The following problems are due **Monday, September 18, 2017**.

1. Let \(\{ X_\alpha \}_{\alpha \in A} \) be a family of non-empty sets indexed by a non-empty set \(A \). Suppose that for each \(\alpha \in A \), \(\mathcal{M}_\alpha \) is a \(\sigma \)-algebra on \(X_\alpha \) which is generated by a set \(\mathcal{E}_\alpha \). Denote by \(\mathcal{F} \subset X = \prod_{\alpha \in A} X_\alpha \) the set
 \[\mathcal{F} = \{ \pi_\alpha^{-1}(E_\alpha) : E_\alpha \in \mathcal{E}_\alpha, \alpha \in A \} \]
 Show that for each \(\alpha \in A \), the set
 \[\hat{\mathcal{E}}_\alpha = \{ E \subset X_\alpha : \pi_\alpha^{-1}(E) \in \mathcal{M}(\mathcal{F}) \} \]
 is a \(\sigma \)-algebra on \(X_\alpha \).

2. For each \(1 \leq j \leq n \), let \((X_j, \rho_j) \) be separable metric spaces. Show that
 \[\bigotimes_{j=1}^{n} \mathcal{B}X_j = \mathcal{B}X \quad \text{where} \quad X = \prod_{j=1}^{n} X_j \]
 Recall: We proved half of this in class. You need only show to other containment.

3. Do problems 8 and 10 on page 27.

4. Let \(X \) be a non-empty set and take \(\mathcal{M} = \mathcal{P}(X) \). For any \(f : X \to [0, \infty] \), define \(\mu_f : \mathcal{M} \to [0, \infty] \) by setting
 \[\mu_f(E) = \sum_{x \in E} f(x) \]
 We showed in class that for each such \(f \), \(\mu_f \) is a measure. Show that \(\mu_f \) is semi-finite if and only if \(f(x) < \infty \) for all \(x \in X \).