
T H E  L O W E R  D E N S I T Y  C O N J E C T U R E  

F O R  H A R M O N I C  M E A S U R E  

By 

SUNHI CHOI 

Abstract. In this paper, we establ ish the lower densi ty conjecture for 
harmonic  measu re  in s imply connected plane domains .  

1 In troduc t ion  

Let f2 be a simply connected planar domain. Harmonic measure ~(w, E, f2) 

of a set E with respect to a point w C D can be defined as the normalized linear 

measure o f f  -1 (E), where f is the Riemann map sending the origin to w. Harmonic 

measure has many applications and connections throughout analysis, probability, 

and dynamics; and it is of great interest to describe its geomeric properties. 

In 1916, E and M. Riesz [GaMa] proved that if 0f2 is rectifiable, then for a 

set E C 0f2, w(E) = 0 iff A1 (E) = 0 (i.e., ~ << A1 << w). Makarov [Mak 85] and 

Pommerenke [Pom 86] improved this result by showing that on the cone points of 

0f2, w << At << w and that the rest of Of 2 has a subset with full harmonic measure 

but with zero length. In 1990, Bishop and Jones [BiJo 90] further generalized the 

E and M. Riesz theorem by proving that for every rectifiable curve F, ~z << A 1 << w 

on F r Of 2. In [Bis] and [Bis 91], Bishop stated the lower density conjecture, which 

would generalize the theorem by Bishop and Jones [BiJo 90], [BiJo 94]. This 

conjecture is stated later in this section as a corollary of the following result. 

T h e o r e m  1. Let 

E = {x E 0f2 : liminf w(B(x , r ) )  > 0}. 
r-+O r 

Then w << A1 on E. 

Theorem 1 has several corollaries. 
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C o r o l l a r y  1. Let F be a subset o f  Of~ and assume that there exists a constant 

M ( F )  such that 

Z rad(Bi) < M ( F )  < co 

f o r  every disjoint collection o f  balls {Bi} with center(Bi) E F and rad(Bi) < 

diam(0f~). Then w << Al on F. 

P r o o f .  Let F be a set satisfying the hypothesis of  Corollary 1 with A 1 (F) = 0, 

then w ( F  M E) = 0 by Theorem 1. Hence it suffices to prove that 

w(F N (Of~\E)) = O. 

Let e > 0. For every x E F M (Of~\E), there exists rz > 0 such that 

w(B(x , r~) )  < er~. 

By the basic covering theorem [Mat 95], there also exist disjoint balls B ( x , ,  I r gx,) 
(i = 1 , 2 , . . . )  such that 

F n (O~\E) c L.J B(x,, r~, ). 

Combining these, we obtain 

1 ~(Fn (Of~\E)) < w(U U(z,,r,,)) < 5e ~-~' ~r=. < 5eM(F) 
i 

since x, 6 F. Hence w ( F  n (Of~\E)) = O. [] 

Conversely, Theorem 1 can be derived from Corollary 1, since for n E N, 

w(B(x , r ) )  1 
E n = { x 6 0 f t :  > - ,  for e v e r y r > 0 }  

r n 

satisfies the hypothesis of  Corollary 1 with M(En)  = n. 

The next corollary, first proved by Bishop and Jones [BiJo 90], resolves a 

conjecture of  Oksendal [Oks 81 ]. 

C o r o l l a r y  2. l f  F is a rectifiable curve and ft is a simply connected domain, 

then w << Al on F N Oft. 

P r o o f .  Let F = F N Oft. Then F satisfies the hypothesis of  Corollary 1 with 

M ( F )  = AI(F). Hence w << AI on F,  by Corollary 1. [] 

The last corollary is the lower density conjecture from [Bis] and [Bis 91 ]. When 

ft is a simply connected domain, x E 0f~ is called a tw i s t  p o i n t  if both 

lira inf arg(z - x) = - o o  and lim sup arg(z - x) = +oo, 
z - * x ,  z613 z ~ z ,  z E f ~  

where arg(z - x) denotes a continuous branch of  the argument defined in f/. 
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C o r o l l a r y  3 (the lower density conjecture). At w-almost every twist point 
xEO~,  

liminf w(B(x,r)) _ O. 
r -+O r 

Proof i  It is known [Mak 85], [Pom 86] that at w-almost every x E Of~, either 

(a) lim w(B(_x, r)) exists and r O, 00 
r - + 0  /" 

o r  

(b) limsup w(B(x, r)) _ 0o; 
r - + 0  r 

and the set of points satisfying (b) coincides with the set of  twist points [Pom 86] 
except for a set of  zero harmonic measure. Hence it suffices to prove 

w(B(x,r)) 
(1.1) w({x E 012 : limsup 

r - + 0  r 

But, by the basic covering theorem, 

- e~, liminf co,_,x,r,,(/3( )~ > 0}) = 0. 
r--+0 r 

A1 ({x E a ~ :  limsup W(B(x'r)) - 0o}) = O. 
r -~O r 

Hence (1.1) follows from Theorem 1. D 

The rest of this paper is devoted to proving Theorem 1. A general sketch of the 

proof is as follows. First, we fix a lower bound a > 0 and a scale R > 0 and let 

A~,n = {x E Of~ : a < liminf w(B(z'r)) < (1.01)a, a < w(B(x,r)) Vr < R}. 
r - + O  r r ~ - -  

Given x E Aa,R and a radius r (r < R) for which the liminf is almost attained, it is 

shown that if B(xi, ri) are disjoint disks in B(x, r) centered at points of Aa,m then 

Z r  i <_ 1 Z w ( B ( x i , r i ) )  < lw(B(x,r)  ) < (1.01)r. 

If  Theorem 1 failed, there would exist x in some Aa,R and a small radius r 

chosen as above such that w(B(x ,r )M Aa,n) is close to w(B(x,r)) and 

A1 (B(x, r) N Aa,R) = O. Assuming this, we construct a Lipschitz graph in B(x, r) 
with desirable properties. Since the length of  B(x, r) M Aa,R is zero, we can choose 

small intervals Ii intersecting Aa,n and a Lipschitz graph connecting them such 

that the graph has big spikes between Ii and all points of Aa,n are located on or 

above the graph. We observe that most of  the points of 0fl are located on or above 

the Lipschitz graph since Aa,n has almost full harmonic measure in B(x, r). Also, 
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/ i  can be chosen to have points of Aa,n in every ring domain surrounding {li} 
and with some fixed small modulus. Since the length of  our Lipschitz graph is a 

large multiple of  r, by suitably drawing ring domains, we can construct a disjoint 

collection of disks in B(x, r) centered at A~,n the sum of whose radii is greater 

than (1.01)r. This gives the desired contradiction. 

2 Preliminary reductions 

In this section, Theorem 1 is reduced to a simpler formulation. 

We first reduce the domain to a Jordan domain. Since Theorem 1 is equivalent 

to Corollary 1, it suffices to prove that if Corollary 1 holds for every Jordan domain, 

then it also holds for every simply connected domain fL For the proof, let F be a 

subset of  0f~ satisfying the hypothesis of Corollary 1 and let 

A I ( F )  = o. 

By the Moore triod theorem [Pom 91], at w-almost every z C 0f~, 

card{f - l (z )}  < 2. 

Hence f is at most two-to-one on a subset E of  f - 1  (F) with full measure. Let T 

be the family of the shorter arcs on 01I~ which connect a pair of  identified points in 

E. Define 

Ti = {I E T :  1/(i + 1) <I I [  < l / i }  

and let E~ (resp. E l )  be the set of  the left (resp. right) endpoints of  the intervals in 

Ti. Note that f is one-to-one on a set which does not intersect E~ (or El) .  

Fix i. Each interval I E Ti has a small subinterval I '  with common left endpoint 

such that I '  N(Uk<i E~) = O, since for any interval J with identified endpoints, 

either I c J or J c I.  Let 

"~l=U( U 1,\ U ,)R ~ 
i IETI IeT,~ 

k>i+l 

and let E2 = E \ El.  Since Ui E~ C E1 and Ui E r  n E 1 = 0, f is one-to-one on 

both E 1 and E2. Since Ei (i = 1, 2) are measurable, f(UceE, F1/2(()) are Jordan 
domains, where 

r�89 = {z E D: 1 - Izl > �89162 - zl). 

Since A1 (f(Ed) = A1 (F) = 0, Corollary 1 on Jordan domains implies w(f(Ei))  = 0 
and hence 27rw(F) = AI(E) = AI(E1) q-AI(E2) = 0. 
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Next, we observe that the set E of  Theorem 1 is a countable union of  sets of  

the form Aa,n defined below. Hence Theorem 1 can be reduced to the following 

theorem. 

T h e o r e m  2. Let 12 be a Jordan domain and let w(-) = W(Wo,., 12) f o r  wo E f~. 

Given a > 0 and R > O, define 

Aa,R = {x E 012 : a  < liminf w(B(x , r ) )  
r--~O r 

Then w << A1 on A~,R. 

< (1.O1)a, a < w ( B ( x , r ) ) ,  Vr _< R}.  
r 

For the proof of  Theorem 2, we first let f be a conformal mapping from II~ to 

12. If  Theorem 2 failed, we could fix a > 0 and R > 0 such that for some subset A 

of  f - l (Aa,R) ,  AI(f(A))  = 0 but w ( f ( A ) )  > 0. Assuming this, we also fix a density 

point (0 of  A throughout Sections 3-6. The contradiction derived in Section 6 

proves Theorem 2. 

3 L o c a l  b e h a v i o r  o f  0f2 n e a r  f((0)  

In Lemma 3.1, we describe the behavior of 0f~ in a neighborhood of  f((0) .  

Lemmas 3.2, 3.3 and 3.4 are steps for proving Lemma 3.1 and are not used in the 

other sections. Hence this section can be read independently of  the rest of this 

paper. 

Let dista (A, B) denote the length of  the shortest path in 12 connecting a point 

of  A to a point of  B. 

L e m m a  3.1. For any t (0 < t < 1), there exists an arc I on OD containing (o 

such that f o r  some ro < R, the fol lowing hold. 

(i) For every arc J such that (o E J C I, [J M AI/IJ[ >_ t. 

(ii) Let f = f ( I)  and x = f ( (o ). Then the endpoints o f f  lie on O B ( x, r o ), and 

there exists a circular crosscut on OB(x, ro) M 12 separating f f rom wo. 

(iii) Let {Bi} be any disjoint collection o f  balls in B(x ,  ro) with centers in 

f (A) .  Then 

Z rad(Bi) < (X.O1)ro. 

(iv) Let Bit and f r  be the left and right subarcs o f  f with one endpoint at x. 

Then 

distflnB(z, ~-~o~o ro)\B(x,~ro) (ill, f r )  ~ ro. 
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(v) There exists a point f (z)  in fl A B(Y((o), 2 gr0) such that for  some r ~ ro 

(3.1) B(f ( z ) , r )  C fl fq B(f(~o),ro) 

and 

w(wo, OB(f(z),  �89 f t \B ( f ( z ) ,  �89 .~ w(fl). 

The proof of Lemma 3.1 is given at the end of this section. 

In the following lemma, we relate extremal length to harmonic measure. Let 

x E Oft and let s and r be small numbers such that 0 < s < re -4~. Let 3 be an arc 

on Oft containing z such that there exists an arc J C OB(z, r) A f~ which separates 

fl from w0 and which has the same endpoints as ft. Let f ~  be the subregion of fl 

bounded by B and J.  and let x0 and x~ be the points in B N OB(z,s) such that the 

subarcs of 3 connecting the endpoints of B and x, do not intersect B(x,s).  (See 

Figure 1.) 

L e m m a  3.2. Let ft' be the region obtained by replacing 3(~o,z,t with 

(OB(x,s))(xo.x~), where 3(~o.~) is the subarc o f  fl connecting xo and xl via x 
and (OB(x, s))(z0,~:~ ) is the subarc of  OB(z, s) connecting xo and xl such that Of Y 
separates wofrom z. Let F be the path family in (B(z, r ) \B(x ,  s)) f) ft' connecting 
ft~ N OB(z, r) and (OB(z, s))(x0,z, ), and let 

A(F)= m l o g r  
7t" 8 

where A denotes extremal length. Then for  some C > 0 independent o f  m, 

w ( 3 n B ( x , 8 ) )  <_ CW(3) ( ~ ) m - , .  
8 r 

Proof .  Let x~, X 3 be the endpoints of J and let f ~  be the region bounded by 

flc~o,~2), fllx,,~3), J, and (OB(x,s))(~o,~,). (See Figure 1.) For the path family F' in 

fl~ connecting J and (OB(x, s))~0,~, ), let 

Then we obtain 

(3.2) 

m ! 
~ ( r ' )  = - -  l o g  ". 

71" 8 

m log r m' r 
- - = , x ( r )  < , ~ ( r ' )  = - -  l o g  - 
7t" S 7r 8 

by the extension rule of extremal length [GaMa], [Pom 91]. Let r be a conformal 

map from ft~ to a rectangle such that d and (OB(x, s))(x0,x, ) are mapped to vertical 

line segments with length 7rim' and fl(xo,~2) and fl(~,~3) are mapped to horizontal 
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C•-"--•'\\ . . . . . .  log r . . . . .  ", 

Figure 1. Lemma 3.2. 

line segments with length log(r/s). Let L be the vertical crosscut of this rectangle 

such that 

dist(r L) = lr/m'. 

(Such a segment exists in the left half of the rectangle, since s was assumed to be 
smaller that re -4'~ and m r > m > �89 where the right-hand inequality comes from 

the extension rule of extremal length for the annulus.) 

Let F" be the path family from L to r ((OB(x, s))(x0,xl)). Then for some C > 0, 

~,(~) > ~ (wo, ~(~o,~) u ~(x,,~), r~') 
> w (w0, r ['/") minw (y, r U/9(x~,x~)), Range(e)) 
- -  yEL 

> c~ (wo, r ~"),  

where f~" is the component of f/ , \r  (L) containing w0, and the final inequality 

uses that L is bounded away from the right-hand edge of the rectangle. Hence 

w(fl f] B(x, s)) < w (wo, r (L), ~") magcw (y, r s))(xo,.1)), Range(d))) 
yEL 

8 ,, < < cw(~) -Tr (Wo,r l(L),f~ )e  ~ ( r  ) <Cw(tg) \ r  , - \ r /  

where the second inequality follows from Beurling's theorem about extremal dis- 

tance and harmonic measure [GaMa], [Pom 91] and the last inequality follows 

from (3.2). This implies 

s - r " [] 
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L e m m a  3.3.  Let Yi (i = 1, 2 , . . .  ) and b be positive numbers such that 

~ i  1 = I  and O < b < e - 2 "  

Then 

Z b  y' < b. 
i 

P r o o f .  For b < 1, let f (x)  = bU~. Then f"(x)  = bU~x-4 logb(logb + 2x), 

which is positive on (0, 1) if  b < e -2. Then for 0 < x < a < 1, we have f ' (x)  is 

increasing, so (f(x) + f (a  - x)y is positive i f  x > a/2 and negative i f  x < a/2. 

Thus b 1/x + b 1/(~-~) takes its maximum when x = 0 and x = a. In the lemma, we 

can replace any pair yj, Yk such that 1/yj + 1/yk = a by yj = co and Yk = 1/a while 

increasing the sum ~ i  bye' The proof  is completed by induction. [] 

In Lemma 3.4, we let/3 be an arc on 0f~ such that/3 contains x and has a circular 

crosscut on OB(x, r) n ~ separating it from w0. 

L e m m a  3.4.  Assume w( B ( x, s) ) /s  > a, for  every s such that 0 < s <_ r. There 

exists C < oo such that for  all sufficiently small el > 0, 

~(/3:7 B(z, r)) _< ~ ,a  

r 

implies that there exists an arc/31 on O~ such that/3t has a circular crosscut on 
OB(x, r) f? f~ separating/31 from Wo and 

a s < C ~(~) w(Y)  
r r 

P r o o f .  Since 012 is a Jordan curve, 

w(~ gt B(x, s)) = w(B(x, s)) > a 
8 8 

for sufficiently small s > O. Hence we can define 

~(/3 n B(x,s))  a 
s o = s u p { s < r :  > } > 0 .  

s - 2  

Since w(13 N B(x,r)) is increasing in r, the only discontinuities it can have are 

upwards jump discontinuities; hence 

~(/3 n B(x, so)) a 
So  ~ "2 " 

Also, if  el < e -4" /2 ,  
80/?" <~ e -47r .  
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Let {~i} be the disjoint collection of arcs on 0f~ having a circular crosscut Ji 
on OB(x, r) n f~ and satisfying ~i O B(x, So) r 0. Denote fl0 = r and let x~ and 

x~ be the points on fli n OB(x, So) through which r hits OB(x, so) first from the 

endpoints of  fli. Let  Fi be the path family in [~' connecting f~r n OB(x, r) and 
(OB(x, s0))(xg, xl), and let 

~(Fi) = mi  log r .  
7f 80 

Then 

(3.3) 
a W(~o N B(x, so)) v ' ,  w(~i n B(x, So)) 
~ ~ a - -  80 80 

< 
2_, 

i---1,2.. 

i=1 ,2 . .  

- -  / = 1 , 2 . .  
i=1 ,2 . ,  

where the first equality follows from the definition of so and the second inequality 

follows from Lemma 3.2. 

On the other hand, Lemma 3.2 implies 

(3.4) - = 
2 So - r 

If  ~i < 1/4C, where C is the constant from (3.4), then the right-hand side of  (3.4) 

is smaller than �88 (so~r) m~ Since so/r < e -4~, 

1 
(3.5) - < m0 < 1, 

2 

where the left- and right-hand inequalities follow from the extremal length estimate 

for the annulus and (3.4), respectively. Let m ~ be the number satisfying 

1 1 
m--7 = Z w .  

i = 1 , 2 , . ,  m i  

Then by the parallel rule of  extremal length [GaMa], [Pom 91] and (3.5), 

1 1 
(3.6) - - < 2 - - - < 1 .  

m t - -  m 0  

This implies m t > 1 and 

(3.7) 1 - m0 < m ~ - 1. 

Define Yi = mJm';  then 

1 ~ m' 
Z Yi mi /----1,2 .... i----1,2,... 
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Also, we have 

since rn t > 1. Thus by Lemma 3.3, 

i = 1 , 2 . ,  i ~ 1 , 2 . .  

Now (3.3), (3.4), (3.7) and (3.8) show that 

a_ < C  max { - - 7 - }  E < C  max { 
2 - -  i = 1 , 2  .... - -  i = 1 , 2 , . . ,  r - 

i = 1 , 2 , . . .  

i:L2 .... { - ' 7 }  < max { . 
- -  i - - - - 1 , 2 , . . ,  r - T a 

Hence there exists i such that 

a 2 < C ~(/3~ ~(Z~) 
r r 

for some C > O. 

Now we prove Lemma 3.1, using Lemma 3.4. 

P roo f .  Since if0 is a point of  density of A, there exists a sufficiently small arc 

I on 01~ satisfying (i), (ii) and the inequality 

(3.9) a < w,_ ,x ,  r 0 , , C R (  Y~ < (1.01)a. 
r 0  

Let {Bi} be a disjoint collection of balls in B(x ,  ro) with centers in f(A); then 

E a" rad(B~) < E w ( B i )  < w(B(x,  ro)) < (1.O1)aro, 
i i 

where the left inequality follows from the definition of  A. This implies (iii). 

To prove (iv), let ~r0  _< s < ro and let/3s be the subarc of  13 containing x and 

having a circular crosscut on OB(x, s) N fL Let e2 > 0 be a constant smaller than 

ez and satisfying 20Ce2 < 1, where el and C are the constants from Lemma 3.4. 

Then w(/3s)/s <_ e2a implies that there exists an arc/3~ such that 

aS <_ cW(/3s) w(/31s) <__ Ce2aW(/3~) < a w(B(x,  to)) 
s s s - 2 ro 

This contradicts (3.9), and hence we obtain w(fls)/S .w. a for every s E [~r0,  r0]. 

On the other hand, let a and/3 be arcs on Oft with a C/3, and let xl ,  x~ be points 

of  distinct components of/3 \ a with dist(a, xi) > 1. Given any e > 0, there exists 
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> 0 such that Ix1 - x21 _< 6 implies w(z,a,f~) <_ e(z,fl, fl) for every z E f~ with 
1 w(z, fl, f~) > ~. This proves (iv), since w(fl~)/s ~ a for every s E [ t r o ,  r0]. 

By (iv), there exists a point f ( z )  in fl N B( f ( (o ) ,2  gro) satisfying (3.1) 

with r ,~ r0. Also, (iv) combined with the extremal length estimate for 

f~ M (B(f((o) ,  1-~-6oro) \ B(f((o) ,  ~ ro ) )  shows that 

a;(wo, OB(f(z) ,  �89 f t \ B ( f ( z ) ,  ~ ~r)) 

is bounded below by a small multiple of  w(fl). Hence (v) is proved. 

4 T h r e e  s t a n d a r d  l e m m a s  

In this section, we recall three lemmas relating harmonic measure to the 
geometry of  a domain. They will be frequently used in Sections 5 and 6. 

The following lemma is a refinement of a theorem in [McM 70]. 

L e m m a  4.1. Let f~ be a Jordan domain and w(.) = w(wo, ., f~) for  wo EfL  Let 

d > 0 and R1, R2 be ring domains such that 

mod(R1), mod(R~) > d 

and the inner curve o f  OR1 coincides with the outer curve o f  0R2. Let 71, 3 ̀2 denote 

the outer and inner curves o f  OR1, respectively, and let .),3 denote the inner curve 

o f  0R2. For (o, 41 E 3`i, we also let 3`~r162 denote a subarc o f  3  ̀i connecting (o and 

(1. Suppose that the arc fl C Of~ satisfies the following conditions: 

(i) (o, (1 E 3 ,2 where (o and (1 are the endpoints o f  fl; 

(ii) 3,~r162 C f~; 

(iii) 3,(r162 separates fl from Wo; 
(iv) 3,3 n ~ # 0. 

Then for  some constant c(d) depending on d, 

w(fl M (R1 U R2)) > c(d) > O. 
(4.1) w(fl) 

Note that c(d) -+ O, as d --+ O. 

P r o o f .  Let (2, (3 be the points on fl satisfying 

(2, (3 E fl N 3,3 and (fl(r162 U fl(r162 M 7a = 0. 

(See Figure 2.) We show that for some constant c(d) depending on d, 

,,,,(fl~r162 n (R1 u R~) ~) < c(d)w (fl(r162 u fl(r162 �9 
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0(~',.) 

~ 
~(r . . . . . . . . . .  

L 
......... > d  

1 . . . . . . . . . .  0(~',) 

Figure 2. Lemma 4.1. 

Let O be a conformal map sending the region bounded by 7~o,;~), 7~2,~3),/3(r162 
and/3(;1,~3) to a rectangle. Then by the extension rule of extremal length [GaMa], 
[Pore 91 l, 

1r162 - r  
Ir - r -> mod(R2) _> d. 

Let L be the line segment bisecting r (/3(;o,;2)) and r (/3(r Then 

w (/3(~o,r tO/3(r > w (Wo, r fY) minw (x, r (/3(~o,(2) tO/3(r range(C)) 
-- ~ zEL 

c(d)oJ ('//3o, r  (L ) ,  f/') 

and 

w (wo, r fY) > w(wo,'y~12,;3), f~") _> w (/3(r162 fq (R1 U R2)C), 

where f~' and f~" are the regions obtained by replacing the subarc of/3 connecting 
two endpoints of r (L) and 7~2,~s) with r and 3,(r ) , 3  respectively. The 
above inequalities yield 

,~(/3~,~) n (R1 u R2) c) < c(d)~ (/3(~o,r u/3(r 

Similarly, we can prove 

w (/3(r162 f'l (R1 U R2) c) _< c(d)w (/3(r162 A (nl  U R2)) 

and 
w (/3(r162 fl (R1 t.J R2) c) < c(d)w (/3(r162 fq (R1 t3 R2)). 
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Combining the above three inequalities, we obtain (4.1) for some constant c(d) > 0 

depending on d. [] 

The next lemma relates 1-dimensional Hausdorff measure to harmonic measure 

on the boundary of  a chord-arc domain. A chord-arc domain is a Jordan domain f~ 

such that there exists a constant M > 0 satisfying 

A I ( O ~ N B ( z , r ) )  < M r  

for every x E Of/and r > 0. Lemma 4.2 roughly means that the normalized linear 

measure of  a set E on a chord-arc boundary is small if  harmonic measure of  E is 

small and vice versa. The detailed proof can be found in [JeKe 82] and [Pom 91 ]. 

L e m m a  4.2. Let f~ be a chord-arc domain, and let Wo be a point in f~ such 

that 

dist(wo, 0~) ~ diam(0f/). 

Then there exist C > 0 and p > 0 depending on the chord-arc constant o f  f~ such 

that 
1 ( h i ( E )  ~P ( i l ( E  ) )1/I) 
C \ A 1 ( O a ) /  -< w(wo, E, fl) < C \Al(Ofl)  

for  all E C Off. 

P r o o f .  Since f / i s  a chord-arc domain and dist(w0, Of/) ~ diam(Of/), w and A1 

are A~176 on Of~ with A ~176 constants depending on the chord-arc constant 

of  f/. This implies that there exist C > 0 and p > 0 depending on the chord-arc 

constant of  f / such  that 

1 (AI(E) ~P 
C \Al (0 f / )  ] 

(AI(E) 1/p 
< w(wo,E, fl) < C 

for all E C Oft. [] 

Using Lemma 4.2, we can prove 

L e m m a  4.3. Let f~ be a simply connected domain containing [-1, 1] • [ -1,  0], 

and let fh  be a Lischitz domain o f  the form 

f/1 ---- {(x,y) : --1 <~ X <~ 1 , -1  < y < f(x)} 

for  some positive Lipschitz function f (x )  with Lipschitz norm bounded by M. 

Given any e > O, there exists 5(e, M) > 0 such that dist(Of/A f/1,Of/1) > e implies 
> 
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Proof .  Let z be a point of0f~ N ftl such that dist(z,0f~l) = e. For the ball 

B(z, e) adjacent to the graph of f (resp., the vertical lines of 0~21), let S be the half 

strip with width e and with bottom on the horizontal (resp., vertical) diameter of 

B ( z ,  ' ~e). (See Figure 7.) Then ~i  \ S is a C(M)-Lipschitz domain and by Lemma 
4.2, 

w((O, - �89 Of~ N f~l, f~) >_ Cw((O, - �89 bottom of S, f~l \ S) > 

for some (~ = ~(e, M) > 0. [:] 

5 Construct ion of  a Lipschitz  graph 

Sections 5 and 6 are the main parts of the proof of  Theorem 2, In Section 5, 

assuming A1 (f(A)) = 0 but w(f(A)) > 0, we construct a ball B(f(~o), ro) satisfying 

Lemma 3.1 and a Lipschitz graph F in B(f(~o),ro) as in Proposition 5.1 below. 

Ultimately, the properties of  B(f(~o), ro) and F lead to a contradiction in Section 

6. The arguments in Sections 5 and 6 depend mostly on elementary geometry and 

Lemmas 4.1, 4.2 and 4.3. 

For t (0 < t < 1)sufficiently close to 1, take an interval I c 0~ and a ball 

B(f(G), r0) satisfying properties (i)-(iv) of  Lemma 3.1. Define 

(5.1) A ' = { ( E I : [ A N J l / l J [ > t ' f o r e v e r y i n t e r v a l J w i t h ( E J C I }  

for t ~ satisfying 0 < t' < t < 1. Then 

I\A' = {( E I : there exists J such that ~ E J C I and [(I\A) f-1 J[/[J[ > i - t'} 

= {( E I:  M(X(I\A))(( ) > 1 - t'}, 

where M(X(I\A)) is the maximal function of  X(I\A). By the weak type 1-1 maximal 

function estimate and property (i) of  Lemma 3. l, we obtain 

II\A'I < 1C~_vlI\A[ <_ I ~ C v ( 1 -  t)[I[, 

for some C > 0. With t' fixed and close to 1, we can make ]I \ A~[/[I[ small by 

choosing t sufficiently close to 1. 

Let B(f(z),r) be a ball satisfying property (v) of  Lemma 3.1. Then 

w(f(z), jS\f(A'), ft) is sufficiently small, i.e., 

(5.2) 

since 

w(f(z), ~\f(A'), fl) << 1, 

1 r w(fl\f(A')) > W(wo, OB(f(z), ~ ), f~\B(f(z), �89 ~\f(A'), n) 

w(B)w(f(z), ~\f(A'), n) 
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and 
wO3\f(A')) II\A't 

]II 
was chosen to be sufficiently small. Formula (5.2) will be frequently used in 

Section 6. 

= l r  and f (z)  e OB(f((o), ~r0) in (3.1). To simplify the proof, we assume r g 0 

The proof  in the general case is given at the end of  Section 6. The next proposition 

constructs a Lipschitz graph F in B(f((o),  r0). 

P r o p o s i t i o n  5.1.  With A and A' as before and A1 ( f ( A ) ) = 0 but w( f ( A ) ) > O, 

let f (z)  E OB(f((o), ~ro) and let 

B(f(z) ,  ~ro) C f~ fq B(f((o),ro). 

Then there exist a line segment L C f~ n B(f((o),  ro) and a Lipschitz graph P over 
L such that 

(i) ILl > 1 . _ gr0,  

(ii) assuming L C I~, a Lipschitz graph F consists o f  horizontal segments Ii 
and line segments lj with slope of  +98000 which connect the endpoints of  

Ii and make the area below the graph as big as possible; 

(iii) ~ Ilil << ILk 

(iv) Ii f3 f (A')  ~ r 

(v) the region between L and F is contained in B(f(G), 7"0) and does not 

intersect f(A'). 

P r o o f .  First, we describe the basic construction of  F when L C IR is given. 

Assume f (A ' )  is compact. Since Aa (f(A')) = 0, there exist finite number of  balls 

{Di} such that 

Z rad(Di) << IL l and f (A')  C U Oi. 
i i 

Let p be the projection onto L; then there exist disjoint intervals {(pj, qj)} on L 

such that 

i j 

since Ui(p(Di)) is open. 
Let xl be one of  the lowest points in 

f (A')  n p - l ( L ) ,  
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and let (Pl, ql) denote the interval containing p(xl). We construct the horizontal 

line segment/1 such that xl C/1 and 

p( I1) = (Pl , ql ). 

Next, let x2 be one of the lowest points in 

{x �9 f(A')  n p-1 (L\(pl, ql)) : Islope of any line connecting x and Ill _< 98000}. 

Let (P2,q2) denote the interval containing p(x2) and construct the maximal, 

horizontal line segment/2 such that 

x2 �9 12, p(I2) C (p2,q2) 

and 

[slope of any line connecting 11 and I21 < 98000. 

After inductively constructing {Ii}, we choose line segments lj with slope of 

+98000 which connect the endpoints of {Ii} and make the area below the graph of 

{Ii} U {/3} as big as possible. Call this Lipschitz graph r ;  then clearly 

(5.3) Ii n f(A')  ~ 0, 

and the region between L and F does not intersect f (A') .  
Now we construct a line segment L such that ILl > 1 _ Fro and for F given by the 

basic construction, 

F C B(f((o), r0). 

For the line V passing through f (z)  and f((o),  let 

S = {x : dist(x,V) _< ~r0} 

and let Ls, Rs be the left- and right-half plane adjacent to S, respectively. We 

divide into three cases as follows. 

Case  1. There exists a line segment L contained in the diameter o fB( f ( z ) ,  1 ~r0) 
perpendicular to V such that 

ILl > ~ro; 

and for F given by the basic construction, 

r c B(f(r to). 
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Figure 3. L and F of Case 1. 
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C a s e  2. There does not exist L of  Case 1 and 

n B(f(r  r0) n w s  = 0, 

where Ws = Ls or Ws = Rs. 
C a s e  3. There does not exist L of  Case 1, 

2 r  OflnB(f(~o),~ o) n L s # O  and OflnB(S(~o) ,~ro)nRs#O. 

Case 1 is the simplest, since L and F of  Case 1 satisfy the desired properties of 

Proposition 5.1. (See Figure 3.) 

In Case 2, let L1 be the diameter ofB(f (z) ,  lr 0) perpendicular to V and let F1 

be the Lipschitz graph given by the basic construction with L = L 1. Define 

fl' = (S O {x : x is between L1 and F1 }) O B(f(z),  lro). 

(See Figure 4.) Lemma 4.3 implies that for some fixed small constant c > 0, 

O~ n {x E f~' : dist(x, Off') >_ Cro} = 0, (5.4) 

since 

f(A') n f~' = 0 and w(f(z),t~\f(A'),f~) << 1. 

In Case 2, 1~1 leaves B(f((o),ro) on both the left and right halves of L1. Thus 

I~1 has two spikes, one on either side of  f((0),  which/~ cannot cross; hence/3 
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I I 

I 
Ls s L Rs cs I S I Rs 

Figure 4. L and F of Case 2, when Ws = Ls. 

must leave B(f((o), r0) through the strip S. Now, we let L be the upper half line 

segment of OWs M B(f((o), ~ gro) and let F be the Lipschitz graph given by the basic 

construction over L. Let ft" be the Lipschitz domain containing B(f(z) ,  ~ro) with 
F C Of~". (See Figure 4.) Since (5.4) holds with f~' replaced by ft" and fl leaves 

the ball through the strip S, the Lipschitz graph F constructed over L must be 

contained in B(f((o), to). 
Finally, we consider Case 3 and show that, in fact, it cannot occur. In Case 3, 

there exist 

2 2 
ql E flMB(f((o),  gro)fqLs and q2Ef lMB(f ( fo ) ,g ro )MRs ,  

by property (ii) of Lemma 3.1. Also, by the same argument as in Case 2, 

0f~ M {z E f~' : dist(z, 0f~') _> cro) = 0 

for f~' defined in Case 2. (See Figure 5.) By choosing the constant c > 0 of the 

above equality sufficiently small, we can take ring domains Tk,1, Tk,2 (k = 1, 2 , . . .  ) 
as in Figure 5, which satisfy 

(i) Tk,i is contained in S M B(f((o), i~60ro); 

(ii) Tk,1 and Tk,2 are bounded by rectangles and neighboring as in Lemma 4.1; 
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(iii) f(~0) is contained in the bounded component of (Tk,1 tO Tk,2)c; 

(iv) every region between the vertical sides or bottoms of the inner and outer 

rectangles of OTk,i is contained in f~; 

(v) mod(Tk,d is bounded below by a small constant d > 0 depending on the 

Lipschitz constant of F. 

We also take annuli Uk,1, Uk,2 (k = 1, 2, . . .  ) as in Figure 5, which satisfy 

(i) Uk,1 and Uk,2 are neighboring annuli in B(f((o), 1-~oro)\B(f((o), ~ro), with 

centers at f((o); 

(ii) mod(Uk,i) = d. 

Let c(d) be the constant satisfying (4.1) of Lemma 4.1 so that 

w(aO (R1 U R2)) > c(d) > 0 
o4 ) 

for Ri = Tk,i or Ri = Uk,i and a c 0f~ satisfying the hypothesis of Lemma 4.1. 

Choose t > 0 greater than 1 - c(d). Let J be the subarc of 01~ such that J contains 

~o and f(d) has a circular crosscut on f~n (outer boundary of Rt  U R2). Then (i) of 

I.emma 3.1 implies 

t < IJnAI  = w(f(J) A f (A) )  
- I J I  w(f(J)) 

< w(f(A) o (R1 u R2)) + w(f(J) n (R1 u R2) c) 
- w(f(J)) w(f(J)) 

< aJ(f(A) n (R1 u R2)) + 1 - c(d). 
- w(f(J)) 

Since t is greater than 1 - c(d), 

f (A) N (R~ U R2) # O. 

Using property (iv) of  Tk,i and (iv) of Lemma 3.1, we can construct disjoint balls 

B3 with centers in f (A)  such that 

( 2 . ( ~  1 ~ 0 ) + ( 1 - 1 ) )  >(1.01)r0. r d(B,) >_ ro 

This contradicts (iii) of  Lemma 3.1. Hence Case 3 cannot occur. [] 
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Figure 5. Case 3 and ring domains. 
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Case I Case 2 

Figure 6. f~l and L in Case 1 and Case 2 of Section 5. 

6 Contradict ing a geometric  property of  f(A) 

In this final section, we construct a disjoint collection of balls B~ in B(.f(C0), r0) 

such that 

center(Bk) E I(A) and ~ r a d ( B k )  > (1.01)to. 

This contradicts property (iii) of  Lemma 3.1 and hence completes the proof of 

Theorem 2. 

For the construction of {Bk}, we need an observation about the behavior of 

Oft near F. Let ftl be a union of B(f(z),  ~ 0), the region between L and r ,  and a 

subregion of ft M B(f(z) ,  2 ~r0) such that ftl is a chord-arc domain with chord-arc 

constant depending only on the Lipschitz constant of  r .  (See Figure 6.) Also, let 

f~2 be the component of ft N ftl containing B(f(z),  ~ro). Since f(A') O ftl = 0, 

(6.1) w(f(z), 0~2 M f~l, f~2) < w(f(z), fl\f(A'), f~) << 1, 

where the right inequality follows from (5.2). For y E 0ft2 n f~l, let B~ be the ball 

adjacent to 0ftl with center at y. Assume that for some c > 0, 

I U 
~/EOQ2N~I 

where p is the projection onto L. Then by Besicovitch's covering lemma, there 

exist disjoint intervals {p(B~, ) } satisfying 

(6.2) I Up(B~,)[> �89 
i 
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Figure 7. Si and good li. 

. . . .  p((q. 4)) . . . . .  

For Bu~ adjacent to F, let Si be the half strip going up from the horizontal 
diameter of �89 (See Figure 7.) Also for By~ adjacent to the vertical edges 
of 0 fh ,  let Si be the half strip from the vertical diameter of ! B  y~ to the adjacent 
vertical edge. Then 

1 
~,\ U(& u ~G,) 

i 

is a chord-arc domain with chord-arc constant depending on the Lipschitz constant 
of r .  Hence by (6.2) and Lemma 4.2, 
(6.3) 

w(f(z) ,  UO(�89 QI\U �89 Byi) >- w(f(z),  UO(  �89 ~]I\U(~i U �89 ) > e 
i i i i 

for some c' > 0. Also by Beurling's projection theorem, 

(6.4) w(w, Of~2, Bu~\Of~2) > C 

x B for every w E 0(~ u,). Now (6.3) and (6.4) show that 

w(f(z), 00~ n fh, 02) > c" 

for some c" > 0. This contradicts (6.1); hence 

(6.5) I u 
yEOG2N~a 
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Figure 8. Ri,  R~ and R~. 
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Next, we make several definitions useful for the construction of {Bk }. For each 

li C F with slope 4-98000, let (ai, hi) be the interval parallel to L such that {al, hi} 
intersects the lower endpoint of li and p((ai, hi)) = p(li). (See Figure 8.) When 

the slope of li is -98000, let ci = ai and di = ai + 700lai - bil and let Ri be the 

rectangle with bottom (ci, di) and height 1401ci - dil. When the slope of/~ is 98000, 

let ci = b / -  7001a~ - b~l and di = bi and similarly define the rectangle Ri. Also let 

R~ denote the upper subrectangle of Ri with height �89 140. 7001 ai - bi [ and let R~ 

denote the lower subrectangle of Ri with height ~ - 140. 7001 as - bi I. 
Fix a small constant c > 0. We say that li is good if 

(6.6) l p ( ( c l , d l ) ) n (  ~.J p ( B ~ ) ) l < c l a i - b i  I. 
y E O n 2  

nf~ 1 

Otherwise, say that l~ is bad. If ti is good, 

(6.7) {x : x is between F and L, p(x) E p((ci,di)),  dist(x,F) > cla~ - bil} C f~. 

(The shaded region of  Figure 7 is contained in It.) Also by (6.5), 

(6.8) ~ { l a ~  - billl~ is bad} << ILl. 

We consider three cases according to the geometry of F and f (A') and construct 

{B~} for each case. Assume ILl = 1. 
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Figure 9. Case I and ring domains. 

C a s e  I. IU{p((ci,di)) : R~A(O121\li ) ~ 0}t > 12 
In Case I, there exist disjoint intervals {p((cis, dis ))} such that 

and by (6.8), 
~ { 1 %  - dis It lis is good) > 11 

Let Iis denote the horizontal segment of P adjacent to (aij, bi~). Then by (5.3) and 
(6.7), the arc fl comes down from the top of R~s to a point in Iij N f (A')  and then 
passes through the top of R~s. (See Figure 9.) We take nested ring domains T~,I, 
Tk,2 (k = 1, 2 , . . .  ) such that: 

(i) Tk,i is located under the upper half subrectangle of Ri~ ; 

(ii) Tk,x and T~,2 are bounded by rectangles and neighboring as in Lemma 4.1; 
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(i/i) Ii~ is contained in the bounded component of (TkA U Tk,2)c; 

(iv) every region between the vertical sides or bottoms of the inner and outer 

rectangles of OTa,~ is contained in f~; 

(v) mod(Tk,i) is bounded below by a small constant d > 0 depending on the 

Lipschitz constant of F. (See Figure 9.) 

Choose t' > 0 greater than 1 - c(d) for the constant c(d) satisfying (4.1), Then by 

Lemma 4.1, (5.1) and (6.7), we can construct disjoint balls B~ in R~ with centers 

in f(A) such that 

Z rad(B~) > 351c q - dq l- 
k 

Observe that {BJk}j,k is disjoint and 

Z rad(BJ) > 35. ~0 > (1.01) �9 6 = (1.01) �9 6-ILl >_ (1.01)r0. 
j ,k  

This gives the desired contradiction to property (i/i) of Lemma 3.1. 

Case  II. [ U{(ai,bi) : R'(~(Ofhkl/) = 0, R'~NI(A')  y~ ~}}l >- ~ ,  where 
R~ is the contiguous subrectangle of R~ with width(R~) = ~ width(R~') and 

height(R m) = �89 height(R~'). (See Figure 10.) 

By (6.8), we get 

I [.J{(ai,b/) of Case II : I/is good} I >_ 

and 

(6.9) I U{(ai,bi) of Case II : liis good and slope(li)= w } l >  ~ ,  

where w = 98000 or w = -98000. If (as, hi) and (aj, bj) (i ~ j) satisfy the conditions 
in (6.9), then 

(6.10) R~ n Ry = 0. 

For (as, bi) of (6.9), we construct disjoint balls B~ in R~ as follows. 

If there exists q e R~ fq f(A') in the half subrectangle of R m far from li, then 

let 

B ~ = B ( q ,  lwidth(R~)) .  

Then 
' u 

B~ c R/ 



262 s. CHOI 

ai bi di 

Figure 10. Case II and ring domains. 

and 
1 1 

width(R~ n) = g .  700. lai - -  bil. 

Otherwise, take q' E R'] ~ n f (A ' )  in the other half subrectangle of R~  and take ring 

domains Tk,1, Tk,2 (k = 1, 2 , . . . )  such that 

(i) Tt~,l and Tk,2 are contained in B(q' ,  width(R~)) f3 R~ and neighboring as 

in Lemma 4.1; 

(ii) Tk,j is either an annulus centered at q' or obtained by replacing some arcs 

of the annulus by vertical line segments; 

(iii) the region between the vertical line segments of 0Tk,j is contained in f~; 

(iv) mod(Tk,j)  is bounded below by a small constant d > 0 depending on the 

Lipschitz constant of F. (See Figure 10.) 

Then by the same reasoning as in Case I, we can construct disjoint balls B~ C R~' 

with centers in f ( A )  such that 

1 m 1 
~ r a d ( B ~ )  > ~width(Ri ) = 5" 700. lai - bi[. 

k 
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{Bk},, k is disjoint and By (6.10), ~ . 

1 
Z rad(B~) > ~.  700. > (1.01). 6 > (1.01)r0. 
i,k 

Case  I I I .  t U{(ai,bi) : R~A(Of~l\ l i)  = 0, R ~ n A f ( A  ') = ~}1 > 15 
1 m For (ai, hi) of Case III, let ~R i be the contiguous subrectangle of R m with 

width and height a half the width and height of R m. (See Figure 11.) First, we 
show that 

(6.11) [ U{(ai,bi) of Case III : ~R i M0f~ r r << 1. 

For the proof of (6.11), let 

I m {(aj,bj) : j E J} = {(ai, bi) ofCaseII I  : 7R i M0f~ r 0}. 

Since f~l N f (A ' )  = R ~  rq f (A ' )  = r we obtain for some C > 0, 

w(f(z) ,  f l \ f (A ' ) ,  ft) 
1 m >_ w( f ( z ) ,  U ( l j  M ~Rj ),~1) " min w(y,O~ 7lR•, (~1 U R?)\Of~) 

j e J  ~ezJn�89 
jEJ 

1 m 
> Cw(f(z),  U(/~ n [ R j  ) ,~I)-  

jEJ 

By (5.2), the left-hand side of the above inequality is small. Hence (6.11) follows 
from Lemma 4.2. 

Since ~ ]Ii]+ ~ ]p(bad/i)] << 1, (6.11) implies 

I U {  (ai, bi) of Case III satisfying properties (i)-(iii)}[ _> 

where (i)-(iii) are as follows: 

1 m ( i )~R i M0f~=0;  

(ii) li is good; 

(iii) Iy{ I j  located under 1 m 5Ri }] + [U{P(bad lj located under �89 
1 1 m 1 rn < i-glp(~Ri )[. For (ai,bi) satisfying (i)-(iii), let Ji be the top of ~R i and let 

Qi be a rectangle with top Ji containing the subarc of F located under Ji. We say 
that (ai, bi) is good if there exist disjoint balls B~ in Qi such that 

(i) center(B~) e f(A); 
(ii) B~ M Q~ = 0 for j r i; 

(iii) Z rad(B~) _> l l j i l .  
k 
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1 m Figure 11. gR i , Ji and Qi of Case III. 

If 

S i then { k}i, k is disjoint and 

]good (ai ,b i ) [  > 12 

12 

Hence it suffices to consider the case when 

which is equivalent to 

(6.12) 

[good (ai, b~)[ < ~ ,  

Ibad (a~, b i ) [>  ~ .  

Under the assumption (6.12), we show that w ( f ( z ) ,  j 3 \ f ( A ' ) ,  f't) is bounded below. 
This contradicts (5.2) and completes the proof of Theorem 2. 

Now, assume (6.12). For bad (ai, bl), let 13i be a subarc of/3 connecting a point 
in Ii and the highest point in OOi N 8. This point cannot be on the top edge of Q i  

1 m or on the side below F, since ~Ri N 0f~ = 0 and li is good. Also,/3i can leave and 
1 ,n (See Figure 12.) We shall show reenter Q~. Let x~ be the middle point of  7R/ . 

1 700 
Z rad(B~) _> 1-2" 
i , k  

3 " 3--I > (1.01)-6 > (l.01)ro. 
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LR- 
2 ' 

as b~ 

Figure 12. fli of  Case III. 

that for some c' > 0, 

(6.13) w(zi, 3i\f(W), fl) > c'. 

If  (6.13) holds, then by (6.12) and Lemma 4.2, 

(6.14) 

w(f(z), 13\f(A'), f~) > ~_, 
bad (a~ ,bl ) 

for some c" > O, where 

,, 1RTq~ ~"~1 : (~r~aU ( U  2 "  ] ] \ (  U 
bad had 

(ai ,bl)  (a  i ,b i ) 

(6.14) contradicts (5.2), as desired. 

Hence it suffices to prove (6.13). 

three steps. 

Step 1. Construction of  f~z 
Let {Qj : j E J} be the set of  Qi 's located under Jio and let 

= u (u  o,). 
jEJ 

w(f(,), OB(x~, 1 ,, ~l&l), nl)- ~(m,, 3 i \ f ( A ' ) ,  fl) > c" 

B(xi, llJil)). 

We fix a bad (aio,bio) and prove (6.13) in 
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iR- 
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~Jj 

L 

i Jj- '  [ J 

L 

Figure 13. Sj~ and J~ of Step 1. 

For the top Jj of Q j, let ~Jj  denote the line segment with one endpoint at 
11 11 11 endpoint(Jj) N f~l such that Jj C -i-6Jj and ] = r61JJl. ~Yyl 

If 11 0~'~ m, T6Jj intersects then extend Jj until it meets 0fY" and let J~ denote the 
extended line segment. (See Figure 13.) Define 

= 

where Sj~ is the rectangle with top J~ and bottom on L. Then f~3 is a chord-arc 
domain; and for Kj = Jj \ Jj, 

~ 1 K ~ n O f t 3  I < ~lJ io l .  
jEJ 
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Step 2. C o n s t r u c t i o n  of  f24 
For q e f(A')  located between Jio and Of~3, let Bq be the ball adjacent to 

O(Qio\ft3) with center at q. We also let Tq be the horizontal diameter of Bq. 
If 

1 j  

q 

then by Besicovitch's covering lemma, there exists a disjoint collection {p(Tq~)} 

such that 
1 j ,  

k 

Observe that {Bqj, } is disjoint and satisfies the conditions (i)-(iii) of the definition 
of good (ai, hi). This contradicts the fact that (aio, bio) is bad. Hence we obtain 

I u,,(s) l<' _ 51&01. 
q 

Let 

q 

where STq is the rectangle with top Tq and bottom on L. (See Figure 14.) If" 2Tq 
intersects 8fY"', then extend Tq until it meets 8f~'"' and let T~ denote the extended 

line segment. Define 

then f~4 is a chord-arc domain, and 

(6.15) f~4 fh f(A')  = 0. 

f~3 and f~4 are disjoint chord-arc domains satisfying 

_ l j  Ip(a~3 na~4)l  > ~1 ~01. 

Step 3. Contradicting the smallness property of  w (X~o, ~io \f(A'), f~) 
For good li located under Ji0, let l~ be the line segment in f~l such that l~ is 

parallel to li, p(l[) = p(li) and dist(li, l~) = clai - b d for the constant c of (6.6). Then 

(6.16) the region between l~ and L is contained in fL 

Also, for Jr located under di0, 

(6.17) 1 m 
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• 
2 ~ 

Xq 3 

eq 

Figure 14. f~3 of Step 1 and f~4 of Step 2. 

If/3i0 is replaced by an arc on Oft4 which has the same endpoints and separates 

a point of flio from Xio, then by (6.15), (6.16) and (6.17), 

A' w(Z,o,{I , ~, , (Ugood&),~,)  (6.18) 

B u t  

> I&ol- UP(2T~) - ~ l g j n O ~ l  
q J 

> i 3 Io [5 I&~ I~~ 

The above inequality and Lemma 4.2 show that the right side of (6.18) is bounded 

below. Hence we obtain (6.13) for bad (ai,bi), and the proof of Theorem 2 is 
complete. 
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1 1 Recall that we assumed r = ~r0 in Section 5. In case r < ~r0, construct L 

satisfying [L t > ~r and make the Lipschitz constant of F sufficiently greater than 

98000. Then we can construct disjoint balls Bk with centers in f ( A )  such that 

rad(Bk) > (1.01). ro 6 r "5" ILl > (1.01)r0. 

But since r ~ to, the Lipschitz constant of F can be bounded above. Also, every 

constant in the proof depends only on the Lipschitz constant of F. Hence the proof 

works for every r ~ r0, if we take the Lipschitz constant of F sufficiently large. 

A c k n o w l e d g m e n t .  The author thanks ProL John Garnett at University of 
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