
STAT 571A — Advanced Statistical
Regression Analysis

Chapter 11 NOTES
Model Building – III:
Remedial Measures

© 2018 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical,
photoreproduction, recording, or scanning — without the prior written consent of the course instructor.

Heterogeneous Variances

 When diagnostics or other information
indicate departure from homogeneity in
σ2{εi}, say, a ‘megaphone’ shape in the
resid. plot, we recognize that

σ2{εi} = σi
2,

and remedial action is necessary.
 Previous suggestion: transform Yi to bring

the variation closer to homogeneity.
 This can be effective, but may not always

work.

Heterogeneous Variance (cont’d)

 More formally, we update the MLR model:
Yi = β0 + β1Xi1 + ... + βp–1Xi,p–1 + εi

where now εi ~ indep. N(0,σi
2).

 If σi
2 is known (not likely) we extend the LS

criterion to minimize the Weighted SS:

Qw = ∑wi{Yi − (β0+β1Xi1+...+βp–1Xi,p–1)}2

where we weight each observation inversely
to the differential variance: wi = 1/σi

2.

Weight Inverse to Variance

 This is a standard strategy:
• If we weight each observation inversely to

the differential variance, we give
observations with low variance
(higher precision) greater weight, and
vice versa.

 Then minimize Qw by weighted least
squares to find the bk’s.

Matrix Formulation

 In matrix terms:
• let Wn×n = diag{w1,...,wn}
• the normal equs. become (X′WX)b = X′WY
• the WLS sol’n is b = (X′WX)−1X′WY
• the covariance matrix is �2{b} = (X′WX)−1

 Similar to the Gauss-Markov Thm. from Ch.
1, we can show that E{b} = �, with �2{b} a
min. among all unbiased estimators.

Unknown Heterogeneous Variances:
WLS with Replication

If there is replication in the design, or even
‘near’ replication, we can use it to construct
direct estimates of σj

2.
As in §3.7, assume the SLR model with
 Yij = μj + εij, where i = 1,..,nj and j = 1,...,c.
At each j, compute sj

2 = ∑(Yij –
—
Yj)2/(nj–1) as an

(unbiased!) estimator of σj
2.

Then, simply use wj = 1/sj
2 as the weights in

the WLS fit.
(Extend this to MLR in an obvious fashion.)

Replication via ‘Lots’

 If the study is observational and replication
cannot be designed into it, it may still be
possible to group the X’s into nearly-
homogeneous lots.

 If so, find wj= 1/{sample var. of jth lot}.

 Can iterate the process if the WLS
estimates of bk vary greatly at first. (Use
the OLS estimates as initial estimates.)

Unknown Variances (cont’d)

 In the more common case where the σi
2

terms are unknown, a number of strategies
exist for estimating them.

 Recognize: if the X’s are correctly modeled
in the MLR, then E{ei

2} = σi
2

• so use ei
2 as an estimate of σi

2,
• and/or |ei| as an estimate of σi.

 (The latter is more stable if there are
outliers.)

Estimating Variances

 Suppose we find that the ei’s vary in a
distinguishable pattern; say, ei varies more
as the fitted values ↑ .

 Depending on the observed pattern, we
could perform an intermediate regression
of ei

2 or |ei| on a component of the model to
recover “fitted” values that estimate σi

2 or
σi, resp. Then use these in wi = 1/σi

2.

 Some possibilities follow →

Proportional Weighting

 In the simplest case, it may be clear that σi
2

changes in some fashion with Xi.
 That is, suppose from a resid. plot we see

|ei| Xi. Then, view this as σi
2 Xi

2 and set
wi = 1/Xi

2.
 Or, if ei

2 Xi, view this as σi
2 Xi and set

wi = 1/Xi.
 Indeed, if ei

2 f(Xi) for known f(·), use
wi = 1/f(Xi), etc.

Estimating Variances (cont’d)
Estimating variances (see p. 425)
• If ei vs. Xik exhibits a ‘megaphone’ shape,

regress |ei| = �0 + �1Xik and take si = g0 + g1Xik
in wi = 1/si

2.
• If ei vs. exhibits a ‘megaphone’ shape,

regress |ei| = �0 + �1 and take si = g0 + g1 in
wi = 1/si

2.
• If ei

2 vs. Xik exhibits an increasing trend,
regress ei

2 = �0 + �1Xik and take si
2 = g0 + g1Xik

in wi = 1/si
2.

• (You get the idea...)

Ŷi
Ŷi Ŷi

Approximate Inferences

Of course, since the wi’s are estimated from
the data, the WLS estimates of bk are only
approximate. Bias should be minimal, so

E{bk} ≈ βk,
but bk ± t(1 – α2;n–p)sw{bk} will only serve as a
good approximation for the conf. int. if n is
sufficiently large.

Example: Blood Pressure data
(CH11TA01)

 Y = (Diastolic) blood pressure
X = Age

 SLR analysis in R:
> plot(Y ~ X); abline(lm(Y~X), lwd=2)
> CH11TA01.lm = lm(Y~X)
> ei = resid(CH11TA01.lm)
> plot(ei ~ X)
> abline(h=0, lwd=2)

 Plots show increasing trend with X=Age, but also
clear ‘megaphone’ spread in residuals
 variance heterogeneity!

Plots follow →

Blood Press. data (CH11TA01) (cont’d)
Scatterplot and residual plot (cf. Fig. 11.1):

Blood Press. data (CH11TA01) (cont’d)

 Observe ‘megaphone’ residual spread vs. X
 fit SLR of |ei| = �0 + �1Xi and recover fitted values

si = g0 + g1Xi.
 Apply WLS with weights wi = 1/(g0 + g1Xi)2.
 The WLS analysis in R is simply
> si = fitted(lm(abs(ei) ~ X)); wi = 1/(si^2)
> summary(lm(Y ~ X, weights=wi))
Call:
lm(formula = Y ~ X, weights = wi)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 55.56577 2.52092 22.042 < 2e-16
X 0.59634 0.07924 7.526 7.19e-10

Blood Press. data (CH11TA01) (cont’d)

Resid. plot from
WLS fit doesn’t
change much,
since heterogen-
eous variance is
still present. But,
WLS estimates
now adjust for
unequal variance.

§11.2: Ridge Regression

 A novel remediation strategy for
addressing multicollinearity is known as
Ridge Regression.

 Recall (Appx. A) that the Mean Squared
Error (MSE) of an estimator is

MSE = Var. + Bias2

So, if we sacrifice a small amt. of bias into
the LS estimator we may lessen its
variance and overall reduce its MSE.

Bias vs. Variance
 Fig. 11.2 illustrates the effect:

Ridge Equations

Hoerl & Kennard (1970) showed that in the
presence of multicollinearity, expanding the
normal equations into (XX + cI)� = XY
can drastically improve the stability of the
resulting estimator.
In practice, we first center the Yi’s via Ui =
Yi –

—
Y, or in vector form U = Y –

—
Y1, and we

standardize the predictors: Zik = (Xik –
—
Xk)/sk.

with corresp. standardized design matrix Z.

Ridge Equations (cont’d)

 The Ridge Equations then become

(ZZ + cI)�R = ZU

with solution bR = (ZZ + cI)–1ZU.
(The inverse matrix can be shown to
always exist and to be computationally
easier to calculate – ‘better conditioned’.)

 But, how to choose the constant c?!?

The Ridge Trace

 An existence theorem stipulates that some
ridge constant c > 0 always exists with a
smaller MSE{bR} than the OLS estimator.

 Unfortunately, it’s just an existence thm. It
doesn’t tell us what c to choose (!).

 One possibility: over increasing c > 0 plot
the values of all the regression coeff’s bkR
and look where they all flatten. Choose
that c where this ridge trace plot seems to
stabilize.

Example: Body Fat Data (CH07TA01)

 Recall that we saw heavy multicollinearity with the
Body Fat Data in Ch. 7. Apply a Ridge Regression.

 Use ridge() function from the genridge package:
> Z1 = scale(X1); Z2 = scale(X2)
> Z3 = scale(X3); U = Y - mean(Y)
> require(genridge)
> const = seq(.001,2,.0001) #range for c>0
> fit.ridge = ridge(U ~ Z1 + Z2 + Z3,

lambda = const)
> traceplot(fit.ridge, cex=.7)

Plot follows →

Body Fat Data (CH07TA01) (cont’d)

(Stock) ridge trace plot over 0 < c < 2. Hori-
zontal axis is c; vertical axis is bkR.

Stabilization
occurs by
about
c ≈ 0.3
or so.

Body Fat Data (CH07TA01) (cont’d)

A warning: the ridge() function internally
standardizes the predictor variables using a
std. deviation with n in the denominator,
not n – 1. But, the scale() function uses
n – 1. So the output ridge bkR values will be
smaller than we expect by a factor of

Obviously, this isn’t substantial for large n.

(n–1)/n .

Ridge Constant via VIFs
Another approach for selecting c involves
study of the VIFs: vary c > 0 until all VIFk
values drop below 10, and

——
VIF drops below

6 or so.
 Requires repeated
calculation, but can
prove valuable.
See Table 11.3 →
(c = 0.006 or 0.008
seem to suffice...)

Follow-up on Ridge Regr’n

 Ridge regression is a form of shrinkage
regression, since it literally shrinks the bkR
coeff’s towards zero (eventually).

 It is also a form of regularization, i.e.,
penalized regression where large bkR values
are penalized. This can help with the
instability inherent in multicollinearity.

 A number of estimation strategies are
available for finding c, including the Hoerl-
Kennard-Baldwin (HKB) and Lawless-Wang
(LW) methods.

§11.4: Smoothing
 When

(a) n is large, and
(b) we are unsure of the form of E{Yi},
we can apply non-parametric regression smoothing
to fit smooth curves through the data.

 A standard technique is called lowess or loess (for
locally weighted scatterplot smoothing).

 Lowess was introduced for the SLR model on pp.
138-139. It sets a ‘window’ or ‘neighborhood’ around
any Xh and fits a low-order polynomial to the points
in the window around Xh.

Lowess Weighted Fit

 In each window, a percentage q of points
around some Xh is included.

 Lowess weights points in the window
closer to Xh more heavily, and performs a
WLS fit (only) within the window. The fitted
value of E{Yh} is then computed at that Xh.

 Lowess then moves on to the next Xh,
creates a new q-window, and repeats the
process.

Schematic: Lowess Window

Xh

q = 30% Lowess window at Xh

Lowess fitted line around Xh

Lowess Extensions
 Can move to 2nd-order, quadratic fitted curves

within each window to add robustness.
 Can iterate the process if outliers are a problem:

find residuals from lowess fit and use these to
update the original weights in each window.
(Usually only two iterations are necessary to clear
outlier effects.)

 In R, perform lowess smoothing via the loess()
function. Can also use the lowess() function, or
an automated plotter in the scatter.smooth()
function.

Recall: Toluca data (CH01TA01)

lowess first-order smoothing for Toluca data
from Ch. 1:
> CH01TA01.loess = loess(Y ~ X,

span = 1/2, degree = 1)
> plot(Y ~ X, pch=19)
> Ysmooth = predict(CH01TA01.loess,

data.frame(X = 20:120))
> par(new=T)
> plot(Ysmooth ~ seq(20,120), type='l',

lwd=2)

Plot follows →

Toluca data (CH01TA01) (cont’d)

loess
smooth
shows a
generally
linear
pattern; cf.
Fig. 3.19a

Toluca data (CH01TA01) (cont’d)

Compare to other functions for lowess fit:
> scatter.smooth(Y ~ X, span=.5, pch=19,

lwd=2, xlab='Lot Size', ylab='Hours‘,
family=‘gaussian’)

>
> plot(Y ~ X, pch=19, xlab='Lot Size',

ylab='Hours')
> lines(lowess(Y ~ X, f=.5, iter=0),

lwd=2)

Plots follow →

Toluca data (CH01TA01) (cont’d)

lowess smooth via scatter.smooth() (left)
and lowess() (right). The smoothed curves are
essentially identical and also match Fig. 3.19a:

Loess Smoothing
 Lowess was extended into loess for

multiple X’s. The method is more complex,
but the concepts are generally unchanged.

 Consider two X’s, X1 and X2. At any ‘new’
Xh = [Xh1 Xh2], loess finds the fitted value
for E{Yh} by fitting a smoothed 1st- or 2nd-
order surface in a q-neighborhood around
that Xh.

 It then migrates the neighborhood thru the
X space to approximate the E{Y} surface.

Loess Smoothing (cont’d)
Needed is:
(a) a distance metric to define the
neighborhood (Euclidean distance is
common: di = (Xi1–Xh1)2 + (Xi2–Xh2)2); and
(b) a weight function that is wi = 0 outside
the neighborhood and positive otherwise.
For the weight, popular is the tricube:

 wi =

1 –

di

dmax

3 3

where dmax is the max. distance to any
point in the current neighborhood.

Loess Smoothing (cont’d)

 Similar to the single-X case, loess essentially
requires three user inputs:
• (i) a value for q (usually 0.2 < q < 0.8);
• (ii) choice of 1st-order or 2nd-order smoothing;

and
• (iii) single pass (family=‘gaussian’) or

robust/multi-pass (family=‘symmetric’)
iterations. (The same family= option exist for
scatter.smooth(), but not for lowess().)

 In R, use the loess() function.

Life Insur. data (CH10TA01) (cont’d)
 Fit 1st-degree, robust loess smooth with q = ½ :
> CH10TA01.loess = loess(Y ~ X1+X2, span=1/2,

degree=1, family=‘symmetric’)

 Contour plot of fitted surface:
> X1grid = seq(30,75,length=50)
> X2grid = seq(3, 9,length=50)
> Ysmooth = matrix(0, nrow=50, ncol=50)
> for(i in 1:50) {

for(j in 1:50) {
Ysmooth[i,j] = predict(CH10TA01.loess,

data.frame(X1=X1grid[i],X2=X2grid[j])) } }
> filled.contour(x=X1grid, y=X2grid, z=Ysmooth,

color.palette=terrain.colors,
xlab=expression(X[1]), ylab=expression(X[2]))

Plot follows →

Life Insur. data (CH10TA01) (cont’d)

Contour plot of 1st-degree loess smoother

Loess for Residual Analysis

Cleveland (1979) suggests a novel way to
use loess to analyze residual patterns.
Given any regression fit, find the absolute
residuals |ei|. Then calculate a loess fit of
|ei| against the predicted values Ŷi and plot
the smoothed loess curve.
If the loess curve is approximately
horizontal, the loess diagnostic suggests
that variation is not heterogeneous!

§11.5: Bootstrapping
 The Bootstrap (a.k.a. bootstrap resampling) is a

modern method for performing statistical
inferences when the distribution of the data is
unknown or uncertain.

 The method is computer-intensive, and is based
on the Monte Carlo Method of data simulation. It is
elegantly simple: use the computer to sample with
replacement (“resample”) the data as if they were
the full population.

 Then, use the simulated bootstrap distribution to
find confidence intervals for the target parameter.

Bootstrap resampling
Given data Y1, Y2, ..., Yn, the general procedure is
as follows:
(1) generate a pseudo-random sample Y1*, Y2*, ..., Yn*

by sampling with replacement from the original n
values {Y1, Y2, ..., Yn} ,

(2) calculate the target estimator/statistic �̂*,
(3) repeat steps (1)–(2) a large number of times, say

B [often see B = n(log n)2; book says B = 500 but
for conf. intervals we usually take B ≥ 2000],

(4) assemble the �̂b* values (b = 1,...,B) and make
inferences based on these B values.

· From the bootstrap distribution of {�̂1*, ..., �̂B*}
find the α/2 and 1–(α/2) percentiles; e.g.,
suppose α = 0.05 and B = 2000 find the 51st
and 1950th (ordered) �̂b* values.

· The percentile
method uses

�̂[51]* < � < �̂[1950]*
 as the 95% boot-

strap conf. limits;
see dashed lines at
right →

1 – α Confidence Intervals

D
en

si
ty

2.5 3.0 3.5 4.0 4.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 – α Confidence Intervals (cont’d)

· The reflection method modifies the
percentile method slightly: find �̂ from the
original sample and use

2�̂ – �̂[1950]* < � < 2�̂ – �̂[51]*
 (see pp. 463-464).

· In R, can use the external boot package, or

just code it directly via the sample()
function.

Bootstrapping in Regression

 For the MLR/SLR setting, bootstrap-
ping is a little more complicated.

 We can’t just resample the Yi values,
since the LR model is embedded in
the data: it’s the E[Yi] in Yi = E[Yi] + �i.

 Instead, we usually resample the
residuals to approximate the
distribution of �i.

Resampling SLR Residuals

For simplicity, consider the SLR case:
→ Find the fitted values Ŷi at each Xi

(i = 1,...,n).
→ Find the raw residuals ei = Yi – Ŷi.
→ Resample from the residual collection

{e1, ..., en} to find bootstrapped residuals
e1*, e2*, ..., en*.

→ Then, take Yi* = Ŷi + ei* as the
bootstrapped responses at each Xi.

cont’d →

Resampling SLR Residuals (cont’d)

→ With the (Xi, Yi*) pairs (i = 1, ..., n), fit the SLR
to these bootstrap data and record the LS
estimates b0* and b1*.

→ Repeat this B times to produce the bootstrap
distribution of b0 and b1.

→ If, say, the goal is inferences on the slope �1,
collect the B values of b1b* and build a
bootstrap confidence interval using these
bootstrapped slope estimates.

An alternative method involves resampling with
“random X” values; see p. 459.

Example: Toluca Data (CH01TA01)

 Recall the Toluca Data in Ch. 1 and our SLR fit.
Apply a bootstrap analysis, with direct R coding:
> #set up components from original fit:
> ei = resid(CH01TA01.lm)
> Yhat = fitted(CH01TA01.lm)
> b1orig = coef(CH01TA01.lm)[2]
> n = length(Y)
> B = 2000 #2000 bootstrap resamples
> b1 = numeric(B) #initialize
>
> set.seed(571) #sets seed for sampler

code continues →

Example: Toluca Data (cont’d)

> #simple “for” loop:
> for(b in 1:B) {
> estar = sample(ei, n, replace=T)
> Ystar = Yhat + estar
> b1[b] = coef(lm(Ystar~X))[2]
> } #end “for” loop
>
> summary(b1)
> b1 = sort(b1) #order b1 from small-to-large

code continues→

Example: Toluca Data (cont’d)
> #95% percentile limits if B=2000:
> b1L = b1[51]; b1U = b1[1950]
> c(b1L, b1U)
>
> hist(b1, prob=T) #visualization
> abline(v=b1L, lty=2, lwd=2)
> abline(v=b1U, lty=2, lwd=2)
>
> #95% reflection limits:
> b1reflectL = 2*b1orig - b1U
> b1reflectU = 2*b1orig - b1L
> c(b1reflectL, b1reflectU)

output follows →

Example: Toluca Data (cont’d)

R output (begin with summary() results):
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.297 3.331 3.564 3.559 3.792 4.675

Next: 95% percentile limits on �1:
2.913779 4.181367

Finally: 95% reflection limits on �1:
2.959037 4.226625

Compare to orig. normal-theory 95% conf. limits:
> confint(CH01TA01.lm)[2,]

2.5 % 97.5 %
2.852435 4.287969

Example: Toluca Data (cont’d)

Visualization: Histogram of bootstrap distribution
with 95% percentile limits marked by dashed lines:

