Signal Reconstruction from Sparse Representations: An Introduction to Compressed Sensing

Robert Crandall

December 18, 2009
Digital Signal Acquisition

Reconstruction from Linear Measurements

Sparse Reconstructions

Fusing multiple representations

End

Extra Slides
Suppose we want to acquire some real world signal digitally. Applications abound:

- Digital cameras
- Medical imaging
- Sound recording
- Temperature measurements
- etc...

How many measurements do we need to take?
Classical answer: Nyquist-Shannon theorem. Sampling rate must be at least the Nyquist frequency $2W$.

This works for *bandlimited* signals. We can get by with fewer measurements if we know signals of interest are *sparse* or *compressible*; this is Compressive Sensing.
In CS we model the acquisition process by *linear measurements*. Given a measurement matrix $\Phi \in \mathbb{R}^{m \times n}$, form measurement

$$y = \Phi x.$$

This is the only information about x that we can access.
The Basic Problem

How do we reconstruct a vector x given only the measurement $y = \Phi x$?

Assume $\Phi \in \mathbb{R}^{m \times n}$ is full rank. Then either:

- $m \geq n$: system is *fully determined*

or

- $m < n$: system is *underdetermined*.
Overdetermined Case

If $\Phi \in \mathbb{R}^{m \times n}$ is full rank with $m \geq n$, unique solution to

$$y = \Phi x$$

is

$$x = (\Phi^*\Phi)^{-1}\Phi^* y.$$

If the number of measurements is at least the length of x then we can reconstruct x exactly.
Underdetermined Case

More interesting: what if $\Phi \in \mathbb{R}^{m \times n}$ and $m < n$?

$$y = \Phi x$$

has infinitely many solutions. $\text{null}(\Phi)$ is nontrivial, and

$$\Phi x = \Phi(x + n), \forall n \in \text{null}(\Phi).$$

Can determine reconstruction only up to affine space

$$x + \text{null}(\Phi).$$
Least squares solutions

How do we pick the "best" solution in the affine space $x + \text{null}(\Phi)$? Simplest method: take solution with minimum l^2 norm (least squares)

$$x = \Phi^+ y = \Phi^* (\Phi \Phi^*)^{-1} y$$
Least squares solutions

Least squares is fast, reliable, but often gives poor reconstructions.

Figure: (left) original image, (right) least-squares reconstruction.
Better reconstructions

To improve on least squares, need more info about signals of interest. In CS we assume signals are sparse or compressible under some transform Ψ.

- Sparse: Ψx has only a few nonzero coefficients
- Compressible: well-approximated by sparse signal
We look for the *sparsest* solution in affine space $x + \text{null}(\Phi)$; solve

$$\arg\min_{x} ||\Psi x||_0$$

subject to

$$\Phi x = y$$
Theorem

If \(x \) is \(s \)-sparse and any \(2s \) columns of \(A \) are linearly independent, then \(x \) is the unique \(s \)-sparse solution to \(y = Ax \).

Proof.

Suppose \(Ax = Az \). Then \(A(x - z) = 0 \), and \(x - z \) is \(2s \)-sparse. Since any \(2s \) columns of \(A \) are linearly independent, this means \(x - z = 0 \).
So, if any $2s$ columns $\Phi \Psi^{-1}$ are linearly independent, then there is a unique solution to the l^0 minimization problem for any s-sparse x. We can reconstruct sparse signals from far fewer than the full set of measurements this way!

Example

$\Phi \in \mathbb{R}^{4 \times 10}$ with columns taken from the 10×10 Fourier matrix satisfies the conditions of the theorem. Any 2-sparse signal in \mathbb{R}^{10} can be recovered from just 4 frequency measurements.
Problems with l^0 minimization

Unfortunately, l^0 minimization is a non-convex optimization problem and is intractable in practice (NP hard in general). We need alternate methods to find sparse solutions.
- l^2 minimization: fast and reliable, but inaccurate for sparse signals
- l^0 minimization: optimal reconstructions for sparse signals, usually can’t be solved in practice.
Other Solution Methods

- l^1 minimization
- Orthogonal Matching Pursuit
- Iterative Hard Thresholding
Orthogonal Matching Pursuit

Orthogonal Matching Pursuit, or OMP: build sparse representation one basis vector at a time. Given $y = \Phi x$, look for an s-sparse solution α

- Start with $\alpha = 0$.
- At each step, compute residual $r_k = y - \Phi \alpha$
- Choose column of Φ that is most correlated with r_k and update α
Iterative Hard Thresholding

Much faster than OMP; only works for very sparse signals.

\[\alpha_{n+1} = H_s(\alpha_n + \psi \Phi^*(y - \Phi \psi^* \alpha_n)) \]

\(H_s\): hard thresholding operator, keep only s largest coefficients
If we can find multiple sparse solutions to $y = \Phi x$, we can often combine them into a better solution, e.g. by averaging.
RandOMP: Improving the OMP Solution

RandOMP randomizes OMP algorithm. At each step, update support of α randomly. Run RandOMP multiple times, take average of the sparse solutions we find.
Randomized IHTs

Can apply same idea as RandOMP to IHTs. Use randomized thresholding operator $\text{Rand}H_s$; choose large coefficients to keep from a distribution.
Digital Signal Acquisition
Reconstruction from Linear Measurements
Sparse Reconstructions
Fusing multiple representations
End
Extra Slides

Figure: Robert Crandall
Signal Reconstruction from Sparse Representations: An Introduction to Compressed Sensing
Randomized IHTs Reconstruction of a Very Noisy Image
Randomized IHTs Reconstruction of a Very Noisy Image

Figure: (left) IHTs, (right) RandIHTs Averaged Solutions
The End

Thanks to Dr. Ali Bilgin for advising this project.

Primary references:

- *An introduction to compressive sampling*, E. Candes and M. Wakin
- *A Plurality of Sparse Representations is Better than the Sparsest One Alone*, M. Elad and I. Yavneh
- *Robust uncertainty principles: Exact signal reconstruction from incomplete frequency information*, E. Candes, J Romberg, and T. Tao
- *Compressed sensing*, D. Donoho
- *Iterative Hard Thresholding for Compressed Sensing*, T. Blumensath and M. Davies
Coherence between orthonormal bases Φ, Ψ is

$$\mu(\Phi, \Psi) = \sqrt{n} \cdot \max(\phi_i, \psi_j)$$

Satisfies $\mu \in [1, \sqrt{n}]$. $\mu = 1$ is *maximal incoherence*. Want sparsity and measurement bases to be as incoherent as possible.
In compressed sensing we want the measurement/sparsity bases to be as incoherent as possible. Some examples of low-coherence pairs:

- Standard basis and Fourier basis; maximally incoherent
- Fourier and wavelet bases; largely incoherent
- Random bases are incoherent with any fixed basis with high probability
Figure: (left) original image, (right) sparse reconstruction