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§10.1: Added-Variable Plots

• Added-variable plots visualize the potential value of 
adding a new Xk-variable to an existing MLR model.

• Find the residuals from the existing fit of Y on the Xk
variables (k = 2, ..., p–1); call these ei(Y|X2,...,Xp–1).

• If the new variable is X1, regress X1 on the Xk
variables (k = 2, ..., p–1); find the residuals 
ei(X1|X2,...,Xp–1).

• Plot ei(Y|X2,...,Xp–1) against ei(X1|X2,...,Xp–1) and look 
for patterns.



Versions of Add’d Var. Plots
From Fig. 10.1: (a) nothing new in X1; (b) add’l 
linear term in X1; (c) add’l curvilinear term in X1



Example: Life Insur. data (CH10TA01)

 Y = Life insur. carried
X1 = Risk aversion score
X2 = ann. income

 Existing model has single predictor X2.  Build 
added-variable plot for new variable X1.

 For this simple case, program this directly in R:
> plot( resid(lm(Y~X2)) ~ resid(lm(X1~X2)) )
> abline( lm(resid(lm(Y~X2))~resid(lm(X1~X2))))

 More generally, use  avPlot() from car package:
> library( car )
> avPlot( model=lm( Y~X1+X2 ), variable=X1 )

Plot follows →



Life Insur. data (CH10TA01) (cont’d)

Added-var. plot 
for X1 from 
avPlot().  Clear 
linear pattern 
suggests addi-
tion of X1 to 
model.  (Slight 
curvature too, 
so maybe try X1

2

too.)



Life Insur. data (CH10TA01) (cont’d)

 Fit MLR model with p–1 = 2 predictors:
> CH10TA01x1x2.lm = lm( Y ~ X2 + X1 )
> summary( CH10TA01x1x2.lm )
Call:
lm(formula = Y ~ X2 + X1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)  -205.7187    11.3927 -18.057 1.38e-11
X2             4.7376     1.3781   3.438  0.00366
X1             6.2880     0.2041  30.801 5.63e-15

 Residual plot:
> plot( resid(CH10TA01x1x2.lm)~

fitted(CH10TA01x1x2.lm) )

Plot follows →



Life Insur. data (CH10TA01) (cont’d)

Resid. plot 
for X2+X1 
fit. Clear, 
U-shaped 
curvature, 
so try add-
ing X1

2 to 
model.



Life Insur. data (CH10TA01) (cont’d)

 Fit MLR model with p–1 = 3 predictors:
> CH10TA01.lm = lm( Y ~ X2 + X1 + I(X1^2) )
> summary( CH10TA01.lm )
Call:
lm(formula = Y ~ X2 + X1 + I(X1^2)))

Estimate Std. Error  t value Pr(>|t|)    
(Intercept) -73.46051    6.67743  -11.001 2.83e-08
X2           5.40039    0.25399 21.262 4.68e-12
X1           0.79596    0.26608 2.991  0.00971
I(X1^2)   0.05087    0.00244 20.847 6.12e-12

 Residual plot:
> plot( resid(CH10TA01.lm)~

fitted(CH10TA01.lm) )

Plot follows →



Life Insur. data (CH10TA01) (cont’d)

Resid. plot 
for full p=4 
parameter 
model is 
better, but a 
potential 
‘outlier’ is 
evident at 
bottom.



Partial Resid. Plot

A similar kind of diagnostic plot is known 
as a Partial Residual Plot (and is 
sometimes confused with an added 
variable plot!) 

Find ei = Yi – Ŷi for the model with the 
putative new variable Xk. Then calculate  
    pik = ei + bkXk  
and plot pik vs. Xk. (See adv. texts on regr. 
diagnostics.) 



§10.2: Studentized Residuals

 As noted in Chapter 3, a problem with raw 
residuals (ei = Yi – ) is that they are 
scale/measurement-dependent:  
in one data set an absolute residual of |ei| 
= 8.2 may be less egregious than a 
residual of |ei| = 0.7 in another data set. 

 We can stabilize residuals across data 
sets/model fits by standardizing them to 
similar scales (sort of like a z-score).

Ŷi 



Studentized Residuals

 A Studentized Residual is a raw residual, 
ei, divided by its standard error:

ri = ei/s{ei}
where s2{ei} = (1 – hii)×MSE, with hii as the 
ith diag. element from the hat matrix H.

 As a rule-of-thumb, the ris exhibit homo-
geneous variation between about

–2 < ri < 2 
when the model is fit correctly. (But, this 
is a pretty rough rule.)



Deleted Residuals
 A Deleted Residual is

di = Yi – Yi(i)
where Yi(i) predicts Yi by fitting the MLR 
model without Yi (cf. with the LOO 
operation for the PRESS statistic).

 Large values of |di| suggest that Yi
differs greatly from the rest of the data 
under the proffered model.

 Can show: di = ei/(1 – hii), so only need 
to fit the model once.

^
^



Studentized Deleted Residuals

 A Studentized Deleted Residual is a deleted 
residual, di, divided by its standard error:

ti = di/s{di}

=

 ti ~ t(n–p–1), so we expect the ith point to 
show

–t(1– α/2; n–p–1) < ti < t(1– α/2; n–p–1)
when the model is fit correctly. 

ei
n–p–1

(1-hii)SSE – ei
2 



Outliers
 For an MLR model, we can use the 

studentized deleted residuals, ti, to identify 
observations that deviate from the model fit.

 In general:  if the model fits correctly, values 
with |ti| > t(1– α/(2n); n–p–1) indicate unusual 
data points. (Notice: Bonferroni correction)

 We call such values (possible) OUTLIERS.
 Once identified, an outlier should be studied 

to determine why it displays departure from 
the MLR model.



Studentized Residuals in R
 In R, we plot the ti’s for outlier detection.
 E.g., with the Body Fat data (CH07TA01) 

and using only X1 and X2:
> n=length(Y); bf12.lm = lm( Y ~ X1 + X2 )
> plot( rstudent(bf12.lm) ~ fitted(bf12.lm) )
> abline( h=0 )
> tcrit = qt( 1-(.10/(2*n)), n-3-1 )
> abline( h=tcrit, lty=2 )
> abline( h=-tcrit, lty=2 )

 Careful: rstudent() gives studentized deleted
resid’s



Body Fat Example (CH07TA01): 
Studentized Deleted Residual Plot

Possible 
outliers are 
above or 
below ±t 
crit. points.
(All points 
are within 
bounds 
here.)



§10.3: Leverage

An Xi value can act 
as a sort of outlier 
as well, when it 
strongly influences 
the fit of the 
regression model.  
Say p=2.  This plot 
shows a std. SLR fit 
with no anomalies.



Leverage (cont’d)

But when Xn drives 
far from the other 
Xi’s, it can 
singlehandedly 
deteriorate the 
nature of the SLR 
line (this extends to 
p > 2 as well)



Leverage (cont’)
 We say Leverage is the ability of a design point 

to strongly influence the fit of a regression 
model.  This is usually seen as a detriment.

 Leverage occurs, e.g., when a single Xi rests far 
away from the bulk of the other explanatory Xi
values, as illustrated in the previous 2 slides.

 Some online, interactive applets that explore 
leverage are available at

o http://www.amstat.org/publications/jse/v6n3/applets/regression.html
o http://www.rob-mcculloch.org/teachingApplets/Leverage/index.html



Leverage (cont’d)

 We quantify high leverage using the hat 
matrix elements.

 Notice in the studentiz’d deleted resid. that 
|ti| ↑ as hii→1, while |ti| ↓ as hii→0.
(Recall that  0 ≤ hii ≤ 1 and ∑hii = p.)

 Consequence: 
• small hii  low resid. and fitted values close 

to rest of Yi’s
• large hii  high resid. and fitted values 

farther from rest of Yi’s



Leverage and Hat Elements

Indeed, since Ŷ = HY, hii is literally the weight 
of Yi in calculating Ŷi.  Thus large hii gives Yi 
strong influence on the fit. 
But wait!  From equ. (10.18) we see 
hii = Xi(XX)–1Xi depends only on the X’s. 
Thus we can check the influence of an 
observed (or unobserved) Yi by examining 
just the hii value(s). Can even check for 
possible ‘extreme’ X’s. 



Leverage Rule-of-Thumb

A standard rule-of-thumb for informally 
assessing X-leverage is to indicate high 
leverage at Xi if 

     hii > 2—h = 2∑hii/n = 2p/n 
 
(But be careful:  sometimes with small n,  
—h > ½ so 2—h = 2p/n > 1 and no Xi will be 
marked as high leverage.) 



Example: Body Fat data (CH07TA01)

 Restrict attention to only X1 and X2 and plot 
�-vector values for leverage visualization:
> plot( X2~X1, pch='' )
> text( X1, X2, labels=as.character(1:20) )

 Can also mark points with high leverage (i.e., 
hii > 2p/n):
> n = length(Y); p = 3
> hii = hatvalues( bf12.lm )
> points( X1[hii>2*p/n], X2[hii>2*p/n],

cex=2.5, col='red' )

Plot follows →



Body Fat Example (CH07TA01): 
X2 vs. X1 leverage plot

High leverage points at i = 15 and i = 3; cf. Fig. 10.7



Influence Measures: DFFITS

 To measure the influence of a single fitted 
value, calculate

 The DFFITS measure takes the studentiz’d 
deleted resid. ti and weights it with a 
measure proportional to hii.

 This acts as a sort of combined measure of 
overall influence.

(DFFITS)i = Yi – Ŷi(i)
hii MSE(i)

 = ti
hii

1–hii
 



DFFITS (cont’d)

 For use in practice, view   i as an 
influential fitted value if
• |(DFFITS)i| > 1    (for n < 40) or
• |(DFFITS)i| > 2{p/n}1/2 (for n ≥ 40).

 In R, use  
dffits( [lm Object here] ).

Ŷ 



Example: Body Fat data (CH07TA01)

> plot( abs( dffits(lm(Y~X1+X2)) ), 
type='o', pch=19 )

> abline( h=1, lty=2 )

High 
DFFITS 
point  
at i = 3



Influence Measures: 
Cook’s Distance

What about measuring influence across the 
fitted values Ŷi?  Cook’s Distance is defined 
as  

  Di  =  
∑j=1

n  (Ŷj – Ŷj(i))2

p MSE   =  ei
2

p MSE hii
(1 – hii)2

 

(Notice how the LOO approach collapses into a 
single calculation.) 

View Ŷi as a (very) influential case when  
   P[ F(p,n–p) ≤ Di ] > ½. 
(Some authors suggest > 1/10 or > 1/5...) 



Example: Body Fat data (CH07TA01)

Cook’s Distance plots (cf. Fig. 10.8):
> par( mfrow=c(1,2) )
> ei = resid( lm(Y~X1+X2) )
> yhat = fitted(lm(Y~X1+X2))

> ######## Proportional Infl. Plot:
> radius = sqrt( cooks.distance(lm(Y~X1+X2))/pi ) 
> plot( ei ~ yhat, pch=''); abline( h=0 )
> symbols( yhat, ei, circles=radius, inches=.15,

bg='black', fg='white', add=T )

> ######## Index Infl. Plot:
> plot( cooks.distance(lm(Y~X1+X2)), type='o',

pch=19 )

Plots follow  →



Body Fat data (CH07TA01) (cont’d)

Cook’s Distance influence plots (cf. Fig. 10.8):



Body Fat data (CH07TA01) (cont’d)

Or, try marking the Proportional 
Influence plot with the index, i :
> ei = resid( lm(Y~X1+X2) )
> yhat = fitted(lm(Y~X1+X2))
> Di = cooks.distance( lm(Y~X1+X2) )
> radius = sqrt( Di/pi ) 
> plot( ei ~ yhat, pch=''); abline( h=0 )
> symbols( yhat, ei, circles=radius, 

inches=.2, add=T )
> text( yhat, ei, 

labels=as.character(1:20), cex=.7 ) 

Plot follows →



Body Fat data (CH07TA01) (cont’d)
Cook’s Distance proportional influence 
plot (index-labeled):



Influence Measures: DFBETAS

Another influence measure (and there are 
LOTS of ’em...) quantifies the influence of Yi 
on the regression coefficients, bk. 
Define  

  (DFBETAS)k(i) = bk – bk(i)
ckk MSE(i)

 
where 
 bk(i) is the kth regr. coeff., and MSE(i) is the 
MLR MSE, with Yi removed from the data; 
 ckk is the kth diag. element of (XX)–1 
(Whew...) 



DFBETAS (cont’d)
A large value of (DFBETAS)k(i), say

• |(DFBETAS)k(i)| > 1    (for n < 40) or
• |(DFBETAS)k(i)| > 2/√n    (for n ≥ 40)

indicates large impact of Yi on that 
particular bk.

In R, the influence.measures() function 
provides all the influence measures 
described above.



Example: Body Fat data (CH07TA01)

All influence measures for p–1 = 2 predictors:
> influence.measures( bf12.lm )

Influence measures of
lm(formula = Y ~ X1 + X2):

dfb.1_    dfb.X1    dfb.X2     dffit cov.r   cook.d    hat inf
1  -3.05e-01 -1.31e-01  2.32e-01 -3.66e-01 1.361 4.60e-02 0.2010
2   1.73e-01  1.15e-01 -1.43e-01  3.84e-01 0.844 4.55e-02 0.0589
3  -8.47e-01 -1.18e+00  1.07e+00 -1.27e+00 1.189 4.90e-01 0.3719  *
4  -1.02e-01 -2.94e-01  1.96e-01 -4.76e-01 0.977 7.22e-02 0.1109
5  -6.37e-05 -3.05e-05  5.02e-05 -7.29e-05 1.595 1.88e-09 0.2480  *
6   3.97e-02  4.01e-02 -4.43e-02 -5.67e-02 1.371 1.14e-03 0.1286
7  -7.75e-02 -1.56e-02  5.43e-02  1.28e-01 1.397 5.76e-03 0.1555
8   2.61e-01  3.91e-01 -3.32e-01  5.75e-01 0.780 9.79e-02 0.0963
9  -1.51e-01 -2.95e-01  2.47e-01  4.02e-01 1.081 5.31e-02 0.1146
10  2.38e-01  2.45e-01 -2.69e-01 -3.64e-01 1.110 4.40e-02 0.1102

(Asterisk indicates high influence on any measure)
Output continues →



Body Fat data (CH07TA01) (cont’d)
influence.measures() output (cont’d):
Influence measures of

lm(formula = Y ~ X1 + X2) :

dfb.1_    dfb.X1    dfb.X2     dffit cov.r   cook.d    hat inf
11 -9.02e-03  1.71e-02 -2.48e-03  5.05e-02 1.359 9.04e-04 0.1203    
12 -1.30e-01  2.25e-02  7.00e-02  3.23e-01 1.152 3.52e-02 0.1093    
13  1.19e-01  5.92e-01 -3.89e-01 -8.51e-01 0.827 2.12e-01 0.1784    
14  4.52e-01  1.13e-01 -2.98e-01  6.36e-01 0.937 1.25e-01 0.1480    
15 -3.00e-03 -1.25e-01  6.88e-02  1.89e-01 1.775 1.26e-02 0.3332  *
16  9.31e-03  4.31e-02 -2.51e-02  8.38e-02 1.309 2.47e-03 0.0953    
17  7.95e-02  5.50e-02 -7.61e-02 -1.18e-01 1.312 4.93e-03 0.1056    
18  1.32e-01  7.53e-02 -1.16e-01 -1.66e-01 1.462 9.64e-03 0.1968    
19 -1.30e-01 -4.07e-03  6.44e-02 -3.15e-01 1.002 3.24e-02 0.0670    
20  1.02e-02  2.29e-03 -3.31e-03  9.40e-02 1.224 3.10e-03 0.0501

(Asterisk indicates high influence on any measure)



Body Fat data (CH07TA01) (cont’d)
Can see which measures actually exhibit influence via 
the $is.inf attribute (but be careful: the hat column 
doesn’t always work as expected; here it misses i=3 and i=15):
> influence.measures( bf12.lm )$is.inf

Influence measures of  lm(formula = Y ~ X1 + X2):
dfb.1_ dfb.X1 dfb.X2 dffit  cov.r  cook.d  hat

1   FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
2   FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
3   FALSE TRUE   TRUE   TRUE  FALSE  FALSE  FALSE
4   FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
5   FALSE FALSE  FALSE  FALSE TRUE  FALSE  FALSE
6   FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
7   FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
8   FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
9   FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
10  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE

(TRUE indicates high influence on that measure)  Output continues →



Body Fat data (CH07TA01) (cont’d)

influence.measures()$is.inf (cont’d):
Influence measures of  lm(formula = Y ~ X1 + X2):

dfb.1_ dfb.X1 dfb.X2 dffit  cov.r  cook.d  hat
11  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
12  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
13  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
14  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
15  FALSE FALSE  FALSE  FALSE TRUE  FALSE  FALSE
16  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
17  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
18  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
19  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE
20  FALSE FALSE FALSE FALSE FALSE  FALSE  FALSE

(TRUE indicates high influence on that measure)



Multicollinearity Diagnostics
 In Ch. 7 we saw that multicollinearity had 

negative effects on the MLR fit (see list on 
pp. 406-407).

 Can we diagnose multicollinearity? Yes:
• informally: look for big changes in bk when 

re-ordered in the MLR sequential fit;
• look for insignif. bk’s when we expect them to 

be important scientifically;
• study corrl’n matrix of Xk’s for values near ±1.



Variance Inflation
 A more formal measure for assessing 

multicollinearity relates to how �2{b} is 
affected.

 Recall that �2{b} = (X′X)–1σ2.  
It can be shown that if Rk

2 is the R2 from 
regressing Xk on the other p–2 X’s, then 

σ2{bk} ≈ φk/(1–Rk
2)

for some positive const. φk.
 This quantifies potential inflation of the 

variance of bk.



VIFs
 Thus, we can build a factor to quantify the 

potential variance inflation:
VIFk = 1/(1–Rk

2)
measures how much variance inflation 
occurs due to high multicollinearity in Xk
(with the other X’s).

 As VIFk → 1, inflation diminishes.

 But as VIFk → ∞, inflation increases 
detrimentally and can incite multicollinearity.



VIF Rule-of-Thumb

 A VIFk is felt to be extreme if it exceeds 10. 

 In fact, for diagnostic use a set of predictor 
variables is felt to possess high 
multicollinearity if  max{VIF1,...,VIFp–1} > 10.

 Also check their mean:  if        is much 
larger than 1, problems may persist.  
(Guidelines vary, but a        above about 6 
or 7 is considered severe.) 

——VIF 
——VIF 



Example: Body Fat data (CH07TA01)
Multicollinearity diagnostics: 
Variance Inflation Factors (VIFs) for full 
p–1 = 3 predictor model:
> CH07TA01.lm = lm( Y ~  X1 + X2 + X3 )
> cor( cbind(X1,X2,X3) )

X1        X2        X3
X1 1.0000000 0.9238425 0.4577772
X2 0.9238425 1.0000000 0.0846675
X3 0.4577772 0.0846675 1.0000000

> library ( car )
> vif( CH07TA01.lm )

X1       X2       X3 
708.8429 564.3434 104.6060

> mean( vif(CH07TA01.lm) )
[1] 459.2641



Summary of Regression Diagnostics: 
Impact and Influence 

 To detect influence of Yis:
• Possible outliers are determined by 

Studentized deleted residuals (Sec. 10.2)
• Influence on estimated bj coefficients is 

determined by DFBETAS (Sec. 10.4)
• Joint (X and Y) influence on model fit is 

determined by DFFITS (Sec. 10.4) – also see 
next slide

• Influence on fitted values is determined by 
Cook's Di (Sec. 10.4)



Summary of Regression Diagnostics: 
Impact and Influence 

 To detect influence of Xijs:
• Leverage on the estimated regression line 

is determined by hat matrix diagonals, hii
(Sec. 10.3)

• Influence on estimated bj coefficients from 
multicollinearity is determined by VIFj
(Sec. 10.5)

• Joint (X and Y) influence on model fit is 
determined by DFFITS (Sec. 10.4) – also 
see previous slide


