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§14.1: Binary Response Data

 A common data format in regression 
analysis is where the response variable 
Yi is binary, i.e., Yi=0 or Yi=1, but nothing 
else!

 Typical examples: healthy vs. diseased, 
on vs. off,  yes vs. no,  alive vs. dead, 
etc.

 We still have a predictor variable Xi that 
we feel can predict E[Yi].

 How to proceed?!?



Binary Response
 Under the SLR model, we took 

Yi = β0 + β1Xi + εi
with E[εi] = 0.  Thus E[Yi] = β0 + β1Xi.  

 But: notice that when Yi=0 or Yi=1 (only), 
E[Yi] = (0)P[Yi = 0] + (1)P[Yi = 1] = P[Yi = 1].

 Call this πi = P[Yi = 1] = E[Yi], and recognize 
that πi = E[Yi] is a probability: 0 ≤ πi ≤ 1.

 Obviously the SLR model is inappropriate: 
the line β0 + β1Xi can’t be constrained 
between 0 and 1! 



E[Y] for binary Y

 Fig. 14.1 illustrates the problem:

Over only a 
limited range 
will the straight 
line lie between 
0 and 1; past 
this, we must 
truncate the 
mean response.



Binary Y Response

 For that matter, when Yi=0 or Yi=1 (only), 
εi cannot be N(0,σ2) in Yi = β0 + β1Xi + εi as 
Yi is clearly a discrete random variable. 

 And, it can be shown that when Yi=0 or 
Yi=1 (only) then σ2{Yi} = πi(1 − πi), which 
is non-constant!

 Conclusion: binary data do not conform 
with our SLR model.



§14.3: Simple Logistic Regression

 Instead of our previous model approach with 
Yi = E[Yi] + εi, for binary data we must move to 
a substantively different formulation.

 The Simple Logistic Regression Model sets 
E[Yi] = πi = 1/(1 + exp{−β0 − β1Xi}) and it 
discards the additive error assumption. (In 
effect, εi no longer exists.)

 Formally, we simply assume 
Yi ~ Binomial(1, πi)   (for i = 1,...,n).



Logistic Function
The term “logistic regression” comes from use of a 
logistic distribution model for the mean response:

• The c.d.f. of the standard logistic dist’n is 
F(η) = eη/(1 + eη) = 1/(1 + exp{−η})

• As this is a c.d.f., it can be used to model any 
quantity that ranges between 0 and 1, such as 
our E[Yi] = πi.  

• So, we take πi = 1/(1 + exp{−ηi}) with ηi = β0+β1Xi.  
Recall that ηi is called the linear predictor.

• The inverse function is the logit function
F−1(πi) = logit{πi} = log{πi /(1 − πi)} (14.18a)



Interpretation of β1

 Under the logistic regr. model, the inter-
pretation of β1 differs from what we’ve 
seen previously.

 Notice that logit{π(X)} = β0 + β1X, while 
logit{π(X+1)} = β0 + β1(X+1).  Then clearly

logit{π(X+1)} – logit{π(X)} = ... = β1.

 But, we saw logit{π} = log{π/(1 − π)}, 
which is the logarithm of the odds 

π/(1 − π).



Interpretation of β1 (cont’d)

 Thus we say that β1 is the change in 
log-odds when we increase X by +1 unit.

 By the way: if Odds(X) =  π(X)/[1 − π(X)], 
then

log{Odds(X +1)} – log{Odds(X)} 
=    log{Odds(X +1)/Odds(X)} 

is called the log-odds ratio and it clearly 
equals β1.  The odds-ratio is then 

OR = exp(β1).



 The logistic mean response is a sigmoidal (“S-
shaped”) function; see Fig. 14.2c:

 Other possibilities in the class of sigmoidal 
functions include the probit and complementary 
log-log (“CLL”) functions. See §14.2.

Sigmoidal Response Function



Maximum Likelihood

 We use weighted least squares (from §11.1) 
to fit the logistic regression model.  This is 
equivalent to a maximum likelihood solution 
for the β parameters.

 Unfortunately, the equations do not produce 
a closed-form solution, so we must appeal 
to computer iteration.

 In R, we use the glm() function. (‘glm’ 
stands for generalized linear model, of 
which logistic regression is a special case; 
cf. §14.14.)



Example: Program’g Task Data (CH14TA01)

 Y = Programming task result (0 = failure, 1 = success)
X = Months of experience

 Logistic regression analysis in R:
> plot( Y ~ X )     #not very informative
> CH14TA01.glm = glm( Y~X, family=binomial(logit) )
> summary( CH14TA01.glm )

Coefficients:
Estimate Std. Error z value Pr(>|z|)  

(Intercept) -3.05970   1.25935  -2.430   0.0151
X           0.16149   0.06498  2.485   0.0129
(Dispersion parameter for binomial family taken to be 1)
Number of Fisher Scoring iterations: 4

Plot follows →



Programming Task Example (cont’d)
Because the Y-response data are binary (0 or 1), the 
scatterplot isn’t very illustrative:
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Programming Task Example (cont’d)
Overlay plot with fitted logistic regression curve (cf. Fig. 14.5):
> plot( Y ~ X )
> b0=coef(CH14TA01.glm)[1]; b1=coef(CH14TA01.glm)[2]
> curve( 1/(1 + exp(-b0-b1*x)), xlim=c(4,30), add=T )
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Replication → Binomial Proportion Data

When multiple Yijs are observed at the same Xj, we 
have replication:

• The binary observations are Yij for i=1,...,nj and 
j=1,...,c.

• Sum over i to produce bounded counts:
Y•j = ∑iYij ~ Binomial(nj,πj), at each Xj.

• This results in proportions, Y•j/nj, at each Xj. In 
effect, these are nonparametric estimates of πj.

• Can continue to model πj as logistic: 
πj = 1/(1 + exp{− β0 − β1Xj})

• Can still use glm() to fit the logistic regression 
model to such proportion data.



Example: Coupon Data (CH14TA02)

 Y = # households redeeming coupons 
out of n=200 households

 X = Price reduction per coupon ($)
 Logistic regr. analysis in R (note need for  cbind(Y,n-Y)

syntax in formula’s response variable):
> CH14TA02.glm = glm( cbind(Y,n-Y) ~ X, 

family = binomial(logit) )
> summary( CH14TA02.glm )

Coefficients:
Estimate Std. Error z value Pr(>|z|)  

(Intercept) -2.044348   0.160977  -12.70   <2e-16 
X           0.096834   0.008549   11.33   <2e-16 

(Dispersion parameter for binomial family taken to be 1)

Number of Fisher Scoring iterations: 3



Example: Coupon Data (cont’d)
Overlay plot with fitted logistic regression curve (cf. Fig. 14.7):
> plot( Y/n ~ X, pch=19 )
> b0=coef(CH14TA02.glm)[1]; b1=coef(CH14TA02.glm)[2]
> curve( 1/(1 + exp(-b0-b1*x)), xlim=c(0,35), add=T )

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

Y/
n



§14.4: Multiple Logistic Regression

 The extension to multiple X variables 
X1, X2, ..., Xp−1 is straightforward. Take 
πi = 1/(1 + exp{−β0 − β1Xi1 − ... − βp−1Xi,p−1}) 

 Continue to use weighted least 
squares/maximum likelihood to estimate 
the β parameters.

 This still requires the computer: in R, 
modify the formula input in the glm()
function in an obvious fashion.



Interpretation of β parameters 

 For the multiple linear-logistic model, the 
interpretation of the β parameters extends 
naturally from the simple linear-logistic case.

 βk is the log-odds ratio associated with a unit 
(+1) increase in Xk when all other X’s are held
fixed.

 Special cases include polynomial logistic 
regression with Xik = Xi

k (set k no larger than 
about 2 or 3 in practice), and logistic ANCOVA 
models with mixed quant./qual. predictors.



Example: Disease Outbreak Data (CH14TA03)

Multiple logistic regression data:
• Y = Disease status (Y=1 if present, Y=0 

otherwise)
• X1 = Age (yrs.)
• X2 = Socioeconomic status ‘M’ (1 = middle 

class, 0 otherwise; see p. 573)
• X3 = Socioeconomic status ‘L’ (1 = lower 

class, 0 otherwise; see p. 573)
• X4 = City location (“sector”) indicator



Disease Outbreak Data: R Code

 Multiple logistic regression analysis in R:
> CH14TA03.glm = glm( Y ~ X1 + X2 + X3 + X4, 

family = binomial(logit) )

 Output estimated regr. coefficients with std. 
errors, etc.:
> summary( CH14TA03.glm )

 Print Var.-Cov. matrix of b vector, s2{b} 
(load MASS package 1st):

> library( MASS )
> vcov( CH14TA03.glm )

Output follows →



Disease Outbreak Data: R Output

Begin with  summary() results:
Call:  glm(formula = Y ~ X1 + X2 + X3 + X4, 

family = binomial(logit))
Coefficients:

Estimate Std. Error z value  Pr(>|z|)
(Intercept) -2.31293    0.64259  -3.599  0.000319
X1          0.02975    0.01350   2.203  0.027577 
X2          0.40879    0.59900   0.682  0.494954    
X3         -0.30525    0.60413  -0.505  0.613362    
X4          1.57475    0.50162   3.139  0.001693 
(Dispersion parameter for binomial family taken 
to be 1)
Number of Fisher Scoring iterations: 4



Disease Outbreak Data: R Output 
(cont’d)

Next print Var.-Cov. matrix s2{b} from vcov(): 
(Intercept)      X1      X2      X3      X4

(Intercept) 0.4129 -0.0057 -0.1836 -0.2010 -0.1632
X1        -0.0057  0.0002  0.0011  0.0007  0.0003
X2        -0.1836  0.0011  0.3588  0.1482  0.0129
X3        -0.2010  0.0007  0.1482  0.3650  0.0623
X4        -0.1632  0.0003  0.0129  0.0623  0.2516

(cf. Table 14.4)



§14.5: Inference in Logistic Regression
 To test if a particular Xk-variable is important in a 

logistic regression, we use a variant of the partial 
t-test, called a Wald Test. 

 Test Ho:βk = 0 vs. Ha:βk ≠ 0 (two-sided is default) 
using the Wald statistic z* = bk/s{bk}, where bk is the 
MLE of βk and s{bk} is its std. error.  

 Refer to z* ~ N(0,1) (not the t-dist’n) for the rejection 
region or p-value; e.g., P = 2P[N(0,1) > |z*|].

 As usual, this is a pointwise inference.  Must apply a 
Bonferroni adjustment for multiple inferences on 
g > 1 different βks.  



Notes on Logistic Wald Test

1. The Wald test here is only an approximation that 
improves as n→∞. For small samples, it may not 
control the false positive error rate.

2. In R, Wald test results are provided in output 
from the summary() function.

3. IMPORTANT: Do NOT use the Wald test when 
p = 2, i.e., when there is only one X-variable.  
It is known to be unstable (Hauck & Donner, 1977, 
JASA vol. 72, pp. 851-853). Instead, use the likelihood 
ratio (LR) test, described next → 



LR test in Logistic Regression

 For testing multiple βks in a single Ho, say 
Ho: βq = βq+1 = ... = βp−1 = 0,

use the likelihood ratio (LR) statistic:
G2 = −2 log{L(RM)/L (FM)}

where L(FM) is the “likelihood” under the full 
model and L(RM) is the “likelihood” under the 
reduced model when Ho is true. Note that q = p−1 
is possible (1 d.f. alternative to Wald test).

 Reject Ho when G2 > 2(1−α;p−q). Two-sided p-
value is P[2(p−q) > G2].

 The details are nuanced & extend beyond our 
scope. See advanced texts on logistic regression.



Disease Outbreak Data (CH14TA03, cont’d)

 Recall that we had p−1=4 predictor variables, so 
consider the “full” LR test of 

Ho: β1 = β 2 = β 3 = β 4 = 0.

 In R, find the CH14TA03.glm object for the FM, 
also fit the RM, and then apply the anova()
function with the test=‘Chisq’ option:
> CH14TA03rm.glm = glm( Y ~ 1, 

family = binomial(logit) )

> anova( CH14TA03rm.glm, CH14TA03.glm,
test=‘ChiSq’)

Output follows →



Disease Outbreak Data (cont’d)

“Full” LR test of Ho: β1 = β 2 = β 3 = β 4 = 0:
R output from the anova() function (notice the title 
“Analysis of Deviance Table” to distinguish from 
the ANOVA table in normal-data MLRs):
Analysis of Deviance Table

Model 1: Y ~ 1

Model 2: Y ~ X1 + X2 + X3 + X4

Resid. Df Resid. Dev Df Deviance  Pr(>Chi)    

1        97     122.32

2        93     101.05  4   21.264 0.0002808

P-value is 0.0003 so “full” model is clearly significant. 



Disease Outbreak Data (cont’d)

Now consider LR test of Ho: β1 = 0:
> CH14TA03rm1.glm = glm( Y ~ X2+X3+X4, 

family = binomial(logit) )

> anova( CH14TA03rm1.glm, CH14TA03.glm, 
test=‘ChiSq’)

Model 1: Y ~ X2 + X3 + X4

Model 2: Y ~ X1 + X2 + X3 + X4

Resid. Df Resid. Dev Df Deviance Pr(>Chi)  

1        94     106.20                       

2        93     101.05  1   5.1495  0.02325

P-value is 0.0233 so retain X1 in model; see p.581.



Pointwise Confidence Intervals

For a 1−α pointwise conf. interval on a single 
βk, there are 2 options:

• The Wald interval is the familiar form
bk ± z(1−{α/2})s{bk}

where z(1−{α/2}) is the upper-{α/2} critical point 
from Z ~ N(0,1).

 Avoid this if p=2, due to Wald test’s instability.
• Preferred: “Invert” a level-α LR test of 

Ho: βk = 0 into a 1−α LR conf. interval, a.k.a. 
“profile likelihood interval.” This has no 
closed form, but it can be computed in R.



Programming Task Data (CH14TA01, cont’d)
 Recall:

Y = Programming task result (0 = failure, 1 = success)
X = Months of experience

 95% logistic profile likelihood conf. interval for β1:
> library( MASS )       #load MASS package
> confint( CH14TA01.glm, parm=2 )

Waiting for profiling to be done...
2.5 %     97.5 % 

0.05002505 0.31403972

 can report 0.050 < β1 < 0.314.

 If desired (not recommended), compute Wald interval by 
hand from output of summary(CH14TA01.glm); see p. 579.



§14.8: Logistic Regression Diagnostics

· For a Residual Analysis, the usual, “raw” 
residual isn’t that useful with binary data. 
Instead, in logistic regression we find the 
Pearson Residual 

  rPi = 
Yi – π̂i

π̂i(1–π̂i)
 (14.79) 

 where π̂i is the ith predicted response. 
· A studentized form, rSPi, also exists; see 

Equation (14.81). 



Deviance Residuals

· With logistic regression models, a slightly 
more stable form is the Deviance Residual 

 devi =  
  sign(Yi – π̂i) –2[Yi log(π̂i) + (1–Yi)log(1–π̂i)] 
 as in Equation (14.83). 

· Residual plots: One can plot rPi or devi 
against π̂i, but this will always produce a 
two-curve pattern  not that useful with 
binary data. See Fig. 14.12. 



Residual Plots with Proportion Data

 If replication in the binary response at 
multiple values of X produces proportion
data, residual plots are more informative.

 Example: for the Coupon Data (CH14TA02), 
find the deviance residuals and plot in R:
> devi = residuals( CH14TA02.glm,

type=‘deviance’ )
> pihat = predict( CH14TA02.glm,

type=‘response’ )
> plot( devi ~ pihat ); abline ( h=0 )



0.2 0.3 0.4 0.5 0.6 0.7

-0
.5

0.
0

0.
5

pihat

de
vi

Deviance Residual Plot
Here, the deviance residual plot is not very illustrative 
(due to limited number of distinct X values) but as 
given it shows no substantial problems:



Other Logistic Regr. Diagnostics
 More generally, the Deviance of a logistic regr. fit 

measures the adequacy of the model fit, using the 
likelihood function. The expression is complicated; 
see Eqn. (14.75).  
NOTATION: DEV(X) where X is the design matrix of 
the posited model.

 A rule-of-thumb diagnostic indicates serious model 
inadequacy if 

 Other diagnostics for logistic regression include a 
form of Cook’s distance; see pp. 599-601.

DEV(X)
n–p   > 1 + 2.8

n–p 



Example: Disease Outbreak Data 
(CH14TA03, cont’d)

 Recall that we had p−1 = 4 predictor variables.

 In R, using the CH14TA03.glm object, calculate the 
terms for the adequacy measure rule-of-thumb:

> residDF = CH14TA03.glm$df.residual
> CH14TA03.glm$deviance/residDF #adequacy measure

[1] 1.086604

> 1 + ( 2.8/sqrt(residDF) )       #threshold
[1] 1.290346

 We see DEV(X)/(n−p) = 1.0866 does not exceed the 
rule-of-thumb threshold of 1.2903, so we conclude 
that the model fits the data here in an adequate 
fashion.



§14.14: Generalized Linear Models

 The logistic regr. model is a special case of a much 
larger family of regression models, called 
Generalized Linear Models (GLiMs).

 GLiMs also include:
• MLR Normal (Gaussian) models from Chs. 1-11.
• Poisson log-linear regression: Yi ~ Poisson(λi) 

with log{λi} = β0 + β1Xi1 + ... + βp−1Xi,p−1.
• Gamma regression: Yi ~ Gamma(ai, bi) with 

log{aibi} = β0 + β1Xi1 + ... + βp−1Xi,p−1.

 Continue to use glm() but now modify the family=
option; see help(glm).


