

STAT 571A — Advanced Statistical Regression Analysis

<u>Chapter 14 NOTES</u> Introduction to Logistic Regression (et al.)

© 2018 University of Arizona Statistics GIDP. All rights reserved, except where previous rights exist. No part of this material may be reproduced, stored in a retrieval system, or transmitted in any form or by any means — electronic, online, mechanical, photoreproduction, recording, or scanning — without the prior written consent of the course instructor.

§14.1: Binary Response Data

- A common data format in regression analysis is where the response variable Y_i is binary, i.e., Y_i=0 or Y_i=1, but nothing else!
- Typical examples: healthy vs. diseased, on vs. off, yes vs. no, alive vs. dead, etc.
- We still have a predictor variable X_i that we feel can predict E[Y_i].
- How to proceed?!?

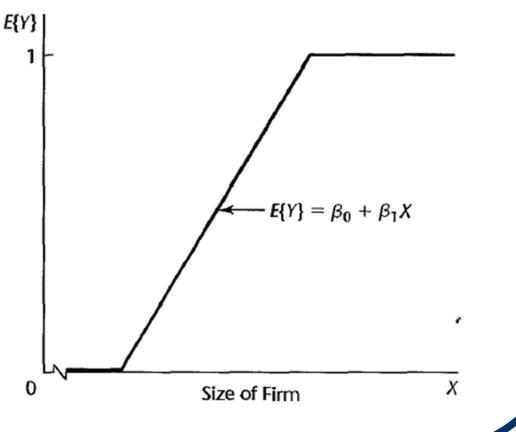
Binary Response

- Under the SLR model, we took $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ with $E[\varepsilon_i] = 0$. Thus $E[Y_i] = \beta_0 + \beta_1 X_i$.
- But: notice that when Y_i=0 or Y_i=1 (only), E[Y_i] = (0)P[Y_i = 0] + (1)P[Y_i = 1] = P[Y_i = 1].
- Call this $\pi_i = P[Y_i = 1] = E[Y_i]$, and recognize that $\pi_i = E[Y_i]$ is a probability: $0 \le \pi_i \le 1$.
- Obviously the SLR model is inappropriate: the line β₀ + β₁X_i can't be constrained between 0 and 1!

E[Y] for binary Y

Fig. 14.1 illustrates the problem:

Over only a limited range will the straight line lie between 0 and 1; past this, we must truncate the mean response. Probability That Firm Has Industrial Relations Department



Binary Y Response

- For that matter, when $Y_i=0$ or $Y_i=1$ (only), $ε_i$ can<u>not</u> be N(0, σ^2) in $Y_i = β_0 + β_1X_i + ε_i$ as Y_i is clearly a discrete random variable.
- And, it can be shown that when Y_i=0 or Y_i=1 (only) then σ²{Y_i} = π_i(1 - π_i), which is <u>non</u>-constant!
- Conclusion: binary data do not conform with our SLR model.

§14.3: Simple Logistic Regression

- Instead of our previous model approach with Y_i = E[Y_i] + ε_i, for binary data we must move to a substantively *different formulation*.
- The Simple Logistic Regression Model sets E[Y_i] = π_i = 1/(1 + exp{-β₀ - β₁X_i}) and it <u>discards</u> the additive error assumption. (In effect, ε_i no longer exists.)

Formally, we simply assume Y_i ~ Binomial(1, π_i) (for i = 1,...,n).

Logistic Function

The term "logistic regression" comes from use of a **logistic distribution model** for the mean response:

- The c.d.f. of the standard logistic dist'n is $F(\eta) = e^{\eta}/(1 + e^{\eta}) = 1/(1 + exp\{-\eta\})$
- As this is a c.d.f., it can be used to model any quantity that ranges between 0 and 1, such as our $E[Y_i] = \pi_i$.
- So, we take $\pi_i = 1/(1 + exp\{-\eta_i\})$ with $\eta_i = \beta_0 + \beta_1 X_i$. Recall that η_i is called the <u>linear predictor</u>.
- The inverse function is the *logit function* $F^{-1}(\pi_i) = logit\{\pi_i\} = log\{\pi_i/(1 - \pi_i)\}$ (14.18a)

Interpretation of β_1

- Under the logistic regr. model, the interpretation of β₁ differs from what we've seen previously.
- Notice that $logit{\pi(X)} = \beta_0 + \beta_1 X$, while $logit{\pi(X+1)} = \beta_0 + \beta_1 (X+1)$. Then clearly $logit{\pi(X+1)} - logit{\pi(X)} = \dots = \beta_1$.

■ But, we saw $logit{\pi} = log{\pi/(1 - \pi)}$, which is the logarithm of the odds $\pi/(1 - \pi)$.

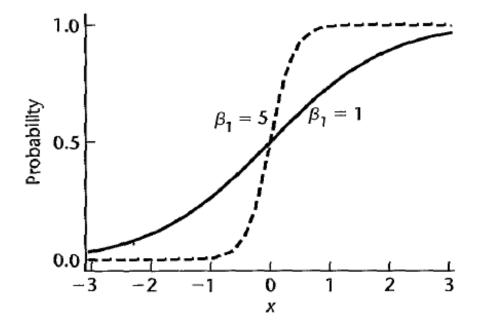
Interpretation of β_1 (cont'd)

- Thus we say that β₁ is the change in log-odds when we increase X by +1 unit.
- By the way: if Odds(X) = π(X)/[1 π(X)], then

is called the <u>log-odds ratio</u> and it clearly equals β_1 . The odds-ratio is then $OR = exp(\beta_1)$.

Sigmoidal Response Function

The logistic mean response is a sigmoidal ("Sshaped") function; see Fig. 14.2c:



Other possibilities in the class of sigmoidal functions include the probit and <u>complementary</u> log-log ("CLL") functions. See §14.2.

Maximum Likelihood

- We use <u>weighted</u> least squares (from §11.1) to fit the logistic regression model. This is equivalent to a maximum likelihood solution for the β parameters.
- Unfortunately, the equations do not produce a closed-form solution, so we must appeal to computer iteration.
- In R, we use the glm() function. ('glm' stands for generalized linear model, of which logistic regression is a special case; cf. §14.14.)

Example: Program'g Task Data (CH14TA01)

- Y = Programming task result (0 = failure, 1 = success)
 X = Months of experience
- Logistic regression analysis in R:
 - > plot(Y ~ X) #not very informative
 - > CH14TA01.glm = glm(Y~X, family=binomial(logit))

```
> summary( CH14TA01.glm )
```

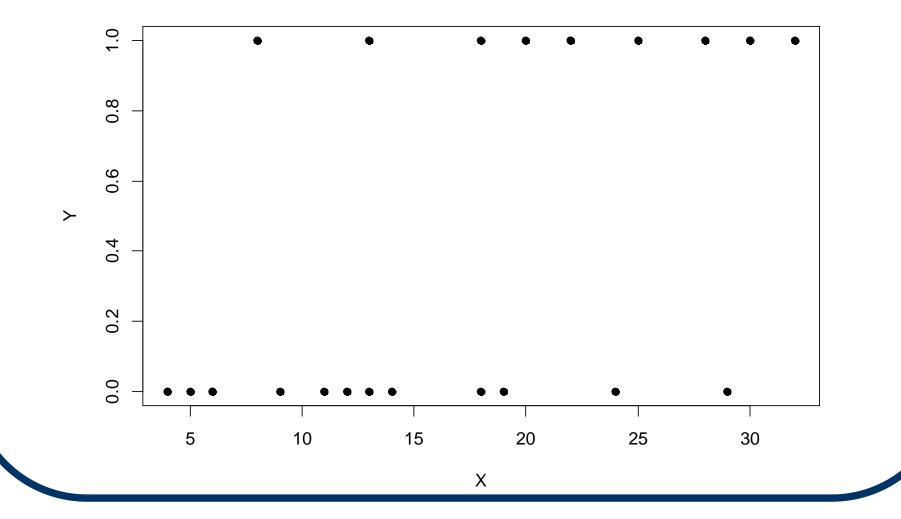
Coefficients:

Estimate Std. Error z value Pr(>|z|)(Intercept) -3.05970 1.25935 -2.430 0.0151 X 0.16149 0.06498 2.485 0.0129 (Dispersion parameter for binomial family taken to be 1) Number of Fisher Scoring iterations: 4

Plot follows ----

Programming Task Example (cont'd)

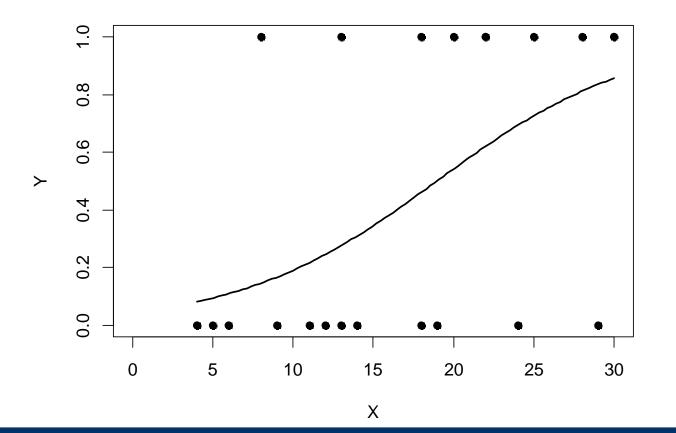
Because the Y-response data are binary (0 or 1), the scatterplot isn't very illustrative:



Programming Task Example (cont'd)

Overlay plot with fitted logistic regression curve (cf. Fig. 14.5):

- > plot(Y ~ X)
- > b0=coef(CH14TA01.glm)[1]; b1=coef(CH14TA01.glm)[2]
- > curve(1/(1 + exp(-b0-b1*x)), xlim=c(4,30), add=T)



Replication \rightarrow **Binomial Proportion Data**

When multiple Y_{ij} s are observed <u>at the same</u> X_j , we have replication:

- The binary observations are Y_{ij} for i=1,...,n_j and j=1,...,c.
- Sum over *i* to produce bounded counts: $Y_{ij} = \sum_i Y_{ij} \sim Binomial(n_j, \pi_j)$, at each X_j .
- This results in proportions, Y_i/n_j, at each X_j. In effect, these are nonparametric estimates of π_i.
- Can continue to model π_j as logistic: $\pi_j = 1/(1 + exp\{-\beta_0 - \beta_1X_j\})$
- Can still use glm() to fit the logistic regression model to such proportion data.

Example: Coupon Data (CH14TA02)

- Y = # households redeeming coupons out of n=200 households
- X = Price reduction per coupon (\$)
- Logistic regr. analysis in R (note need for cbind(Y,n-Y) syntax in formula's response variable):

```
> summary( CH14TA02.glm )
```

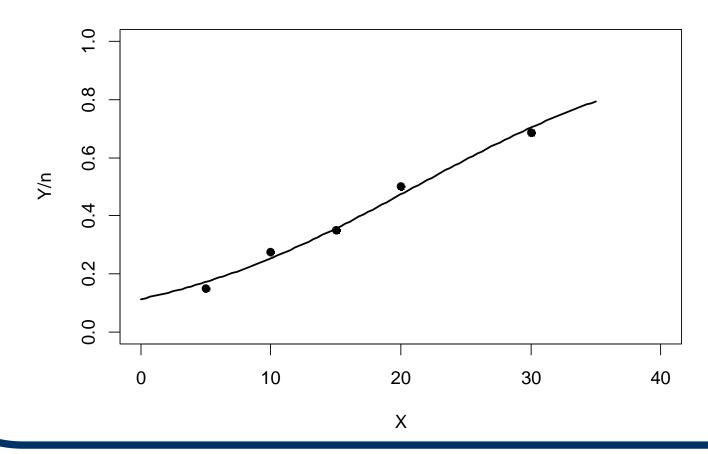
Coefficients:

	Estimate S	Std. Error	z value	$\Pr(> z)$
(Intercept)	-2.044348	0.160977	-12.70	<2e-16
x	0.096834	0.008549	11.33	<2e-16
(Dispersion p	arameter for	binomial far	nily taken	to be 1)
Number of Fi	sher Scoring	iterations:	3	

Example: Coupon Data (cont'd)

Overlay plot with fitted logistic regression curve (cf. Fig. 14.7):

- > plot($Y/n \sim X$, pch=19)
- > b0=coef(CH14TA02.glm)[1]; b1=coef(CH14TA02.glm)[2]
- > curve(1/(1 + exp(-b0-b1*x)), xlim=c(0,35), add=T)



§14.4: Multiple Logistic Regression

- The extension to multiple X variables $X_1, X_2, ..., X_{p-1}$ is straightforward. Take $\pi_i = 1/(1 + exp\{-\beta_0 - \beta_1 X_{i1} - ... - \beta_{p-1} X_{i,p-1}\})$
- Continue to use weighted least squares/maximum likelihood to estimate the β parameters.
- This still requires the computer: in R, modify the formula input in the glm() function in an obvious fashion.

Interpretation of β parameters

- For the multiple linear-logistic model, the interpretation of the β parameters extends naturally from the simple linear-logistic case.
- β_k is the log-odds ratio associated with a unit
 (+1) increase in X_k when all other X's are held fixed.
- Special cases include polynomial logistic regression with X_{ik} = X_i^k (set k no larger than about 2 or 3 in practice), and logistic ANCOVA models with mixed quant./qual. predictors.

Example: Disease Outbreak Data (CH14TA03)

Multiple logistic regression data:

- Y = Disease status (Y=1 if present, Y=0 otherwise)
- X₁ = Age (yrs.)
- X₂ = Socioeconomic status 'M' (1 = middle class, 0 otherwise; see p. 573)
- X₃ = Socioeconomic status 'L' (1 = lower class, 0 otherwise; see p. 573)
- X₄ = City location ("sector") indicator

Disease Outbreak Data: R Code

Multiple logistic regression analysis in R:

> CH14TA03.glm = glm(Y ~ X1 + X2 + X3 + X4, family = binomial(logit))

Output estimated regr. coefficients with std. errors, etc.:

> summary(CH14TA03.glm)

- Print Var.-Cov. matrix of b vector, s²{b} (load MASS package 1st):
 - > library(MASS)
 - > vcov(CH14TA03.glm)

Output follows \rightarrow

Disease Outbreak Data: R Output

Begin with summary() results:

Call: glm(formula = Y ~ X1 + X2 + X3 + X4, family = binomial(logit))

Coefficients:

	Estimate	Std. Error	z value	$\Pr(> z)$				
(Intercept)	-2.31293	0.64259	-3.599	0.000319				
X1	0.02975	0.01350	2.203	0.027577				
X2	0.40879	0.59900	0.682	0.494954				
X 3	-0.30525	0.60413	-0.505	0.613362				
X4	1.57475	0.50162	3.139	0.001693				
(Dispersion parameter for binomial family taken								
to be 1)								
Number of Fisher Scoring iterations: 4								

Disease Outbreak Data: R Output (cont'd)

Next print Var.-Cov. matrix $s^{2}{b}$ from vcov():

(Intercept)		X1	X2	X 3	X4
(Intercept)	0.4129	-0.0057	-0.1836	-0.2010	-0.1632
X1	-0.0057	0.0002	0.0011	0.0007	0.0003
X2	-0.1836	0.0011	0.3588	0.1482	0.0129
X 3	-0.2010	0.0007	0.1482	0.3650	0.0623
X4	-0.1632	0.0003	0.0129	0.0623	0.2516

(cf. Table 14.4)

§14.5: Inference in Logistic Regression

- To test if a particular X_k-variable is important in a logistic regression, we use a variant of the partial t-test, called a Wald Test.
- Test H_o:β_k = 0 vs. H_a:β_k ≠ 0 (two-sided is default) using the Wald statistic z* = b_k/s{b_k}, where b_k is the MLE of β_k and s{b_k} is its std. error.
- Refer to z* ~ N(0,1) (<u>not</u> the t-dist'n) for the rejection region or p-value; e.g., P = 2P[N(0,1) > |z*|].
- As usual, this is a pointwise inference. Must apply a Bonferroni adjustment for multiple inferences on g > 1 different β_ks.

Notes on Logistic Wald Test

- The Wald test here is only an approximation that improves as n→∞. For small samples, it may not control the false positive error rate.
- 2. In R, Wald test results are provided in output from the summary() function.
- <u>IMPORTANT</u>: Do NOT use the Wald test when p = 2, i.e., when there is only one X-variable. It is *known to be unstable* (Hauck & Donner, 1977, *JASA* vol. 72, pp. 851-853). Instead, use the likelihood ratio (LR) test, described next →

LR test in Logistic Regression

- For testing multiple β_ks in a single H_o, say H_o: β_q = β_{q+1} = ··· = β_{p-1} = 0, use the likelihood ratio (LR) statistic: G² = -2 log{L(RM)/L (FM)} where L(FM) is the "likelihood" under the full model and L(RM) is the "likelihood" under the reduced model when H_o is true. Note that q = p-1 is possible (1 d.f. alternative to Wald test).
- Reject H_o when G² > χ²(1-α;p-q). Two-sided pvalue is P[χ²(p-q) > G²].
- The details are nuanced & extend beyond our scope. See advanced texts on logistic regression.

Disease Outbreak Data (CH14TA03, cont'd)

- Recall that we had p-1=4 predictor variables, so consider the "full" LR test of H_o: β₁ = β₂ = β₃ = β₄ = 0.
- In R, find the CH14TA03.glm object for the FM, <u>also fit the RM</u>, and then apply the anova() function with the test=`Chisq' option:

```
test=`ChiSq')
```

Output follows \rightarrow

Disease Outbreak Data (cont'd)

"Full" LR test of H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$: R output from the anova() function (notice the title "Analysis of Deviance Table" to distinguish from the ANOVA table in normal-data MLRs):

Analysis of Deviance Table
Model 1: Y ~ 1
Model 2: Y ~ X1 + X2 + X3 + X4
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 97 122.32
2 93 101.05 4 21.264 0.0002808
 P-value is 0.0003 so "full" model is clearly significant.

Disease Outbreak Data (cont'd)

Now consider LR test of H_0 : $\beta_1 = 0$:

 1
 94
 106.20

 2
 93
 101.05
 1
 5.1495
 0.02325

P-value is 0.0233 so retain X_1 in model; see p.581.

Pointwise Confidence Intervals

For a $1-\alpha$ pointwise conf. interval on a single β_k , there are 2 options:

• The Wald interval is the familiar form $b_k \pm z(1-\{\alpha/2\})s\{b_k\}$ where $z(1-\{\alpha/2\})$ is the upper- $\{\alpha/2\}$ critical point

from Z ~ N(0,1).

 \rightarrow **Avoid this if p=2**, due to Wald test's instability.

 <u>Preferred</u>: "Invert" a level-α LR test of H_o: β_k = 0 into a 1-α LR conf. interval, a.k.a. "profile likelihood interval." This has no closed form, but it can be computed in R.

Programming Task Data (CH14TA01, cont'd)

- Recall:
 - Y = Programming task result (0 = failure, 1 = success)
 - **X** = Months of experience
- 95% logistic profile likelihood conf. interval for β_1 :
 - > library(MASS) #load MASS package
 - > confint(CH14TA01.glm, parm=2)

Waiting for profiling to be done... 2.5 % 97.5 % 0.05002505 0.31403972

 \Rightarrow can report 0.050 < β_1 < 0.314.

If desired (not recommended), compute Wald interval by hand from output of summary(CH14TA01.glm); see p. 579.

§14.8: Logistic Regression Diagnostics

 For a <u>Residual Analysis</u>, the usual, "raw" residual isn't that useful with binary data. Instead, in logistic regression we find the Pearson Residual

$$r_{Pi} = \frac{Y_i - \hat{\pi}_i}{\sqrt{\hat{\pi}_i (1 - \hat{\pi}_i)}}$$
(14.79)

where $\hat{\pi}_i$ is the *i*th predicted response.

 A studentized form, r_{SPi}, also exists; see Equation (14.81).

Deviance Residuals

- With logistic regression models, a slightly more stable form is the Deviance Residual $dev_i =$ $sign(Y_i - \hat{\pi}_i)\sqrt{-2[Y_i \log(\hat{\pi}_i) + (1-Y_i)\log(1-\hat{\pi}_i)]}$ as in Equation (14.83).
- Residual plots: One can plot r_{Pi} or dev_i against $\hat{\pi}_i$, but this will always produce a two-curve pattern \Rightarrow not that useful with binary data. See Fig. 14.12.

Residual Plots with Proportion Data

- If <u>replication</u> in the binary response at multiple values of X produces proportion data, residual plots are more informative.
- Example: for the Coupon Data (CH14TA02), find the deviance residuals and plot in R:

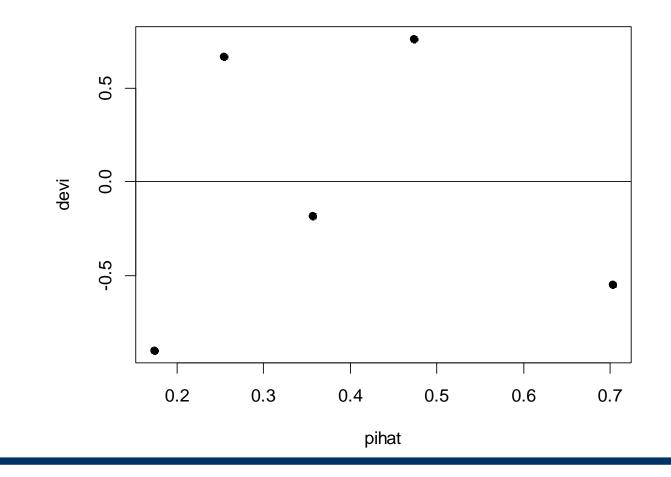
 - > pihat = predict(CH14TA02.glm,

type='response')

> plot(devi ~ pihat); abline (h=0)

Deviance Residual Plot

Here, the deviance residual plot is not very illustrative (due to limited number of distinct X values) but as given it shows no substantial problems:



Other Logistic Regr. Diagnostics

- More generally, the Deviance of a logistic regr. fit measures the adequacy of the model fit, using the likelihood function. The expression is complicated; see Eqn. (14.75). <u>NOTATION</u>: DEV(X) where X is the design matrix of
 - the posited model.
- A rule-of-thumb diagnostic indicates serious model inadequacy if

$$\frac{DEV(X)}{n-p} > 1 + \frac{2.8}{\sqrt{n-p}}$$

Other diagnostics for logistic regression include a form of Cook's distance; see pp. 599-601.

Example: Disease Outbreak Data (CH14TA03, cont'd)

- Recall that we had p-1 = 4 predictor variables.
- In R, using the CH14TA03.glm object, calculate the terms for the adequacy measure rule-of-thumb:

```
> residDF = CH14TA03.glm$df.residual
```

> CH14TA03.glm\$deviance/residDF #adequacy measure
[1] 1.086604

```
> 1 + ( 2.8/sqrt(residDF) )
[1] 1.290346
```

#threshold

We see DEV(X)/(n-p) = 1.0866 does not exceed the rule-of-thumb threshold of 1.2903, so we conclude that the model fits the data here in an adequate fashion.

§14.14: Generalized Linear Models

- The logistic regr. model is a special case of a much larger family of regression models, called Generalized Linear Models (GLiMs).
- GLiMs also include:
 - MLR Normal (Gaussian) models from Chs. 1-11.
 - Poisson log-linear regression: $Y_i \sim Poisson(\lambda_i)$ with log{ λ_i } = $\beta_0 + \beta_1 X_{i1} + ... + \beta_{p-1} X_{i,p-1}$.
 - Gamma regression: $Y_i \sim \text{Gamma}(a_i, b_i)$ with $\log\{a_ib_i\} = \beta_0 + \beta_1X_{i1} + \dots + \beta_{p-1}X_{i,p-1}$.
- Continue to use glm() but now modify the family= option; see help(glm).