

STAT 571A — Advanced Statistical Regression Analysis

<u>Chapter 10 NOTES</u> Model Building – II: Diagnostics

© 2018 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, photoreproduction, recording, or scanning — without the prior written consent of the course instructor.

§10.1: Added-Variable Plots

- Added-variable plots visualize the potential value of adding a new X_k-variable to an existing MLR model.
- Find the residuals from the existing fit of Y on the X_k variables (k = 2, ..., p–1); call these e_i(Y|X₂,...,X_{p-1}).
- If the new variable is X₁, regress X₁ on the X_k variables (k = 2, ..., p–1); find the residuals e_i(X₁|X₂,...,X_{p-1}).
- Plot e_i(Y|X₂,...,X_{p-1}) against e_i(X₁|X₂,...,X_{p-1}) and look for patterns.

Versions of Add'd Var. Plots

From Fig. 10.1: (a) nothing new in X_1 ; (b) add'l linear term in X_1 ; (c) add'l curvilinear term in X_1

Example: Life Insur. data (CH10TA01)

- Y = Life insur. carried
 - **X₁ = Risk aversion score**
 - X_2 = ann. income
- Existing model has single predictor X₂. Build added-variable plot for new variable X₁.
- For this simple case, program this directly in R:
 - > plot(resid(lm(Y~X2)) ~ resid(lm(X1~X2)))
 - > abline(lm(resid(lm(Y~X2))~resid(lm(X1~X2))))
- More generally, use avPlot() from car package:
 - > library(car)
 - > avPlot(model=lm(Y~X1+X2), variable=X1)

Plot follows \rightarrow

Added-var. plot for X₁ from avPlot(). Clear linear pattern suggests addition of X_1 to model. (Slight curvature too, so maybe try X₁² too.)

Added-Variable Plot: X1

■ Fit MLR model with p–1 = 2 predictors:

- > CH10TA01x1x2.lm = lm(Y ~ X2 + X1)
- > summary(CH10TA01x1x2.lm)

Call:

lm(formula = Y ~ X2 + X1)

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-205.7187	11.3927	-18.057	1.38e-11
X2	4.7376	1.3781	3.438	0.00366
X1	6.2880	0.2041	30.801	5.63e-15

Residual plot:

> plot(resid(CH10TA01x1x2.lm)~

```
fitted(CH10TA01x1x2.lm) )
```

Plot follows \rightarrow

Resid. plot for X2+X1 fit. Clear, U-shaped curvature, so try adding X_1^2 to model.

■ Fit MLR model with p–1 = 3 predictors:

- > CH10TA01.lm = lm(Y ~ X2 + X1 + I(X1^2))
- > summary(CH10TA01.lm)

Call:

 $lm(formula = Y ~ X2 + X1 + I(X1^2)))$

	Estimate	Std. Error	t value	Pr(> t)
Intercept)	-73.46051	6.67743	-11.001	2.83e-08
X2	5.40039	0.25399	21.262	4.68e-12
X1	0.79596	0.26608	2.991	0.00971
I(X1^2)	0.05087	0.00244	20.847	6.12e-12

Residual plot:

> plot(resid(CH10TA01.lm)~

fitted(CH10TA01.lm))

Plot follows \rightarrow

Resid. plot for full p=4 parameter model is better, but a potential 'outlier' is evident at bottom.

Partial Resid. Plot

A similar kind of diagnostic plot is known as a Partial Residual Plot (and is sometimes confused with an added variable plot!)

Find $e_i = Y_i - \hat{Y}_i$ for the model <u>with</u> the putative new variable X_k . Then calculate

$$\mathbf{p}_{ik} = \mathbf{e}_i + \mathbf{b}_k \mathbf{X}_k$$

and plot p_{ik} vs. X_k . (See adv. texts on regr. diagnostics.)

§10.2: Studentized Residuals

- As noted in Chapter 3, a problem with raw residuals (e_i = Y_i −Ŷ_i) is that they are scale/measurement-dependent:
 in one data set an absolute residual of |e_i|
 = 8.2 may be *less* egregious than a residual of |e_i| = 0.7 in another data set.
- We can stabilize residuals across data sets/model fits by standardizing them to similar scales (sort of like a z-score).

Studentized Residuals

A Studentized Residual is a raw residual, e_i, divided by its standard error:

 $r_i = e_i/s\{e_i\}$

where $s^{2}\{e_{i}\} = (1 - h_{ii}) \times MSE$, with h_{ii} as the *i*th diag. element from the hat matrix H.

As a rule-of-thumb, the r_is exhibit homogeneous variation between about

-2 < r_i < 2

when the model is fit correctly. (But, this is a pretty *rough* rule.)

Deleted Residuals

A Deleted Residual is

$$\mathbf{d}_{i} = \mathbf{Y}_{i} - \mathbf{\hat{Y}}_{i(i)}$$

where $\hat{Y}_{i(i)}$ predicts Y_i by fitting the MLR model without Y_i (cf. with the LOO operation for the PRESS statistic).

- Large values of |d_i| suggest that Y_i differs greatly from the rest of the data under the proffered model.
- Can show: d_i = e_i/(1 h_{ii}), so only need to fit the model once.

Studentized Deleted Residuals

A Studentized Deleted Residual is a deleted residual, d_i, divided by its standard error: t_i = d_i/s{d_i}

$$= e_i \sqrt{\frac{n-p-1}{(1-h_{ii})SSE - e_i^2}}$$

t_i ~ t(n-p-1), so we expect the *i*th point to show

 $-t(1-\alpha/2; n-p-1) < t_i < t(1-\alpha/2; n-p-1)$

when the model is fit correctly.

Outliers

- For an MLR model, we can use the studentized deleted residuals, t_i, to identify observations that deviate from the model fit.
- In general: if the model fits correctly, values with |t_i| > t(1– α/(2n); n–p–1) indicate unusual data points. (Notice: Bonferroni correction)
- We call such values (possible) OUTLIERS.
- Once identified, an outlier should be studied to determine why it displays departure from the MLR model.

Studentized Residuals in R

- In R, we plot the t_i's for outlier detection.
- E.g., with the Body Fat data (CH07TA01) and using only X₁ and X₂:
- > n=length(Y); bf12.lm = lm(Y ~ X1 + X2)
- > plot(rstudent(bf12.lm) ~ fitted(bf12.lm))
- > abline(h=0)
- > tcrit = qt(1-(.10/(2*n)), n-3-1)
- > abline(h=tcrit, lty=2)
- > abline(h=-tcrit, lty=2)
- Careful: rstudent() gives studentized <u>deleted</u> resid's

Body Fat Example (CH07TA01): Studentized Deleted Residual Plot

§10.3: Leverage

An X_i value can act as a sort of outlier as well, when it strongly influences the fit of the regression model. Say p=2. This plot shows a std. SLR fit with no anomalies.

Leverage (cont'd)

But when X_n drives far from the other X_i's, it can singlehandedly deteriorate the nature of the SLR line (this extends to p > 2 as well)

Leverage (cont')

- We say Leverage is the ability of a design point to strongly influence the fit of a regression model. This is usually seen as a detriment.
- Leverage occurs, e.g., when a single X_i rests far away from the bulk of the other explanatory X_i values, as illustrated in the previous 2 slides.
- Some online, interactive applets that explore leverage are available at
- o <u>http://www.amstat.org/publications/jse/v6n3/applets/regression.html</u>
- o <u>http://www.rob-mcculloch.org/teachingApplets/Leverage/index.html</u>

Leverage (cont'd)

- We quantify high leverage using the hat matrix elements.
- Notice in the studentiz'd deleted resid. that $|t_i| \uparrow as h_{ii} \rightarrow 1$, while $|t_i| \downarrow as h_{ii} \rightarrow 0$. (Recall that $0 \le h_{ii} \le 1$ and $\sum h_{ii} = p$.)
- Consequence:
 - small h_{ii} ⇒ low resid. and fitted values close to rest of Y_i's
 - large h_{ii} ⇒ high resid. and fitted values farther from rest of Y_i's

Leverage and Hat Elements

Indeed, since $\hat{Y} = HY$, h_{ii} is literally the weight of Y_i in calculating \hat{Y}_i . Thus large h_{ii} gives Y_i strong influence on the fit.

But wait! From equ. (10.18) we see $h_{ii} = X_i'(X'X)^{-1}X_i$ depends only on the X's.

Thus we can check the influence of an observed (*or* unobserved) Y_i by examining just the h_{ii} value(s). Can even check for possible 'extreme' X's.

Leverage Rule-of-Thumb

A standard rule-of-thumb for informally assessing X-leverage is to indicate high leverage at X_i if

h_{ii} > 2h = 2∑h_{ii}/n = 2p/n

(But be careful: sometimes with small n, $\overline{h} > \frac{1}{2}$ so $2\overline{h} = 2p/n > 1$ and $\underline{no} X_i$ will be marked as high leverage.)

Example: Body Fat data (CH07TA01)

- Restrict attention to only X₁ and X₂ and plot X-vector values for leverage visualization:
 - > plot(X2~X1, pch='')
 - > text(X1, X2, labels=as.character(1:20))
- Can also mark points with high leverage (i.e., h_{ii} > 2p/n):
 - > n = length(Y); p = 3
 - > hii = hatvalues(bf12.lm)
 - > points(X1[hii>2*p/n], X2[hii>2*p/n],

```
cex=2.5, col='red' )
```

Body Fat Example (CH07TA01): X₂ vs. X₁ leverage plot

Influence Measures: DFFITS

To measure the influence of a single fitted value, calculate

$$(\mathsf{DFFITS})_{i} = \frac{\mathsf{Y}_{i} - \mathbf{\hat{Y}}_{i(i)}}{\sqrt{\mathsf{h}_{ii} \mathsf{MSE}_{(i)}}} = \mathsf{t}_{i} \sqrt{\frac{\mathsf{h}_{ii}}{1 - \mathsf{h}_{ii}}}$$

- The DFFITS measure takes the studentiz'd deleted resid. t_i and weights it with a measure proportional to h_{ii}.
- This acts as a sort of combined measure of overall influence.

DFFITS (cont'd)

For use in practice, view Ŷ_i as an influential fitted value if

- |(DFFITS)_i| > 1 (for n < 40) or
- $|(DFFITS)_i| > 2\{p/n\}^{1/2}$ (for $n \ge 40$).

In R, use
 dffits([lm Object here]).

Example: Body Fat data (CH07TA01)

- > abline(h=1, lty=2)

Influence Measures: Cook's Distance

What about measuring influence across the fitted values \hat{Y}_i ? Cook's Distance is defined as

 $D_{i} = \frac{\sum_{j=1}^{n} (\hat{Y}_{j} - \hat{Y}_{j(i)})^{2}}{p \text{ MSE}} = \frac{e_{i}^{2}}{p \text{ MSE}} \frac{h_{ii}}{(1 - h_{ii})^{2}}$ (Notice how the LOO approach collapses into a single calculation.)

View \tilde{Y}_i as a (very) influential case when $P[F(p,n-p) \le D_i] > \frac{1}{2}$.

(Some authors suggest > 1/10 or > 1/5...)

Example: Body Fat data (CH07TA01)

Cook's Distance plots (cf. Fig. 10.8):

```
> par( mfrow=c(1,2) )
```

```
> ei = resid( lm(Y~X1+X2) )
```

- > yhat = fitted(lm(Y~X1+X2))
- > ######## Proportional Infl. Plot:
- > radius = sqrt(cooks.distance(lm(Y~X1+X2))/pi)
- > plot(ei ~ yhat, pch=''); abline(h=0)
- > ######## Index Infl. Plot:

Plots follow \rightarrow

Cook's Distance influence plots (cf. Fig. 10.8):

Or, try marking the Proportional Influence plot with the index, *i*:

```
labels=as.character(1:20), cex=.7 )
```

Plot follows \rightarrow

Cook's Distance proportional influence plot (index-labeled):

Influence Measures: DFBETAS

Another influence measure (and there are LOTS of 'em...) quantifies the influence of Y_i on the regression coefficients, b_k . Define

$$(DFBETAS)_{k(i)} = \frac{b_k - b_{k(i)}}{\sqrt{c_{kk} MSE_{(i)}}}$$

where

• $b_{k(i)}$ is the *k*th regr. coeff., and $MSE_{(i)}$ is the MLR MSE, with Y_i removed from the data;

• c_{kk} is the *k*th diag. element of $(X'X)^{-1}$

(Whew...)

DFBETAS (cont'd)

A large value of $(DFBETAS)_{k(i)}$, say

- $|(DFBETAS)_{k(i)}| > 1$ (for n < 40) or
- |(DFBETAS)_{k(i)}| > 2/√n (for n ≥ 40)

indicates large impact of Y_i on that particular b_k .

In R, the influence.measures() function provides all the influence measures described above.

Example: Body Fat data (CH07TA01)

All influence measures for p–1 = 2 predictors:

> influence.measures(bf12.lm)

Influence measures of

lm(formula = Y ~ X1 + X2):

	$dfb.1_$	dfb.X1	dfb.X2	dffit	cov.r	cook.d	hat	inf
1	-3.05e-01	-1.31e-01	2.32e-01	-3.66e-01	1.361	4.60e-02	0.2010	
2	1.73e-01	1.15e-01	-1.43e-01	3.84e-01	0.844	4.55e-02	0.0589	
3	-8.47e-01	-1.18e+00	1.07e+00	-1.27e+00	1.189	4.90e-01	0.3719	*
4	-1.02e-01	-2.94e-01	1.96e-01	-4.76e-01	0.977	7.22e-02	0.1109	
5	-6.37e-05	-3.05e-05	5.02e-05	-7.29e-05	1.595	1.88e-09	0.2480	*
6	3.97e-02	4.01e-02	-4.43e-02	-5.67e-02	1.371	1.14e-03	0.1286	
7	-7.75e-02	-1.56e-02	5.43e-02	1.28e-01	1.397	5.76e-03	0.1555	
8	2.61e-01	3.91e-01	-3.32e-01	5.75e-01	0.780	9.79e-02	0.0963	
9	-1.51e-01	-2.95e-01	2.47e-01	4.02e-01	1.081	5.31e-02	0.1146	1
10	2.38e-01	2.45e-01	-2.69e-01	-3.64e-01	1.110	4.40e-02	0.1102	

(Asterisk indicates high influence on any measure)

Output continues \rightarrow

influence.measures() Output (cont'd):

Influence measures of

lm(formula = Y ~ X1 + X2):

inf	hat	cook.d	cov.r	dffit	dfb.X2	dfb.X1	$dfb.1_$	
	0.1203	9.04e-04	1.359	5.05e-02	-2.48e-03	1.71e-02	-9.02e-03	11
	0.1093	3.52e-02	1.152	3.23e-01	7.00e-02	2.25e-02	-1.30e-01	12
	0.1784	2.12e-01	0.827	-8.51e-01	-3.89e-01	5.92e-01	1.19e-01	13
	0.1480	1.25e-01	0.937	6.36e-01	-2.98e-01	1.13e-01	4.52e-01	14
*	0.3332	1.26e-02	1.775	1.89e-01	6.88e-02	-1.25e-01	-3.00e-03	15
	0.0953	2.47e-03	1.309	8.38e-02	-2.51e-02	4.31e-02	9.31e-03	16
	0.1056	4.93e-03	1.312	-1.18e-01	-7.61e-02	5.50e-02	7.95e-02	17
	0.1968	9.64e-03	1.462	-1.66e-01	-1.16e-01	7.53e-02	1.32e-01	18
1	0.0670	3.24e-02	1.002	-3.15e-01	6.44e-02	-4.07e-03	-1.30e-01	19
	0.0501	3.10e-03	1.224	9.40e-02	-3.31e-03	2.29e-03	1.02e-02	20

(Asterisk indicates high influence on any measure)

Can see which measures actually exhibit influence via the $\sis.inf$ attribute (but be careful: the hat column doesn't always work as expected; here it misses *i*=3 and *i*=15):

> influence.measures(bf12.lm)\$is.inf

Inf	luence	measur	es of	lm(fo:	rmula =	: Y ~ X	1 + X2):
	dfb.1_	dfb.X1	dfb.X2	dffit	cov.r	cook.d	hat
1	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
2	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
3	FALSE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE
4	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
5	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
6	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
7	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
8	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
9	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
10	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

(TRUE indicates high influence on that measure) Output continues -

influence.measures()\$is.inf (cont'd):

Influen	ce mea	asures	of 1	.m(for	mula =	Υ~Σ	<pre>x1 + x2):</pre>
	$dfb.1_$	dfb.X1	dfb.X2	dffit	cov.r	cook.d	hat
11	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
12	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
13	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
14	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
15	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
16	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
17	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
18	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
19	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
20	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

(TRUE indicates high influence on that measure)

Multicollinearity Diagnostics

- In Ch. 7 we saw that multicollinearity had negative effects on the MLR fit (see list on pp. 406-407).
- Can we diagnose multicollinearity? Yes:
 - informally: look for big changes in b_k when re-ordered in the MLR sequential fit;
 - look for insignif. b_k's when we expect them to be important scientifically;
 - study corrl'n matrix of X_k 's for values near ±1.

Variance Inflation

- A more formal measure for assessing multicollinearity relates to how σ²{b} is affected.
- Recall that σ^2 {b} = (X'X)⁻¹ σ^2 . It can be shown that if R_k^2 is the R^2 from regressing X_k on the other p–2 X's, then σ^2 {b_k} ≈ $\varphi_k/(1-R_k^2)$ for some positive const. φ_k .
- This quantifies potential <u>inflation</u> of the variance of b_{k.}

VIFs

Thus, we can build a *factor* to quantify the potential variance inflation:

 $VIF_{k} = 1/(1-R_{k}^{2})$

measures how much variance inflation occurs due to high multicollinearity in X_k (with the other X's).

- As $VIF_k \rightarrow 1$, inflation diminishes.
- But as VIF_k $\rightarrow \infty$, inflation increases detrimentally and can incite multicollinearity.

VIF Rule-of-Thumb

- A VIF_k is felt to be extreme if it exceeds 10.
- In fact, for diagnostic use a set of predictor variables is felt to possess high multicollinearity if max{VIF₁,...,VIF_{p-1}} > 10.
- Also check their mean: if VIF is much larger than 1, problems may persist. (Guidelines vary, but a VIF above about 6 or 7 is considered severe.)

Example: Body Fat data (CH07TA01)

```
Multicollinearity diagnostics:
Variance Inflation Factors (VIFs) for full
p–1 = 3 predictor model:
```

```
> CH07TA01.lm = lm( Y ~ X1 + X2 + X3 )
> cor(cbind(X1,X2,X3))
             X1
                        X2
                                  \mathbf{X3}
   X1 1.0000000 0.9238425 0.4577772
   X2 0.9238425 1.000000 0.0846675
   X3 0.4577772 0.0846675 1.000000
> library ( car )
> vif( CH07TA01.lm )
                  X2
                            X3
         X1
   708.8429 564.3434 104.6060
> mean( vif(CH07TA01.lm) )
   [1] 459.2641
```

Summary of Regression Diagnostics: Impact and Influence

To detect influence of Y_is:

- Possible <u>outliers</u> are determined by Studentized deleted residuals (Sec. 10.2)
- Influence on estimated b_j coefficients is determined by DFBETAS (Sec. 10.4)
- Joint (X and Y) influence on model fit is determined by DFFITS (Sec. 10.4) – also see next slide
- Influence on fitted values is determined by Cook's D_i (Sec. 10.4)

Summary of Regression Diagnostics: Impact and Influence

■ To detect influence of X_{ii}s:

- <u>Leverage</u> on the estimated regression line is determined by hat matrix diagonals, h_{ii} (Sec. 10.3)
- Influence on estimated b_j coefficients from <u>multicollinearity</u> is determined by VIF_j (Sec. 10.5)
- Joint (X and Y) influence on model fit is determined by DFFITS (Sec. 10.4) – also see previous slide