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Heterogeneous Variances

m When diagnostics or other information
indicate departure from homogeneity in
o?{e.}, say, a ‘megaphone’ shape in the
resid. plot, we recognize that

o’{g;} = 0,
and remedial action is necessary.

m Previous suggestion: transform Y, to bring

the variation closer to homogeneity.

m This can be effective, but may not always
work.




Heterogeneous Variance (cont’d)

m More formally, we update the MLR model:
Y =B+ By Xjy + -+ B X g FE
where now g, ~ indep. N(0,0,2).

m If 0.2 is known (not likely) we extend the LS
criterion to minimize the Weighted SS:

Q,, = 2 W{Y; = (Bo+ByX;y+-+B,_1X; ,_1)}°

where we weight each observation inversely
to the differential variance: w; = 1/0/2.




Weight Inverse to Variance

m This is a standard strategy:

 If we weight each observation inversely to
the differential variance, we give
observations with low variance
(< higher precision) greater weight, and
vice versa.

m Then minimize Q,, by weighted least
squares to find the b, ’s.




Matrix Formulation

m In matrix terms:
o let W, ,, = diag{w,,...,w}
* the normal equs. become (X'WX)b = X"WY
« = the WLS sol’n is b = (X"WX)"TX'WY

 the covariance matrix is o2{b} = (X"WX)™1

m Similar to the Gauss-Markov Thm. from Ch.
1, we can show that E{b} = B, with o?{b} a
min. among all unbiased estimators.




Unknown Heterogeneous Variances:
WLS with Replication

If there is replication in the design, or even
‘near’ replication, we can use it to construct
direct estimates of o°.

As in §3.7, assume the SLR model with
Yij = M; * €j, wherei=1,..,njand j = 1,...,C.

At each j, compute s;* = 3(Y;; — Y;)’/(n~1) as an
(unbiased!) estimator of o;°.

Then, simply use w; = 1/s;° as the weights in
the WLS fit.

(Extend this to MLR in an obvious fashion.)




Replication via ‘Lots’

m If the study is observational and replication
cannot be designed into it, it may still be
possible to group the X’s into nearly-
homogeneous lots.

m If so, find w,= 1/{sample var. of jth lot}.

m Can iterate the process if the WLS
estimates of b, vary greatly at first. (Use
the OLS estimates as initial estimates.)




Unknown Variances (cont’d)

m In the more common case where the o2
terms are unknown, a number of strategies
exist for estimating them.

m Recognize: if the X’s are correctly modeled
in the MLR, then E{e?} = 02
* SO use e;? as an estimate of 0.2,
» and/or |e;| as an estimate of o..

— (The latter is more stable if there are
outliers.)




Estimating Variances

m Suppose we find that the e,’s vary in a
distinguishable pattern; say, e; varies more
as the fitted values 1.

m Depending on the observed pattern, we
could perform an intermediate regression
of e or |e,| on a component of the model to
recover “fitted” values that estimate o,% or
o, resp. Then use these in w;, = 1/02.

m Some possibilities follow —




Proportional Weighting

m In the simplest case, it may be clear that 0,2
changes in some fashion with X..

m That is, suppose from a resid. plot we see
le;] o« X.. Then, view this as 0> « X2 and set
w; = 1/X.2.

m Or, if 2 < X,, view this as 0,2 «< X, and set
w; = 1/X..

m Indeed, if ;2 « f(X,) for known f(-), use
w; = 1/f(X.), etc.




Estimating Variances (cont’d)

Estimating variances (see p. 425)

. If e; vs. X, exhibits a ‘megaphone’ shape,
regress |e;| = v, + v, X, and take s; = g, + g, X,
inw, =1/s2.

o If e vs.Y;exhibits a ‘megaphone’ shape,

N

regress |e;| = v, + v,Y; and take s; = g, + g,Y;In
w; = 1/s2.

* If 2 vs. X, exhibits an increasing trend,
regress e = vy, + v, X, and take s;? = g, + g, X,
inw, =1/s2.

* (You get the idea...)




Approximate Inferences

Of course, since the w;’s are estimated from

the data, the WLS estimates of by, are only

approximate. Bias should be minimal, so
E{b«} = B,

but by £ t(1 - 5;n—p)su{bs} will only serve as a

good approximation for the conf. int. if nis

sufficiently large.




Example: Blood Pressure data
(CH11TAO01)

m Y = (Diastolic) blood pressure
X =Age
m SLR analysis in R:
plot( Y ~ X ); abline( Im(Y~X), Iwd=2 )
CH11TAO1.Im = Im(Y~X)
el = resid( CH11TAO1.Im )
plot( er1 ~ X))
abline( h=0, Iwd=2 )

m Plots show increasing trend with X=Age, but also
clear ‘megaphone’ spread in residuals
—> variance heterogeneity!

Plots follow —




Blood Press. data (CH11TA01) (cont’d)
Scatterplot and residual plot (cf. Fig. 11.1):




Blood Press. data (CH11TA01) (cont’d)

m Observe ‘megaphone’ residual spread vs. X

— fit SLR of |e;| = v, + v4X; and recover fitted values
S; = go + 94X

m Apply WLS with weights w. = 1/(g, + g,X.)>.

m The WLS analysis in R is simply
> si = fitted( Im(abs(er) ~ X) ); wi = 1/7(si1™2)
> summary( Im(Y ~ X¢ werghts=wi) )
Call:
Im(formulla = Y ~ X, weights = wi)
Coefficients:
Estimate Std. Error t value Pr(c|t])
(Intercept) 55.56577 2.52092 22.042 < 2e-16
X 0.59634 0.07924  7.526 7.19e-10




Blood Press. data (CH11TA01) (cont’d)

Resid. plot from
WLS fit doesn’t
change much,
since heterogen-
eous variance is
still present. But,
WLS estimates
now adjust for
unequal variance.

Predicted




§11.2: Ridge Regression

m A novel remediation strategy for
addressing multicollinearity is known as

Ridge Regression.

m Recall (Appx. A) that the Mean Squared
Error (MSE) of an estimator is
MSE = Var. + Bias?
So, if we sacrifice a small amt. of bias into
the LS estimator we may lessen its
variance and overall reduce its MSE.




Bias vs. Variance

m Fig. 11.2 illustrates the effect:
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Ridge Equations

Hoerl & Kennard (1970) showed that in the
presence of multicollinearity, expanding the
normal equations into (X'X + cl)p = X'Y

can drastically improve the stability of the
resulting estimator.

In practice, we first center the Y;’s via U; =
Y;-Y, or in vector form U =Y - Y1, and we

standardize the predictors: Zi = (Xi — X«)/Sk
with corresp. standardized design matrix Z.




Ridge Equations (cont’d)

m The Ridge Equations then become
(Z'Z + cl)Bgr =2Z'U

with solution b, = (Z2'Z + cl)"1Z'U.

(The inverse matrix can be shown to
always exist and to be computationally
easier to calculate — ‘better conditioned’.)

m But, how to choose the constant c?!?




The Ridge Trace

m An existence theorem stipulates that some
ridge constant ¢ > 0 always exists with a
smaller MSE{bg} than the OLS estimator.

m Unfortunately, it’s just an existence thm. It
doesn’t tell us what c to choose (!).

m One possibility: over increasing ¢ > 0 plot
the values of all the regression coeff’s b,z
and look where they all flatten. Choose
that c where this ridge trace plot seems to
stabilize.




Example: Body Fat Data (CHO07TA01)

m Recall that we saw heavy multicollinearity with the
Body Fat Data in Ch. 7. Apply a Ridge Regression.
m Use ridge() function from the genridge package:
Z1 = scale( X1 ); Z2 = scale( X2 )
Z3 = scale( X3 ); U =Y - mean(Y)
require( genridge )
const = seq(.001,2,.0001) #range for c>0
fit.ridge = ridge( U ~ Z1 + Z2 + Z3,
lambda = const)
traceplot( fit.ridge, cex=.7 )

Plot follows —




Body Fat Data (CH07TA01) (cont’d)

(Stock) ridge trace plot over 0 < c <2. Hori-
zontal axis is c; vertical axis is b,y.

o
o

Stabilization
occurs by
about
c=<0.3

or so.

Ridge constant




Body Fat Data (CH07TA01) (cont’d)

A warning: the ridge() function internally
standardizes the predictor variables using a

std. deviation with N in the denominator,
not n— 1. But, the scale() function uses

n—1. So the output ridge b,; values will be
smaller than we expect by a factor of

\J(n=1)In .

Obviously, this isn’t substantial for large n.




Ridge Constant via ViFs

Another approach for selecting c involves
study of the VIFs: vary c > 0 until all VIF,
values drop below 10, and VIF drops below
6 or so.

TABLE 11.3 VIF Values for Regression Coefficients
and R* for Different Biasing Constants c—Body Fat

— Requires repeated Example with Three Predictor Variables.

- ¢ (VIF);  (VIF),  (VIF); R?
caICUIatIon’ bUt can 000 708.84 564.34 104.61 .8014
prove valuable. 004 1698 1373 336 7864

002 50.56 40.45 8.28 7901
2.19 7847

See Table 11.3 — :882 ?:?2 2:23 162 7838

010 3.49 2.98 1.38  .7832

(C = 0006 or 0008 020 1.10 1.08 1.01 ;213

030 .63 70 .92
56 88 7808

seem to suffice...) 00 37 45 a5 7

100 25 37 76 7784

.500 15 21 40 7477
1.000 A1 14 23 .6818




Follow-up on Ridge Regr’n

m Ridge regression is a form of shrinkage
regression, since it literally shrinks the b,
coeff’s towards zero (eventually).

m It is also a form of reqularization, i.e.,
penalized regression where large b, values
are penalized. This can help with the
instability inherent in multicollinearity.

m A number of estimation strategies are
available for finding c, including the Hoerl-
Kennard-Baldwin (HKB) and Lawless-Wang
(LW) methods.




§11.4: Smoothing

m When
(a) nis large, and
(b) we are unsure of the form of E{Y,},
we can apply non-parametric regression smoothing
to fit smooth curves through the data.

m A standard technique is called lowess or loess (for
locally weighted Scatterplot Smoothing).

m Lowess was introduced for the SLR model on pp.
138-139. It sets a ‘window’ or ‘neighborhood’ around

any X, and fits a low-order polynomial to the points
in the window around X,..




Lowess Weighted Fit

m In each window, a percentage g of points
around some X, Is included.

m Lowess weights points in the window
closer to X, more heavily, and performs a
WLS fit (only) within the window. The fitted

value of E{Y,} is then computed at that X,..

m Lowess then moves on to the next X,,,
creates a new g-window, and repeats the
process.




Schematic: Lowess Window

g = 30% Lowess window at X,




Lowess Extensions

m Can move to 2nd-order, quadratic fitted curves
within each window to add robustness.

m Can iterate the process if outliers are a problem:
find residuals from lowess fit and use these to
update the original weights in each window.
(Usually only two iterations are necessary to clear
outlier effects.)

m In R, perform lowess smoothing via the loess()
function. Can also use the lowess() function, or
an automated plotter in the scatter.smooth()
function.




Recall: Toluca data (CH01TAO01)

lowess first-order smoothing for Toluca data

from Ch. 1:

> CHO1TAOl.loess = loess( Y ~ X,
span = 1/2, degree =1 )
> plot( Y ~ X, pch=19 )
> Ysmooth = predict( CHO1TAOl.loess,
data.frame(X = 20:120) )
> par( new=T )
> plot( Ysmooth ~ seq(20,120), type="1-",
Iwd=2 )

Plot follows —




Toluca data (CH01TAO01) (cont’d)

loess
smooth——
shows a
generally

linear

pattern; cf.

Fig. 3.19a

I
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Toluca data (CH01TAO01) (cont’d)

Compare to other functions for lowess fit:

> scatter.smooth( Y ~ X, span=.5, pch=19,
Iwd=2, xlab="Lot Size", ylab="Hours*,
family=“gaussian’ )
>
> plot( Y ~ X, pch=19, xlab="Lot Size",
ylab="Hours" )
> lines( lowess(Y ~ X, f=.5, 1ter=0),
Iwd=2 )

Plots follow —




Toluca data (CH01TA01) (cont’d)

lowess smooth via scatter.smooth() (left)
and lowess() (right). The smoothed curves are
essentially identical and also match Fig. 3.19a:

20 40 60 80 100 120 140 20 40 60 80 100 120 140

Lot Size Lot Size




Loess Smoothing

m Lowess was extended into loess for
multiple X’s. The method is more complex,
but the concepts are generally unchanged.

m Consider two X’s, X, and X,. At any ‘new’
Xy = [Xy4 X1, loess finds the fitted value

for E{Y,} by fitting a smoothed 1st- or 2nd-
order surface in a g-neighborhood around
that X,..

m It then migrates the neighborhood thru the
X space to approximate the E{Y} surface.




Loess Smoothing (cont’d)

Needed is:

(a) a distance metric to define the
neighborhood (Euclidean distance is
common. di - \/(Xi1—Xh1)2 + (Xiz—xhz)z ), and

(b) a weight function that is w; = 0 outside
the neighborhood and positive otherwise.
For the weight, popular is the tricube:

w1 |2

dmax
where d,.x is the max. distance to any
point in the current neighborhood.




Loess Smoothing (cont’d)

m Similar to the single-X case, loess essentially
requires three user inputs:

e (i) a value for g (usually 0.2 < q < 0.8);

* (ii) choice of 1st-order or 2nd-order smoothing;
and

o (ili) single pass (family=“gaussian’) or
robust/multi-pass (fami ly=“symmetric?)

iterations. (The same fami ly= option exist for
scatter.smooth(), but not for lowess().)

m In R, use the loess() function.




Life Insur. data (CH10TAO01) (cont’d)

m Fit 1st-degree, robust loess smooth with g = %

> CH10TAOl.loess = loess( Y ~ X1+X2, span=1/2,
degree=1, family=“symmetric’ )

m Contour plot of fitted surface:
X1lgrid seq( 30,75, length=50 )
X2grid seq( 3, 9,length=50 )
Ysmooth = matrix(0, nrow=50, ncol=50)
for(r 1In 1:50) {
for( 1n 1:50) {
Ysmooth[1,jJ] =Cpredict{ CH10TAOl. loess,
data.frame(X1=X1lgruad[1],X2=X2grud[j] ) ) } }
filled.contour( x=X1grid, y=X2grid, z=Ysmooth,
color.palette=terrain.colors,
xlab=expression(X[1]), ylab=expression(X[2]) )

Plot follows —




Life Insur. data (CH10TA01) (cont’d)

Contour plot of 1st-degree loess smoother
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Loess for Residual Analysis

Cleveland (1979) suggests a novel way to
use loess to analyze residual patterns.

Given any regression fit, find the absolute
residuals |e;|. Then calculate a loess fit of

le;| against the predicted values Y; and plot
the smoothed loess curve.

If the loess curve is approximately
horizontal, the loess diaghostic suggests
that variation is not heterogeneous!




§11.5: Bootstrapping

m The Bootstrap (a.k.a. bootstrap resampling) is a
modern method for performing statistical
inferences when the distribution of the data is
unknown or uncertain.

The method is computer-intensive, and is based
on the Monte Carlo Method of data simulation. It is
elegantly simple: use the computer to sample with
replacement (“resample’) the data as if they were
the full population.

m Then, use the simulated bootstrap distribution to
find confidence intervals for the target parameter.




Bootstrap resampling

Given data Y, Y,, ..., Y, the general procedure is
as follows:

(1) generate a pseudo-random sample Y% Y55, ..., Y,*
by sampling with replacement from the original n
values {Y4, Yo, ..., Y},

(2) calculate the target estimator/statistic 6*,

(3) repeat steps (1)—(2) a large number of times, say
B [often see B = n(log n)%; book says B = 500 but
for conf. intervals we usually take B 2 2000],

(4) assemble the 6; values (b = 1,...,B) and make
inferences based on these B values.




1 — a Confidence Intervals

- From the bootstrap distribution of {0*, ..., 0g*}
find the a/2 and 1—(a/2) percentiles; e.g.,
suppose a = 0.05 and B = 2000 = find the 51°
and 1950 (ordered) 8,* values.

- The percentile

method uses
N\ * N *
Oi51< 0 < Op1o50;

as the 95% boot-
strap conf. limits;
see dashed lines at
right —

00 02 04 06 08 10




1 — a Confidence Intervals (cont’d)

" The reflection method modifies the
percentile method slightly: find 6 from the
original sample and use

26 _— 6?1950] < O < 26 _ 6?51]

(see pp. 463-464).

" In R, can use the external boot package, or
just code it directly via the sample()
function.




Bootstrapping in Regression

m For the MLR/SLR setting, bootstrap-
ping is a little more complicated.

m We can’t just resample the Y, values,

since the LR model is embedded in
the data: it’s the E[Y,] In Y, = E[Y.] + €..

m Instead, we usually resample the
residuals to approximate the
distribution of €.




Resampling SLR Residuals

For simplicity, consider the SLR case:

— Find the fitted values Y; at each X;
(i=1,...,n).
— Find the raw residuals e; = Y; - Y.

— Resample from the residual collection
{e4, ..., e} to find bootstrapped residuals
91*, ez*, cuny en*.

— Then, take Y;*=Y,+¢e* as the
bootstrapped responses at each X..

cont’'d —




Resampling SLR Residuals (cont’d)

—  With the (X, Y;*) pairs (i =1, ..., n), fit the SLR
to these bootstrap data and record the LS
estimates by* and bq*.

Repeat this B times to produce the bootstrap
distribution of by and b;.

If, say, the goal is inferences on the slope 34,
collect the B values of b}, and build a
bootstrap confidence interval using these
bootstrapped slope estimates.

An alternative method involves resampling with
“random X” values; see p. 459.




Example: Toluca Data (CH01TAO01)

m Recall the Toluca Data in Ch. 1 and our SLR fit.
Apply a bootstrap analysis, with direct R coding:

>
>
>
>
>
>
>
>
>

#set up components from original fit:

el = resid(CHO1TAO1.1Im)

Yhat = fitted( CHO1TAO1.Im )

blorig = coef( CHO1TAO1.0Im )[2]

n = length(Y)

B 2000 #2000 bootstrap resamples
bl = numeric(B) #initialize

set.seed( 571 ) #sets seed for sampler

code continues —



Example: Toluca Data (cont’d)

#simple “for” loop:
for( b Iin 1:B ) {
estar = sample( er, n, replace=T )
Ystar Yhat + estar
bl[b] coef(Im(Ystar~-X))[2]
} #end “for” loop

summary( bl )
bl = sort( bl ) #order bl from small-to-large

>
>
>
>
>
>
>
>
>

code continues—




Example: Toluca Data (cont’d)

#95% percentile limits |[1IT B=2000:
blL = bl[51]; blU = bl[1950]
c(blL, blU)

hist( bl, prob=T ) #visual1zation
abline(v=blL, lty=2, lwd=2)
abline(v=blU, lty=2, lIwd=2)

#95% reflection limits:
blreflectL = 2*blorig - blU
blreflectU = 2*blorig - blL
c(blreflectL, blreflectl)

output follows —

>
>
>
>
>
>
>
>
>
>
>
>




Example: Toluca Data (cont’d)

R output (begin with summary () results):
Min. 1st Qu. Median Mean 3rd Qu. Max .
2.297 3.331 3.564 3.559 3.792 4.675

Next: 95% percentile limits on f,:
2.913779 4_.181367

Finally: 95% reflection limits on 3,:
2.959037 4_.226625

Compare to orig. normal-theory 95% conf. limits:
> confint(CHO1TAO1.Im)[2,]
2.5 % 97.5 %
2.852435 4.287969




Example: Toluca Data (cont’d)

Visualization: Histogram of bootstrap distribution
with 95% percentile limits marked by dashed lines:
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