alpha_r$. (α_r is the α -to-remove level.)

cont'd \rightarrow

Forward Stepwise Selection (cont'd)

<u>Step 4</u>: Go to Step 2 and keep "entering" X_k 's until no P_k is smaller than α_e . Also include Step 3 for possible removal.

<u>Note</u>: Be sure to keep α_e and α_r fixed throughout. (Don't change in mid-stream.) Also, always have $\alpha_e < \alpha_r$ to avoid cycling.

NB: this is clearly an **exploratory method**. It is not designed for inferential or confirmatory science.

Forward Selection and Backward Elimination

- A special version of Forward Stepwise Selection exists where no removal step is employed. (So there is no α_r.)
 - This is called Forward Selection.
- Another alternative is Backward Elimination: start with all P–1 X-variables and cull down until no *P*-val. is above α_r.
 - A 'backward selection' variant allows for variables to re-enter.

Backward Elimination

Many analysts favor Backward Elimination:

- It can be more stable
- It often produces more accurate MSE's
- It retains more pertinent predictors
- → In early forward stepwise stages, some important predictors have yet to enter into the model. This inflates the MSE, which in turn drives the entry t-statistics closer to zero.
 ⇒ step-up selection can lose important predictors along the way...

Example: Select subsets via Backward Elimination.

- (a) Use step() with min-AIC_p (option k=2) as optimality measure:
- (b) Use fastbw() from external *rms* package with $P > \alpha_r = 0.10$ (option sls=0.10) as removal criterion:
 - > library(rms)
 - > fm8.ols = ols(Yprime ~

```
X1+X2+X3+X4+X5+X6+X7+X8)
```

> fastbw(fit=fm8.ols, rule="p",

```
type="individual", sls=.10 )
```

(a) Backward elim. using AIC_{p} via step():

Start: AIC=-160.78 Yprime ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8

	Df	Sum of Sq	RSS	AIC
- X4	1	0.00126	1.9718	-162.74
- X7	1	0.03159	2.0021	-161.92
- X5	1	0.07359	2.0441	-160.80
<none></none>			1.9705	-160.78
- Хб	1	0.08403	2.0545	-160.52
- X1	1	0.31845	2.2890	-154.69
- X8	1	0.84489	2.8154	-143.51
- X2	1	2.09285	4.0634	-123.70
- X3	1	2.98863	4.9591	-112.94

Output continues \rightarrow

step() search ends with selected min-AIC model:

Step: AIC=-163.86													
YI	prime	~]	X1	+	X2	+	Х3	+	X5	+	X6	+	X8
		\mathbf{Df}	ຽເ	ım	of	Sq	I	I	RSS			A :	IC
<1	none>						2	.00	043	-2	163	. 8!	58
-	X 5	1		C).0'	769	2	.08	812	-1	163	. 82	26
-	X6	1		C	.09	975	52	.1(018	-3	163	. 29	93
-	X1	1		C).62	284	1 2	.63	327	-2	151	.1:	33
-	X8	1		C).9(011	L 2	.9(054	-2	145	. 81	10
-	X2	1		2	2.70	544	4	.76	588	-3	119	. 0!	52
-	X 3	1		5	5.0'	752	2 7	.07	795		-97	. 71	16
	> add	' 	stu	ıd	y w		rra	nt	ed	of	รเ	b	set

 $(X_1, X_2, X_3, X_5, X_6, X_8).$

(b) Backward elim. using P-val. via fastbw() (output edited):

Deleted	Chi-Sq	d.f.	P	AIC	R2
X4	0.03	1	0.865	-1.97	0.846
X7	0.74	1	0.389	-3.23	0.843
X5	1.76	1	0.185	-3.47	0.837
X6	2.21	1	0.138	-3.27	0.830

Factors in Final Model [1] X1 X2 X3 X8

 \Rightarrow add'l study of subset (X₁,X₂,X₃,X₈) warranted.

Forward Selection and Backward Elimination in R

- One can also explore/select regression subsets among the P–1 X_k-variables using other R commands and programming.
- The R functions add1() and drop1() and/or addterm() and dropterm() allow for various sorts of manipulations of the MLR model variables.