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§10.1: Added-Variable Plots

- Added-variable plots visualize the potential value of
adding a new X -variable to an existing MLR model.

- Find the residuals from the existing fit of Y on the X,
variables (k = 2, ..., p—1); call these ¢(Y|X,,...,X,_,).

- If the new variable is X,, regress X, on the X,
variables (k = 2, ..., p—1); find the residuals
e;(X41Xy,-., X,_1)-

- Plot ¢,(Y[X,,...,X,,_;) against e,(X,[X,,...,X,_;) and look
for patterns.




Versions of Add’d Var. Plots

From Fig. 10.1: (a) nothing new in X,; (b) add’l
linear term in X,; (c) add’l curvilinear term in X,




Example: Life Insur. data (CH10TAO01)

m Y = Life insur. carried
X, = Risk aversion score
X, = ann. income

m Existing model has single predictor X,. Build
added-variable plot for new variable X,.
m For this simple case, program this directly in R:

> plot( resid(Im(Y~X2)) ~ resid(Im(X1~X2)) )
> abline( Im(resid(Im(Y~X2))~resid(Im(X1~X2))))

m More generally, use avPlot() from car package:
> library( car )

> avPlot( model=Im( Y~-X1+X2 ), variable=X1 )

Plot follows —




Life Insur. data (CH10TA01) (cont’d)

Added-Variable Plot: X1
Added-var. plot
for X, from
avPlot(). Clear
linear pattern
suggests addi-
tion of X, to
model. (Slight
curvature too,
so maybe try X,?
too.)

X1 | others




Life Insur. data (CH10TA01) (cont’d)

m Fit MLR model with p—1 = 2 predictors:

> CH10TAO1x1Ix2.Im = ImC Y ~ X2 + X1 )
> summary( CH10TAO1x1x2.1Im )
Call:
Im(formulla = Y ~ X2 + X1)
Coefficients:
Estimate Std. Error t value Pr(c|t])
(Intercept) -205.7187 11.3927 -18.057 1.38e-11
X2 4.7376 1.3781 3.438 0.00366
X1 6.2880 0.2041 30.801 5.63e-15

m Residual plot:

> plot( resid(CHLOTAOLX1x2.Im)~
fitted(CH10TAOLX1x2.Im) )

Plot follows —




Life Insur. data (CH10TA01) (cont’d)

Resid. plot
for X2+X1
fit. Clear,
U-shaped
curvature,
so try add-
ing X,?2 to
model.

100 150 200 250 300

Predicted




Life Insur. data (CH10TAO01) (cont’d)

m Fit MLR model with p—1 = 3 predictors:

> CH10TAOL1.Im = ImC Y ~ X2 + X1 + 1(X1™2) )
> summary( CH10TAO1.0Im )

Call:

Im(formula = Y ~ X2 + X1 + 1(X1"2)))
Estimate Std. Error

(Intercept) -73.46051
X2 5.40039
X1 0.79596
1 (X12) 0.05087

m Residual plot:

6.67743
0.25399
0.26608
0.00244

> plot( resid(CH10TAOL. Im)~
fitted(CH10TAOL.Im) )

t value Pr(c|t)])
-11.001 2.83e-08
21.262 4.68e-12
2.991 0.00971
20.847 6.12e-12

Plot follows —




Life Insur. data (CH10TA01) (cont’d)

Resid. plot
for full p=4
parameter
model is
better, but a
potential
‘outlier’ is
evident at
bottom.—

100 150 200 250 300

Predicted




Partial Resid. Plot

A similar kind of diagnostic plot is known
as a Partial Residual Plot (and is

sometimes confused with an added
variable plot!)

Find e; = Y; - Y; for the model with the
putative new variable X,. Then calculate

Pik = €; + by Xy

and plot pix vs. Xi. (See adv. texts on regr.
diagnostics.)




§10.2: Studentized Residuals

m As noted in Chapter 3, a problem with raw
residuals (e; = Y; -Y)) is that they are
scale/measurement-dependent:
in one data set an absolute residual of |e;|
= 8.2 may be less egregious than a
residual of |e;| = 0.7 in another data set.

m We can stabilize residuals across data
sets/model fits by standardizing them to
similar scales (sort of like a z-score).




Studentized Residuals

m A Studentized Residual is a raw residual,
e;, divided by its standard error:

r; = ej/s{e;}
where s?{e;} = (1 — h,)xMSE, with h; as the

ith diag. element from the hat matrix H.

m As a rule-of-thumb, the r;s exhibit homo-
geneous variation between about
—-2<r;<2
when the model is fit correctly. (But, this
is a pretty rough rule.)




Deleted Residuals

m A Deleted Residual is
d=Y, - Qi(i)
where Qi(i) predicts Y; by fitting the MLR
model without Y, (cf. with the LOO

operation for the PRESS statistic).

m Large values of |d;| suggest that Y,
differs greatly from the rest of the data
under the proffered model.

m Can show: d, = e/(1 — h;)), so only need
to fit the model once.




Studentized Deleted Residuals

m A Studentized Deleted Residual is a deleted
residual, d;, divided by its standard error:

t = d/s{d}

= GVU h..)SSE e’

mt. ~ t(n—p-1), so we expect the ith point to
show

-t(1—- a/2; n—p-1) < t. < {(1- a/2; n—p-1)
when the model is fit correctly.




Outliers

m For an MLR model, we can use the
studentized deleted residuals, t;, to identify
observations that deviate from the model fit.

m In general: if the model fits correctly, values

with |t.| > t(1- a/(21); n—p-1) indicate unusual
data points. ( )

m We call such values (possible) OUTLIERS.

m Once identified, an outlier should be studied
to determine why it displays departure from
the MLR model.




Studentized Residuals in R

m In R, we plot the t;’s for outlier detection.

m E.g., with the Body Fat data (CHO7TAO01)
and using only X, and X,.:
n=length(Y); bfl2_.Im = ImC Y ~ X1 + X2 )
plot( rstudent(bfl2.Im) ~ fitted(bfl2.Im) )
abline( h=0 )
tecrit = qt( 1-(.107(2*n)), n-3-1 )
abline( h=tcrit, Ity=2 )
abline( h=-tcrit, Ity=2 )

m Careful: rstudent() gives studentized deleted
resid’s




Body Fat Example (CHO7TAO01):
Studentized Deleted Residual Plot

Possible
outliers are
above or
below *t
crit. points.
(All points
are within
bounds
here.)
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§10.3: Leverage

An X, value can act
as a sort of outlier
as well, when it
strongly influences
the fit of the
regression model.
Say p=2. This plot
shows a std. SLR fit
with no anomalies.




Leverage (cont’d)

But when X_ drives
far from the other
X/’s, it can
singlehandediy

the
nature of the SLR
line (this extends to
p > 2 as well)




Leverage (cont’)

m We say Leverage is the ability of a design point
to strongly influence the fit of a regression
model. This is usually seen as a detriment.

m Leverage occurs, e.g., when a single X, rests far
away from the bulk of the other explanatory X
values, as illustrated in the previous 2 slides.

m Some online, interactive applets that explore

leverage are available at

o http://www.amstat.org/publications/jse/vbn3/applets/regression.html
o http:/Iwww.rob-mcculloch.org/teachingApplets/Leverage/index.html




Leverage (cont’d)

m We quantify high leverage using the hat
matrix elements.

m Notice in the studentiz’d deleted resid. that
It.| 1 as h;,—1, while |t)| | as h;—0.
(Recall that 0 =h;<1and ) h; =p.)

m Consequence:

- small h;; = low resid. and fitted values close
torestof Y.’s

* large h;; = high resid. and fitted values
farther from rest of Y.’s




Leverage and Hat Elements

Indeed, since Y = HY, h; is literally the weight
of Y; in calculating Y;. Thus large h;; gives Y,
strong influence on the fit.

But wait! From equ. (10.18) we see

hi = X/(X’X)"'X; depends only on the X’s.

Thus we can check the influence of an
observed (or unobserved) Y; by examining
just the h; value(s). Can even check for
possible ‘extreme’ X’s.




Leverage Rule-of-Thumb

A standard rule-of-thumb for informally

assessing X-leverage is to indicate high
leverage at X; if

hi > 2h = 25 hy/n = 2p/n

(But be careful: sometimes with small n,
h > ' so 2h = 2p/n > 1 and no X; will be
marked as high leverage.)




Example: Body Fat data (CH07TA01)

m Restrict attention to only X, and X, and plot
X-vector values for leverage visualization:

> plot( X2~X1, pch="" )
> text( X1, X2, labels=as.character(1:20) )

m Can also mark points with high leverage (i.e.,
h,. > 2p/n):

> n = length(Y); p =3

> hit = hatvalues( bfl2.Im )

> points( X1[hi1i>2*p/n], X2[h1i1>2*p/n],
cex=2.5, col="red" )

Plot follows —




Body Fat Example (CHO7TAO01):
X, vs. X, leverage plot

High leverage points at1 =15 and i = 3; cf




Influence Measures: DFFITS

m To measure the influence of a single fitted
value, calculate

_ Yi— Qi(i) = ¢ h;;
- \/hii MSE(i) - 1_hii
m The DFFITS measure takes the studentiz’d

deleted resid. t; and weights it with a
measure proportional to h;.

(DFFITS),

m This acts as a sort of combined measure of
overall influence.




DFFITS (cont’d)

m For use in practice, view ?, as an
influential fitted value if

* |(DFFITS),| >1 (for n <40) or
 |(DFFITS),| > 2{p/n}'? (for n 2 40).

mIn R, use
dffits( [Im Object here] ).




Example: Body Fat data (CH07TA01)

> plot( abs( dffits(Im(Y~X1+X2)) ),
type="0", pch=19 )

> abline( h=1, Ity=2 )

—

‘

0.0 02 04 06 08 10 1.2

High
DFFITS
point
ati=3

[(DFFITS)|

index, i




Influence Measures:
Cook’s Distance

What about measuring influence across the
fitted values Y;? Cook’s Distance is defined
as
S (Y= Yi) _ e hi;

PMSE 7 p MSE (1-h;)’
(Notice how the(LOO approach collapses into a
single calculation.)

Di=

View ?i as a (very) influential case when
P[ F(p,n—p) = Di ] > 7.

(Some authors suggest > 1/10 or > 1/5...)




Example: Body Fat data (CH07TAO01)

Cook’s Distance plots (cf. Fig. 10.8):

>
>
>

par( mfrow=c(1,2) )
el = resid( Im(Y~-X1+X2) )
vyhat = fitted(Im(Y~-X1+X2))

#iHH Proportional Infl. Plot:

radius = sqrt( cooks.distance(Im(Y~X1+X2))/p1 )

plot( er1 ~ yhat, pch=""); abline( h=0 )

symbols( yhat, er, circles=radius, Inches=.15,
bg="black™, fg="white", add=T )

A7 Index Infl. Plot:
plot( cooks.distance(Im(Y~X1+X2)), type="o0",
pch=19 )

Plots follow —



Body Fat data (CHO7TAO01) (cont’d)

Cook’s Distance influence plots (cf. Fig. 10.8):

o
(=

Cook's Distance D

I
18 20 22 24 10

Predicted index, |




Body Fat data (CHO07TAO01) (cont’d)

Or, try marking the Proportional
Influence plot with the index, I:

el = resid( Im(Y~-X1+X2) )

yhat = fitted(Im(Y~X1+X2))

Di = cooks.distance( Im(Y~X1+X2) )

radius = sgrt( Di/pr1 )

plot( el ~ yhat, pch=""); abline( h=0 )

symbols( yhat, ei, circles=radius,

inches=.2, add=T )

text( yhat, er1,

labels=as.character(1:20), cex=.7 )

Plot follows —




Body Fat data (CHO7TAO01) (cont’d)

Cook’s Distance proportional influence
plot (index-labeled):




Influence Measures: DFBETAS

Another influence measure (and there are
LOTS of ’em...) quantifies the influence of Y;
on the regression coefficients, by.
Define

by — by
\/Ckk MSE(i)

(DFBETAS);) =

where
. by is the kth regr. coeff., and MSE is the
MLR MSE, with Y; removed from the data;

. i is the kth diag. element of (X’'X)™
(Whew...)




DFBETAS (cont’d)

A large value of (DFBETAS),;, say
* |(DFBETAS);| > 1 (for n <40) or
» |([DFBETAS),;| > 2/Vn (for n 2 40)

indicates large impact of Y; on that
particular b,.

In R, the influence.measures() function

provides all the influence measures
described above.




Example: Body Fat data (CHO7TAO01)

All influence measures for p—1 = 2 predictors:

> Influence.measures( bfl2.0Im )
Influence measures of
Im(formulla = Y ~ X1 + X2):

1
2
3
4
5
6
V4
8
9
1

dfb.1
.05e-01
. 73e-01
.47e-01
.02e-01
.37e-05
.97e-02
. /5e-02
.61e-01
.51e-01
.38e-01

dfb.X1

.31le-01
.15e-01
-18e+00
.94e-01
.05e-05
.01le-02
.56e-02
.91e-01
.95e-01
.45e-01

dfb.X2

.32e-01
.43e-01
.07e+00
.96e-01
.02e-05
.43e-02
.43e-02
.32e-01
.47e-01
.69e-01

-3.
3.
-1.

4

dffit
66e-01
84e-01
27e+00

. 76e-01
-7.
-5.
1.
5.
4.
-3.

29e-05
67e-02
28e-01
75e-01
02e-01
64e-01

PRPORRPRROROROQO

ov.r
.361
.844
-189
977
.995
371
-397
- 780
.081
-110

cook.d
.60e-02
.55e-02
.90e-01
.22e-02
.88e-09
-.14e-03
. 76e-03
. 79e-02
.31e-02
.40e-02

PO OOCORFRPEPNRRMD

oNoloNoNoNolNololoeNe)

hat Inf

.2010
.0589
3719 *
-1109

.2480 *
.1286
.1555
-0963
-1146
-1102

/

(Asterisk indicates high influence on any measure)

Output continues —




Body Fat data (CHO7TAO01) (cont’d)

influence.measures() output (cont’d):

InfFluence measures of

Im(formulla = Y ~ X1 + X2) :

dfb.1
.02e-03
.30e-01
.19e-01
.52e-01
.00e-03
.31e-03
.95e-02
.32e-01
.30e-01
.02e-02

NRANOUORNRRONP

dfb.X1

.71e-02
.25e-02
.92e-01
.13e-01
.25e-01
.31e-02
.50e-02
.53e-02
.07e-03
.29e-03

dfb.X2

.48e-03
.00e-02
.89e-01
.98e-01
.88e-02
.5le-02
.61e-02
.16e-01
.44e-02
.31e-03

dffit

.05e-02
.23e-01
.51e-01
.36e-01
.89e-01

-1.
-1.
-3.

9.

38e-02
18e-01
66e-01
15e-01
40e-02

RPRPRRPRRPRPRPROOREQO

ov.r
-359
-152
.827
-937
(7S
-309
.312
462
-002
.224

WWOPSrNPEFPPEPDNWO

cook.d

.04e-04
.52e-02
.12e-01
.25e-01
.26e-02
.47e-03
.93e-03
.64e-03
.24e-02
.10e-03

oNoloNoNoNolNololoeNe)

hat Inf

-1203
-1093
.1784
.1480
. 3332
-0953
-1056
-1968
.0670
.0501

/

(Asterisk indicates high influence on any measure)




Body Fat data (CHO7TAO01) (cont’d)

Can see which measures actually exhibit influence via
the $i1s. iInT attribute (but be careful: the hat column

doesn’t always work as expected; here it misses 1=3 and 1=15):
> Influence.measures( bfl2.Im )$is.inf

Influence measures of Im(formula =Y ~ X1 + X2):
dfb.1 dfb.X1 dfb.X2 dffit cov.r cook.d hat

TRUE TRUE TRUE

1
2
3
4
5
6
!
8
9
1

o)

(TRUE indicates high influence on that measure) Output continues —




Body Fat data (CHO7TAO1) (cont’d)

iInfluence._.measures()%i1s.1nt (cont’d):

Influence measures of Im(formula =Y ~ X1 + X2):
dfb.1 dfb.X1 dfb.X2 dffit cov.r cook.d hat
11
12
13
14
15
16
17
18
19
20

(TRUE indicates high influence on that measure)




Multicollinearity Diagnostics

m In Ch. 7 we saw that multicollinearity had
negative effects on the MLR fit (see list on
pp. 406-407).

m Can we diagnose multicollinearity? Yes:

 informally: look for big changes in b, when
re-ordered in the MLR sequential fit;

* look for insignif. b,’s when we expect them to
be important scientifically;

 study corrl’n matrix of X,’s for values near 1.




Variance Inflation

m A more formal measure for assessing
multicollinearity relates to how o?{b} is

affected.
m Recall that o?{b} = (X'X) 0%

It can be shown that if R, ? is the R? from

regressing X, on the other p—2 X’s, then
o%{b.} = ¢, /(1-R,?)

for some positive const. @,.

m This quantifies potential inflation of the
variance of b,




VIFs

m Thus, we can build a factor to quantify the
potential variance inflation:
VIF, = 1/(1-R,?)
measures how much variance inflation
occurs due to high multicollinearity in X,
(with the other X’s).

m As VIF, — 1, inflation diminishes.

m But as VIF, — «, inflation increases
detrimentally and can incite multicollinearity.




VIF Rule-of-Thumb

m A VIF, is felt to be extreme if it exceeds 10.

m In fact, for diagnostic use a set of predictor
variables is felt to possess high

multicollinearity if max{VIF,,...,VIF__,} >10.

m Also check their mean: if VIF is much
larger than 1, problems may persist.
(Guidelines vary, but a VIF above about 6
or 7 is considered severe.)




Example: Body Fat data (CHO7TAO01)

Multicollinearity diagnostics:
Variance Inflation Factors (VIFs) for full

p—1 = 3 predictor model:

> CHO7TAOL.Im = ImC Y ~ X1 + X2 + X3 )
> cor( cbind(X1,X2,X3) )
X1 X2 X3
X1 1.0000000 0.9238425 0.4577772
X2 0.9238425 1.0000000 0.0846675
X3 0.4577772 0.0846675 1.0000000

> library ( car )
> viTt( CHO7TAO1.Im )
X1 X2 X3
708.8429 564.3434 104.6060
> mean( viT(CHO7/TAO1.1Im) )
[1] 459.2641




Summary of Regression Diagnostics:
Impact and Influence

m To detect influence of Y;s:

* Possible outliers are determined by
Studentized deleted residuals (Sec. 10.2)

* Influence on estimated b coefficients is
determined by DFBETAS (Sec. 10.4)

« Joint (X and Y) influence on model fit is
determined by DFFITS (Sec. 10.4) — also see
next slide

* Influence on fitted values is determined by
Cook’s D, (Sec. 10.4)




Summary of Regression Diagnostics:
Impact and Influence

m To detect influence of X;s:

* Leverage on the estimated regression line
Is determined by hat matrix diagonals, h;
(Sec. 10.3)

* Influence on estimated b coefficients from
multicollinearity is determmed by VIF,
(Sec. 10.5)

« Joint (X and Y) influence on model fit is
determined by DFFITS (Sec. 10.4) — also
see previous slide




