Use the indicated method to solve each problem. Show all work (on separate paper) and use proper notation.

For problems 1 through 5, use the information below:

\[\vec{G} = x\hat{i} + y\hat{j} + (2 - 2z)\hat{k} \quad \vec{F} = 2yz\hat{i} + 2x\hat{j} + (xy + z)\hat{k} . \]

- \(S_1 \) is the portion of \(z = 10 - \sqrt{x^2 + y^2} \) above the plane \(z = 4 \), oriented upward.
- \(S_2 \) is the disk of radius 6 centered at (0,0,4), parallel to the \(xy \) plane, oriented downward.
- \(S_3 \) is the closed surface composed of \(S_1 \) and \(S_2 \), oriented outward.
- \(C \) is the circle of radius 6 centered at (0,0,4), parallel to the \(xy \) plane, oriented counterclockwise.

1. Find the flux of \(G \) through \(S_1 \) using Case 4.
2. Find the flux of \(G \) through \(S_2 \) using Case 2.
3. Find the flux of \(G \) through \(S_3 \) using the Divergence Theorem.
4. Find \(\text{curl}\vec{F} \).
5. Find the flux of \(G \) through \(S_1 \) using Stoke’s Theorem.

For problems 6 through 8, use the information below:

\[\vec{H} = \alpha \left(\frac{-z\hat{j} + y\hat{k}}{y^2 + z^2} \right) \]

- \(C \) is the circle of radius 8 centered at (3,0,0), parallel to the \(yz \) plane, oriented counterclockwise.

6. Find \(\text{curl}\vec{H} \). Include any restrictions.
7. Can you use Stoke’s Theorem to find the value of the line integral around \(C \)? Why or why not?
8. Find \(\int_C \vec{H} \cdot d\vec{r} \).