MATH 528 A MIDTERM

FALL 2010

Due, 2010.

(1) Let X be a vector space over \mathbb{C} . A mapping $s: X \times X \to \mathbb{K}$ is called a *sesquilinear form* on X if:

for all $x, y, z \in X$ and $\alpha, \beta \in \mathbb{C}$,

$$s(x, \alpha y + \beta z) = \alpha s(x, y) + \beta s(x, z)$$

and

$$s(\alpha x + \beta y, z) = \overline{\alpha}s(x, z) + \overline{\beta}s(y, z)$$
.

Given such a sesquilinear form on X, the mapping $q:X\to\mathbb{C}$ defined by setting

$$q(x) = s(x, x)$$
 for each $x \in X$,

is called the $quadratic\ form$ induced by s. Prove that each sesquilinear form is uniquely determined by its quadratic form.

(2) Let \mathcal{H} be a Hilbert space. For any integer $n \geq 2$ and any collection $\{f_j\}_{j=1}^n \subset \mathcal{H}$, the *Gram determinant* of $\{f_j\}_{j=1}^n$ is defined by setting

$$D(f_1, f_2, \cdots, f_n) = \det(\langle f_j, f_k \rangle)$$
,

i.e., the determinant of the matrix A whose entries $a_{jk} = \langle f_j, f_k \rangle$ are the corresponding inner-products. Prove that $D(f_1, f_2, \dots, f_n) \geq 0$ with equality if and only if the collection $\{f_j\}_{j=1}^n$ are linearly dependent. Note: The case of n=1 is silly; I didn't even include it. The case n=2 should be familiar. The rest follows.

(3) Let X be a normed space over \mathbb{R} . For any bounded subset $M \subset X$, define the support function $S_M : X^* \to \mathbb{R}$ by setting

$$S_M(f) = \sup_{x \in M} f(x).$$

Prove that S_M is:

- a) Sub-additive: i.e., for all $f, g \in X^*$, $S_M(f+g) \leq S_M(f) + S_M(g)$.
- b) Monotonic: i.e., for $M \subset N$, $S_M(f) \leq S_N(f)$ and Additive: i.e., $S_{N+M} = S_N + S_M$.

2 FALL 2010

- c) Show that $S_{\overline{M}} = S_M$ where \overline{M} is the closure of M.
- d) Show that $S_{L(M)} = S_M$ where L(M) is the set of all finite, convex combinations of elements of M.
- (4) Let X be a vector space over $\mathbb C$ with a metric. Let $F\subset X$ be relatively compact. Prove Arzelá, i.e. the analogue of Theorem 4.3.1, for any set $M\subset C(F)$.
- (5) Consider the Hilbert space $\mathcal{H}=L^2([0,1]).$ Let $A:\mathcal{H}\to\mathcal{H}$ be given by

$$[Af](t) = t \cdot f(t)$$
 for all $f \in \mathcal{H}$.

Prove that $\sigma(A) = [0.1]$. In fact, show that $\sigma(A) = [0, 1] = \sigma_c(A)$.