Statistical Computing

Additional Homework Exercises - Chapters 13-14

In addition to Textbook Exercises 13.1, 13.4, 13.6:
14.A. The following samples of counts, Y, were reported from an ecological study of species abundance in song birds. Recorded were counts of species and ambient wind speed. Download the full data from http://math.arizona.edu/~piegorsch/675/birds.csv.

$\mathrm{x}=$ wind speed $(\mathrm{m} / \mathrm{sec})$	1.1	0.5	\ldots	2.3	0.4
$\mathrm{Y}=\#$ species	17	45	\cdots	15	27

For these data, build a log-linear regression model where $\mathrm{Y}_{\mathrm{i}} \sim \operatorname{Poisson}\left(\mu_{\mathrm{i}}\right)$, with $\mu_{\mathrm{i}}=$ $\exp \left\{\beta_{0}+\beta_{1 X_{i}}\right\}$ and use maximum likelihood (ML) to estimate β_{0} and β_{1}.
(i) Write the (Poisson) log-likelihood function here as a function of β_{0} and β_{1}. You can ignore any constants that do not affect the maximization.
(ii) Calculate the ML estimates using the log-likelihood from part (i). Use R's optim() function to maximize this log-likelihood with respect to β_{0} and β_{1}, via the Nelder-Mead simplex method. Select $\beta_{0}=1$ and $\beta_{1}=-1$ as initial values and report the consequent MLEs. Check if any issues occur with convergence.
14.B. Suppose data are observed as $\mathrm{X}_{i} \sim$ i.i.d. $\operatorname{Exp}(\theta)$ for $i=1, \ldots, \mathrm{n}$, and that an additional, independent observation, $\mathrm{X}_{\mathrm{n}+1} \sim \operatorname{Exp}(\theta)$ is missing. Extend the EM approach from inclass Example 11.A to find the MLE of θ. Show both the E step and M step operations. Illustrate your EM equations by finding the MLE of θ if the observed data are the following $\mathrm{n}=62$ recorded waiting times between serious earthquakes over a 75 -year period (the 'next' waiting time has yet to be observed, since the next serious earthquake has yet to happen):

840	157	145	44	33	121	150	280	434	736	584
887	263	1901	695	294	562	721	76	710	46	402
194	759	319	460	40	1336	335	1354	454	36	667
40	556	99	304	375	567	139	780	203	436	30
384	129	9	209	599	83	832	328	246	1617	638
937	735	38	365	92	82	220.				

Download the full data from http://math.arizona.edu/~piegorsch/675/earthq.csv.

