<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Directions: This work is an optional assignment for those who took the first test on Wednesday, September 16th. It is due on Monday, September 28 at the beginning of class. No late work will be accepted. If you turn this in, I will grade it (with a score out of 100) and your new grade on test 1 will be the average of the two scores you have received. If you do not turn this in, your grade on test 1 will stay the same.

Show all work on calculating the integrals below, unless you are told you can use the integration table. When you use the integration table, indicate which number you are using.

(1) Calculate the following: Do not use an integration table.

a) \[\int x^5 \cos(x^3) \, dx \]

b) \[\int \frac{3t - 2}{\sqrt{1 - \pi t}} \, dt \].
(2) Suppose that \(f \) has three continuous derivatives on \([0, b]\). If you know that \(f''(b) = 2 \), \(f'(b) = -3 \), \(f(b) = 1 \), and \(f(0) = 0 \), calculate

\[
\int_0^b x^2 f'''(x) \, dx .
\]
(3) Calculate the following integrals. (You may use an integration table.)

a) \[\int \frac{1}{\sqrt{3 - t^2 + 7t}} \, dt. \]

b) \[\int (2x^5 - 3x^2 + 1) \sin(\pi x) \, dx. \]
(4) Integrate the following. You may not use an integration table. For full credit, show your work.

\[
\int \frac{e^{2x}}{(e^{4x} + 1)(e^{2x} - 2)^2} \, dx.
\]
(5) Sketch the following graph and find the area enclosed by it:

\[16x^2 + 4y^2 = 36 \]
(6) Consider the function

\[f(x) = \frac{1}{3 + x + x^2}. \]

a) On the interval \([1, 3]\), is the function \(f\) increasing or decreasing? Based on your answer, order \(\text{LEFT}(n)\), \(\text{RIGHT}(n)\), and \(\int_1^3 f(x) \, dx\) from smallest to largest. Check your result by calculating \(\text{LEFT}(2)\), \(\text{RIGHT}(2)\), and \(\int_1^3 f(x) \, dx\).

b) Repeat part a) on the interval \([-3, -1]\).

c) On the interval \([1, 3]\), find \(\text{MID}(2)\) and \(\text{TRAP}(2)\).