Due December 11, 2012.

(1) Do problem 2.20 in the book.

(2) Let A be a self-adjoint operator on a separable, complex Hilbert space \mathcal{H}. Let P_A be the corresponding projection-valued measure (whose existence is guaranteed by the spectral theorem). Let $\psi \in \mathcal{H}$ and $N \subset \mathbb{R}$ be a Borel set. Prove that

$$P_A(N)\psi = \psi \quad \text{if and only if} \quad \mu_\psi(\mathbb{R} \setminus N) = 0.$$

Here μ_ψ is the Borel measure given by $\mu_\psi(\Omega) = \langle \psi, P_A(\Omega)\psi \rangle$.

(3) Prove Lemma 3.12 in full detail - I discussed much of this in class, but write up your own version. You may assume any lemma, theorem, or homework problem prior to Lemma 3.12 in the book. Prove or disprove (via a counter-example) the following statement: Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. $f(A)$ is closed for any $A \subseteq \mathbb{R}$ closed.
(4) Let A be a self-adjoint operator on a separable, complex Hilbert space \mathcal{H}. Let M be a reducing subspace for A. Define an operator A_M by setting $D(A_M) = M \cap D(A)$ and $A_M \psi = A\psi$ for all $\psi \in D(A_M)$. Prove that M^\perp is also a reducing subspace for A. Show that A_M and A_M^\perp are both self-adjoint on M and M^\perp respectively. Show that $\sigma(A) = \sigma(A_M) \cup \sigma(A_M^\perp)$.