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Abstract

In this paper we study a free boundary problem, arising from a model
for the propagation of laminar flames. Consider the heat equation

∆u = ut, u > 0

in an unknown domain Ω ⊂ IRn× (0, T ) for some T > 0 with the following
boundary conditions

u = 0, |∇u| = 1

on the lateral free boundary ∂Ω. If the initial data u0 is compactly sup-
ported, then the solution vanishes in a finite time T , which is called the
extinction time. In this paper, we investigate the asymptotic behavior of
a solution near the extinction time when the initial data u0 is periodic
in angle and the initial free boundary Γ0 is contained in some annulus
BM (0) \B1(0). Assuming small periodicity, we prove that the free bound-
ary is asymptotically spherical with a quantitative estimate.

1 Introduction

In this paper we study a parabolic free boundary problem, which describes
the propagation of equidiffusional premixed flames with high activation energy.
The classical formulation is as follows. Let u0 be a continuous and nonnegative
initial function defined in IRn, whose positive set is open and nonempty. We
find a nonnegative continuous function u in IRn × (0, T ) such that

(P )





ut = ∆u in {u > 0}

|∇u| = 1, u = 0 on ∂{u > 0}

u(x, 0) = u0(x)
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where ∇u denotes the spatial gradient of u and {u > 0} denotes the inverse
image {(x, t) : u(x, t) > 0}. In combustion theory for laminar flames, u denotes
the minus temperature λ(Tc − T ) where Tc is the flame temperature and λ is a
normalization factor (see [BL]). The region Ω := {u > 0} represents the unburnt
zone and the lateral free boundary Γ of Ω represents the flame front.

Assuming u0 is bounded and Lipschitz continuous, a global weak solution of
(P ) has been obtained in [CV] as the asymptotic limit of the following approx-
imation problems

(Pε)





∂tuε = ∆uε +
1
ε
β(

uε

ε
)

uε(x, 0) = u0ε(x)

where β is a nonnegative smooth function supported on [0, 1] with
∫ 1
0 β = 1/2

and u0ε approximates u0 in a proper way. The family of solutions {uε} is
uniformly bounded in C

1,1/2
x,t -norm on compact sets and they converges along

subsequences to a function u ∈ C
1,1/2
loc , which is called a limit solution of (P ).

In this paper, we adopt the notion of a limit solution. Then it was proved by
Kim [K] that the limit solution is unique and coincides with a viscosity solution
if u has a shrinking support, i.e., if u0 is a C2-function with

∆u0 ≤ 0 in Ω0 and 0 ≤ |∇u0| ≤ 1 on ∂Ω0. (1.1)

On the other hand, nonzero equilibria of (P ) do not exist for compactly
supported initial data and a solution with a bounded initial domain vanishes in
a finite time T , i.e.,

u(x, T ) ≡ 0, u(x, t) 6= 0 for 0 < t < T.

Here T is called the extinction time, the time when the unburnt zone collapses
in a combustion model. Particularly, it was proved in [GHV] that if the initial
data is radially symmetric and supported in a ball, the solution is asymptotically
self-similar near the extinction time T . Also when n = 1, the profiles of any
non-radial solution are asymptotically self-similar even if it might focus at a
point other than 0. However in higher dimensions, not much is known for the
behavior of non-radial solutions (see [BHS] and [BHL] for a linearized stability
analysis). In general setting, it is expected that topological changes of the
domain might occur, possibly generating multiple radial profiles for later times.

In this paper, we will investigate the asymptotic behavior of non-radial
space-periodic solutions in higher dimensions n ≥ 2. We will prove that, under
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appropriate assumptions on u0 (see Remarks 2 and 3), the free boundary is
asymptotically spherical near (0, T ) ∈ IRn+1. (Note that a solution focuses at
the origin if it has a space periodic initial data supported on a simply connected
set.) Then it will turn out that the solution is asymptotically self-similar and
the free boundary is a graph of C1+γ,γ function after some positive time. For
the existence, uniqueness of a solution (see [K]), we consider a natural situation
(1.1) for the application in which u has a shrinking support at t = 0, i.e., we
assume that the flame advances at the initial time. Below we state the main the-
orem of the paper, where Γt(u) := ∂{x : u(x, t) > 0} denotes the free boundary
of u at time t.

Theorem 1.1. Let u be a solution of (P ) with the initial data u0 satisfying
(1.1). Suppose

u0 = φ0 + ρ

where φ0 is a nonnegative radial function supported on B1(0) and ρ is a non-
negative function supported on a subset of BM (0) for some M > 1. Suppose
{φ0 + ρ > 0} is simply connected, i.e., the initial free boundary Γ0(u) is a con-
nected set contained in the annulus BM (0) \ B1(0). Take M > 0 sufficiently
large so that

|∇u0| ≤ M, maxφ0 ≥ 1/M.

Then there is a constant α(n,M) > 0 depending only on M and dimension n
such that if ‖ρ‖∞ ≤ α and ρ is periodic in angle with period ≤ α for some
0 < α ≤ α(n,M), then the free boundary of u is asymptotically spherical near
its focusing point 0 ∈ IRn.

More precisely, there exist constants 0 < h < 1 and C > 0 depending on n
and M such that for t ∈ [(1− 2−k)T, (1− 2−k−1)T ] and k ≥ 2,

Γt(u) ⊂ B(1+Chkα)r(t)(0)−Br(t)(0)

where r(t) is a decreasing function of t with r(T ) = 0.

Remark 1. The main theorem is different from a standard nonlinear stability
analysis since

a. The initial free boundary Γ0(u) := ∂{u0 > 0} is not assumed to be a slight
perturbation of a sphere. It can be any irregular subset of the annulus
BM (0) \B1(0), which is periodic in angle (not necessarily star-shaped).

b. Even if ‖ρ‖∞ is assumed to be small, the function ρ can change the ge-
ometry of the free boundary Γt(u) in a significant way near the initial

3



time, since we do not assume any lower bound on |∇φ0|. Even when we
start from a radially symmetric initial boundary Γ0(u) = ∂B1(0), a small
function ρ can change the geometry of Γt(u) so that

sup{r : ∂Br(0) ∩ Γt(u) 6= ∅}
inf{r : ∂Br(0) ∩ Γt(u) 6= ∅}

is much larger than 1 for small t > 0. In fact, we prove that Γt(u) is
located between two concentric spheres with “just” comparable radii for
0 < t < T/2 (Lemma 3.1). However for later times, Γt(u) will be shown
to get closer and closer to decreasing spheres ∂Br(t)(0) as t approaches
the extinction time T (Proposition 8.1). (Here r(T ) = 0.)

c. Even a small ρ can change the topology of the domain creating small
pieces of the positive set around the main piece of the domain. However
the topological change of the domain will not affect the geometry of the
main piece eventually if ρ is assumed to be small.

d. There is no stability result on the extinction time T . A solution u focuses
at a point with a divergent boundary speed, i.e., the speed of Γt(u) ≈
1/
√

T − t →∞ as t → T .

Remark 2. Assuming an L∞-bound on u0, it was proved in [CV] that

|∇u(x, t)| ≤ M

for t > T/2 and M depending on n and ‖u0‖∞. Hence, we suppose from the
beginning that u0 has bounded interior gradient, i.e., |∇u0| ≤ M . Also for
simplicity, we assume that {u0 > 0} is simply connected. This assumption is
used only in the proof of Lemma 3.1, and we expect that Lemma 3.1 will hold
without the assumption.

Remark 3. If ‖ρ‖∞ is not sufficiently small, we may have a dramatic change of
the topology of the domain: splitting of the domain into several “large” pieces.
Consider an example with an initial domain B1(0) ⊂ IR2, that large initial data
around (±1/2, 0) leads to the split of the domain into two large pieces at a
later time. Then for later times, we might get multiple profiles of the solution
with similar sizes, focusing at different points. Also if ρ is not assumed to be
periodic, the center of the the domain may change in time. For these technical
reasons, we assume that ρ is periodic in angle with a small sup norm.

Central difficulty in analysis lies in rather difficult construction of various
barrier functions near the focusing point. Here is an outline of the paper. In
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section 2 some preliminary lemmas and notations are introduced. In section 3
we show that the free boundary Γt(u) is located between two concentric spheres
with comparable radii at each time t, and prove that the maximal radial subre-
gion Ωin of Ω has a boundary close to a Lipschitz graph in a parabolic scaling.
Then in section 4 the scaled α-flatness of the free boundary is obtained when
the function ρ has size α. In other words, Γt(u) is located between two con-
centric spheres with the outer radius bounded by (1 + Cα)× inner radius at
later times t. In section 5 the solution u is approximated by a radial function at
interior points away from the boundary, and this interior estimate is improved
in section 6 thanks to the α-flatness of the free boundary. Then in section 7, the
interior improvement (obtained in section 6) propagates to the free boundary
at later times giving an improved estimate on the location of the free bound-
ary. More precisely, if the free boundary is located near a sphere at each time
t ∈ ((1 − 2−k)T, T ) then several barrier functions will show that the solution
u gets closer to a radial function φ at later times t ∈ ((1 − 2−k−1)T, T ), at
points away from the boundary (Lemma 6.1). This improved estimate on the
values of u forces the free boundary to be located in a smaller neighborhood
of a sphere at t ∈ ((1 − 2−k−2)T, T ) (Lemma 7.1). By iteration, it will follow
that the free boundary is asymptotically spherical near the focusing point. In
the last section, the asymptotic behavior of the solution is investigated and the
regularity of the free boundary follows as a corollary from the flatness of the
free boundary and the radial approximations of the solution.

2 Preliminary lemmas and notations

Below we introduce some notations.

• Denote by Ω(u), the positive set of u, i.e.,

Ω(u) = {u > 0} = {(x, t) : u(x, t) > 0}.

• Denote by Γ(u), the free boundary of u, i.e.,

Γ(u) = ∂Ω(u) ∩ {t > 0}.

• Denote by Σt, the time cross section of a space time region Σ, i.e.,

Σt = {x : (x, t) ∈ Σ}.

In particular,
Ωt(u) = {x : u(x, t) > 0}
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and
Γt(u) = ∂Ωt(u)

where Γt(u) is called the free boundary of u at time t.

• Denote by Br(x), the space ball with radius r, centered at x.

• Denote by Qr(x, t), the parabolic cube with radius r, centered at (x, t). Denote
by Q−

r (x, t), its negative part, i.e.,

Qr(x, t) = Br(x)× (t− r2, t + r2), Q−
r (x, t) = Br(x)× (t− r2, t).

• Denote by Kr(x, t), the hyperbolic cube with radius r, centered at (x, t), i.e.,

Kr(x, t) = Br(x)× (t− r, t + r).

• A space time region Ω is Lipschitz in Qr(0) (in parabolic scaling) if

Qr(0) ∩ Ω = Qr(0) ∩ {(x, t) : xn > f(x′, t)}

where x = (x′, xn) ∈ IRn−1 × IR and f satisfies

|f(x′, t)− f(y′, s)| ≤ L(|x′ − y′|+ |t− s|/r)

for some L > 0, with f(0, 0) = 0.

• A function ρ : IRn → IR is periodic in angle with period ≤ α if

ρ(r, θ1, ..., θi + pi, ..., θn−1) = ρ(r, θ1, ..., θi, ..., θn−1)

for 0 ≤ pi ≤ α and 1 ≤ i ≤ n− 1.

• Denote by rin(t), the maximal radius of a circle centered at the origin which
is inscribed in Ωt(u), i.e.,

rin(t) = sup{r : Br(0) ⊂ Ωt(u)}.

• Denote by rout(t), the minimal radius of a circle centered at the origin, in
which Ωt(u) is inscribed, i.e.,

rout(t) = inf{R : Ωt(u) ⊂ BR(0)}.

• Denote by Ωin, the maximal radial region inscribed in Ω(u), i.e., its time cross
section Ωin

t is given by

Ωin
t = Brin(t)(0) for all t.
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• Denote by 0 < t1 < t2 < ... < T , the diadic decomposition of the time interval
(0, T ) such that ti = (1− 2−i)T , i.e.,

t1 = T/2 , ti+1 − ti =
T − ti

2
.

• For positive numbers a and b, write a ≈ b if there exist positive constants C1

and C2 depending only on n and M such that

C1a ≤ b ≤ C2a.

Below we state some properties of caloric functions defined in Lipschitz
domains, a comparison principle, results on existence of self-similar solutions
and asymptotic behavior of radial solutions, and a regularity result for solutions
with flat boundaries.

Lemma 2.1. [ACS, Lemma 5] Let Ω be a Lipschitz domain in Q1(0) such that
0 ∈ ∂Ω. Let u be a positive caloric function in Q1(0) ∩ Ω such that u = 0 on
∂Ω, u(en, 0) = m1 > 0 and supQ1(0) u = m2. Then there exist a > 0 and δ > 0
depending only on n, L, m1/m2 such that

w+ := u + u1+a and w− := u− u1+a

are, respectively, subharmonic and superharmonic in Qδ ∩ Ω ∩ {t = 0}.
Lemma 2.2. [ACS, Theorem 2] Let Ω and u be given as in Lemma 2.1, then for
every µ ∈ {µ ∈ IRn+1 : |µ| = 1, en · µ < cos θ} where θ = cot−1(L)/2, Dµu > 0
in Qδ ∩ Ω for a positive constant δ depending on n, L, m1/m2 and ‖∇u‖L2.

Lemma 2.3. [ACS, Corollary 4] Let Ω and u be given as in Lemma 2.1, then
there exist positive constants c1 and c2 depending on n and L such that

c1
u(x, t)
dx,t

≤ |(∇x, ∂t)u| ≤ c2
u(x, t)
dx,t

for every (x, t) ∈ Kr(0)∩Ω, where dx,t is the elliptic distance from (x, t) to ∂Ω.

Lemma 2.4. [D, Theorem 12.2] Let u be a caloric function in Qδ = Qδ(0),
then there exists a dimensional constant C > 0 such that

‖∇u‖∞,Q−σδ
≤ C

(1− σ)n+3δ|Q−
δ |

∫

Q−δ

|u|dxdt,

‖ut‖∞,Q−σδ
≤ C

(1− σ)n+4δ2|Q−
δ |

∫

Q−δ

|u|dxdt

for σ ∈ (0, 1) where |Q−
δ | is the volume of Q−

δ .
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Lemma 2.5. [CV, Theorem 4.1] Let u be a limit solution of (P ), for which
the initial function u0 is nonnegative, bounded and |∇u0| ≤ M . Then for a
dimensional constant C0 > 0

|∇u| ≤ C0 max{1,M}.

Lemma 2.6. [K, Theorem 1.3 and Theorem 2.2] Let u an v be, respectively, a
sub- and supersolutions of (P) with strictly separated initial data u0 ≺ v0. Then
the solution remain ordered for all time, i.e.,

u(x, t) ≺ v(x, t) for every t > 0.

Lemma 2.7. [CV, Proposition 1.1] Let T > 0. Then there exists a self similar
solution U(x, t) of (P ) in the form

U(x, t) = (T − t)1/2f(|x|/(T − t)1/2)

where the profile f(r) satisfies the stationary problem

f ′′ + (
n− 1

r
− 1

2
r)f ′ +

1
2
f = 0 for 0 < r < R,

f ′(0) = 0 and f(r) > 0 for 0 ≤ r < R

with boundary conditions

f(R) = 0 and f ′(R) = −1.

Lemma 2.8. [GHV, Theorem 6.6] Let u be a radial solution of (P ) with initial
data u0 = u0(|x|) > 0 supported in a ball. Then

(T − t)−1/2u(|x|, t) → f(|x|/(T − t)1/2) uniformly

as t → T with f given as in Lemma 2.7.

Lemma 2.9. [AW, Theorem 8.4] Let (u, χ) be a domain variation solution of
(P ) in Qρ := Qρ(0, 0) such that (0, 0) ∈ ∂{u > 0}. There exists a constant
σ1 > 0 such that if u(x, t) = χ(x, t) = 0 when (x, t) ∈ Q−

ρ and xn ≥ σρ, and
if |∇u| ≤ 1 + τ in Q−

ρ for some σ ≤ σ1 and τ ≤ σ1σ
2, then the free boundary

∂{u > 0} is in Q−
ρ/4 the graph of a C1+γ,γ-function; in particular the space

normal is Hölder continuous in Q−
ρ/4.
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3 Estimate on inner and outer radii of Ω

If U is a self-similar solution (see Lemma 2.7) with an extinction time T , then
the maximum of U at time t and the radius of its support Ωt(U) are constant
multiples of

√
T − t. In this section we prove analogous estimates on maxu(·, t)

and on inner, outer radii of concentric spheres which trap the free boundary
Γt(u) in between. Recall that rin(t) and rout(t) are inner and outer radii of
Ωt(u), i.e.,

rin(t) = sup{r : Br(0) ⊂ Ωt(u)}
and

rout(t) = inf{R : Ωt(u) ⊂ BR(0)}.
Lemma 3.1. Let u0 be as in Theorem 1.1 and let α ≤ α(n,M) for a sufficiently
small α(n, M) > 0. Then there exist constants Cj (1 ≤ j ≤ 4) depending on n
and M such that

C1

√
T − t ≤ maxu(·, t) ≤ C2

√
T − t (3.1)

and
C3

√
T − t ≤ rin(t) ≤ rout(t) ≤ C4

√
T − t. (3.2)

Proof. We prove the last inequality of (3.1) and the first inequality of (3.2) by
comparison with self similar solutions. Then using these inequalities, we prove
the first and the last inequality of (3.1) and (3.2). Without loss of generality,
assume M ≥ 1.

1. Proof of maxu(·, t) ≤ C2

√
T − t and C3

√
T − t ≤ rin(t): Let T be the

extinction time of u. By Lemma 2.7, there exists a self-similar solution v with
the extinction time T . Then for positive dimensional constants a1 and a2,

max v(·, t) = a1

√
T − t and Ωt(v) = Ba2

√
T−t(0).

To find an upper bound on u(·, t), suppose that for some x0 ∈ Ωt(u)

u(x0, t) ≥ (2a1 + C0Ma2)
√

T − t

where C0 is the constant as in Lemma 2.5. Then by Lemma 2.5

u(·, t) ≥ 2a1

√
T − t = 2max v(·, t)

on Ba2
√

T−t(x0) = Ωt(v(x− x0, t)). By comparing u with v(x− x0, t),

maxu(x, T ) > max v(x− x0, T ) = 0
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which would contradict that u vanishes at time T . Hence we obtain

maxu(·, t) ≤ C2

√
T − t (3.3)

with C2 = 2a1+C0Ma2. The first inequality of (3.2), that is C3

√
T − t ≤ rin(t),

can be proved similarly for C3 = C3(n, M) > 0 by comparing u with a self-
similar solution.

2. Proof of C1

√
T − t ≤ maxu(·, t) and rout(t) ≤ C4

√
T − t: These in-

equalities will be proved simultaneously by induction. Let C4 be a sufficiently
large constant depending on M and n, which will be determined later. Recall
that 0 < t1 < t2 < ... < T is a diadic decomposition of (0, T ) with t1 = T/2 and
ti+1 − ti = (T − ti)/2.

Claim 1. Suppose
rout(ti) ≤ C4

√
T − ti (3.4)

for some i ∈ N, then

maxu(·, ti) ≥ CnC2
3

C4

√
T − ti

where Cn is a positive dimensional constant and C3 is the constant as in the first
inequality of (3.2). For the proof of Claim 1, we construct a Lipschitz region Σ
in IRn × [ti, ti+1]. Since rout(t) is decreasing in time t, there exists a decreasing
function σ(t) on [ti, ti+1] such that

(a-1) σ(t) ≥ rout(t)

(a-2) σ(τ) = rout(τ) for some τ ∈ [(ti + ti+1)/2, ti+1]

(a-3) |σ′(t)| ≤ 2(rout(ti)− rout(ti+1))
ti+1 − ti

.

(We can construct σ(t) so that it is linear on [(ti + ti+1)/2, ti+1] with slope
−2(rout(ti)− rout(ti+1))/(ti+1 − ti) and it is a constant on [ti, (ti + ti+1)/2].)
Let Σ be a space-time region in IRn × [ti, ti+1] such that its time cross section
is a ball of radius σ(t) centered at 0, i.e.,

Σt = Bσ(t)(0)

for ti ≤ t ≤ ti+1. Then the properties (a-1), (a-2) and (a-3) imply

(b-1) Ω(u) ∩ {ti ≤ t ≤ ti+1} ⊂ Σ
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(b-2) There exists a free boundary point

p ∈ ∂Bσ(τ)(0) ∩ Γτ (u),

i.e., (p, τ) ∈ ∂Σ ∩ Γ(u).

(b-3) Σ is Lipschitz in space and time with a Lipschitz constant

L :=
2σ(ti)

ti+1 − ti

where (b-2) follows from (a-2) since ∂Brout(t)(0) intersects Γt(u) for all t.
Define a function wti(x) on Bσ(ti)(0) by

wti(x) =





maxu(·, ti) for x ∈ Bσ0(0)

maxu(·, ti)− C0M |x| for x ∈ Bσ(ti)(0)−Bσ0(0)

where C0 is the constant as in Lemma 2.5 and σ0 is chosen so that wti = 0 on
∂Bσ(ti)(0). Then by Lemma 2.5 and by Ωti(u) ⊂ Brout(ti)(0) ⊂ Bσ(ti)(0),

u(·, ti) ≤ wti(·).

Let w(x, t) be a caloric function in Σ such that




∆w = wt in Σ

w = wti on {t = ti}

w = 0 on ∂Σ ∩ {ti < t < ti+1}.
Then by comparison, w ≥ u in Σ. Since w(p, τ) = u(p, τ) = 0, the inequality
w ≥ u implies

|∇w(p, τ)| ≥ 1. (3.5)

Denote
σ(ti) = β

√
ti+1 − ti

for some β > 0. Then

L =
2β√

ti+1 − ti
. (3.6)

Also observe that rout(ti) ≤ σ(ti) ≤ 2rout(ti) by the construction of σ(t). This
implies

C3 < β < 4C4 (3.7)
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where the first inequality follows from the first inequality of (3.2) and the last
inequality follows from the assumption (3.4). Here we assume that C3 ≤ 1
without loss of generality.

Since ∂Σ = ∂{w(x, t) > 0} has a Lipschitz constant L, the caloric function

w̃(x, t) := w(
x

L
, τ +

t

L2
)

has a Lipschitz boundary with Lipschitz constant 1 in the region

BC3β(Lp)× [−β2, 0].

Since β > C3 and C3 ≤ 1, w̃ has a Lipschitz boundary in a smaller region

Q−
C2

3
(Lp, 0) := BC2

3
(Lp)× [−C4

3 , 0]

with a Lipschitz constant 1. Hence by Lemma 2.1, w̃(·, 0) is almost harmonic
near the vanishing Lipschitz boundary ∂BLrout(τ)(0). More precisely, there ex-
ists a constant 0 < Cn < 1 depending on n such that the following holds: if h
is a harmonic function in the annulus BLrout(τ)(0)−BLrout(τ)−CnC2

3
(0) with

h =





0 on ∂BLrout(τ)(0)

2w̃(·, 0) on ∂BLrout(τ)−CnC2
3
(0)

then on BLrout(τ)(0)−BLrout(τ)−CnC2
3
(0)

w̃(·, 0) ≤ h(·). (3.8)

Combining (3.5) and (3.8), we obtain

|∇h(Lp)| ≥ |∇w̃(Lp, 0)| = |∇w(p, τ)|/L ≥ 1/L. (3.9)

This implies

maxu(·, ti) = maxw(·, ti)
≥ maxw(·, τ)
= max w̃(·, 0)
≥ max{w̃(x, 0) : x ∈ ∂BLrout(τ)−CnC2

3
(0)}

= maxh/2
≥ CnC2

3/L

≥ CnC2
3

C4

√
T − ti (3.10)
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where the third inequality follows from (3.9) for a dimensional constant Cn and
the last inequality follows from (3.6), (3.7) and T − ti = 2(ti+1 − ti).

Claim 2. Suppose rin(ti) ≤ (C4/8)
√

T − ti for 1 ≤ i ≤ k, then

rout(ti) ≤ C4

√
T − ti (3.11)

for 1 ≤ i ≤ k. We prove Claim 2 by induction. Let x0 be a point in Ω0(u) such
that maxu0 = u0(x0). Since maxu0 ≥ 1/M and |∇u0| ≤ M ,

u0 ≥ 1
2M

on B1/2M2(x0).

Then by comparing u with a self similar solution,

T ≥ C(n,M) (3.12)

where C(n,M) is a constant depending on n and M . Hence

rout(t1) ≤ rout(0) ≤ M ≤ C4

√
T − t1

where the first inequality follows since Γt(u) shrinks in time, the second inequal-
ity follows from the assumption on u0 and the last inequality follows from (3.12)
if C4 = C4(n,M) is chosen sufficiently large.

Now suppose that (3.11) holds for i ∈ {1, ..., j} where j ≤ k − 1. Construct
a Lipschitz region Σ in IRn × [tj , tj+1] as in the proof of Claim 1 so that

Ω(u) ∩ {tj ≤ t ≤ tj+1} ⊂ Σ, (p, τ) ∈ Γ(u) ∩ ∂Σ.

If rout(tj+1) > C4

√
T − tj+1, then

rout(τ) ≥ rout(tj+1) >
C4

2

√
T − τ >

C4

4

√
T − tj ≥ 2rin(tj) (3.13)

where the last inequality follows from the assumption on rin(tj). Let

Σ̃ := Σ− Ωin

where Ωin is the region constructed in Section 2, i.e., Ωin is the maximal radial
region inscribed in Ω(u). Then by (3.13) and (b-3), Σ̃ is Lipschitz in the “large”
cube Q−

C4
√

T−τ/4
(p, τ). Let v(x, t) solve





∆v = vt in Σ̃

v = maxΣ̃tj
u(·, tj) on {t = tj}

v = 0 on ∂Σ ∩ {tj < t < tj+1}

v(·, t) = max∂Brin(t)(0) u(·, t) on ∂Ωin ∩ {tj < t < tj+1}.
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Then by comparison, v ≥ u in Σ̃. By a similar argument as in the proof
of (3.10) with w replaced by v, and with (3.4) replaced by the assumption
rout(tj) ≤ C4

√
T − tj , we obtain

max v(·, τ) ≥ CnC2
3

C4

√
T − tj . (3.14)

On the other hand, observe that for a dimensional constant Cn

max
∂Brin(t)(0)

u(·, t) ≤ CnMαrin(t) (3.15)

since min∂Brin(t)(0) u(·, t) = 0, u is periodic in angle with period < α and |∇u| ≤
C0M (Lemma 2.5). Similarly,

max
Σ̃tj

u(·, tj) = max
∂Bs(0)

rin(tj)≤s≤rout(tj)

u(·, tj) ≤ CnMαrout(tj) (3.16)

since the simple connectivity of Ω0(u) and ut ≤ 0 imply that min∂Bs(0) u(·, tj) =
0 for rin(tj) ≤ s ≤ rout(tj). Hence

max v ≤ CnMαrout(tj) ≤ CnMαC4

√
T − tj

where the last inequality follows from the assumption on rout(tj). If α(n,M) is
chosen sufficiently small, then the above upper bound on max v would contradict
(3.14). Hence we conclude

rout(tj+1) ≤ C4

√
T − tj+1.

Claim 3. If C4 is chosen sufficiently large,

rin(ti) ≤ C4

8

√
T − ti (3.17)

for all i ≥ 1. For i = 1, (3.17) follows from (3.12) and rin(t1) ≤ rin(0) = 1.
Now suppose that (3.17) holds for 1 ≤ i ≤ j and not for i = j + 1, i.e.,

rin(tj+1) := r0 >
C4

8

√
T − tj+1. (3.18)

Since (3.17) holds for 1 ≤ i ≤ j, Claim 2 implies

rout(ti) ≤ C4

√
T − ti for 1 ≤ i ≤ j.

14



Then by Claim 1,

maxu(·, ti) ≥ CnC2
3

C4

√
T − ti for 1 ≤ i ≤ j.

Since (3.16) implies that maxu(·, ti) (1 ≤ i ≤ j) is taken inside the maximal
radial region Ωin ⊂ Ω(u), and since T ≥ C(n,M),

u(0, ti) ≥ CC2
3

C4

√
T − ti for 1 ≤ i ≤ j (3.19)

where C is a constant depending on n and M .
Let k = min{k ∈ {1, ..., j} : tj+1 − tk ≤ r2

0} where r0 = rin(tj+1). (Here
observe that tj+1 − tj = T − tj+1 < r2

0 by (3.18).) Then

Br0(0)× [tk, tj+1] ⊂ Q−
r0

(0, tj+1) ⊂ Ω(u). (3.20)

Observe that




tj+1 − tk ≥ (tj+1 − tk−1)/3 ≥ r2
0/3 if k 6= 1

tj+1 − tk ≥ T/4 ≥ C(n,M) ≥ C(n,M)r2
0 if k = 1.

(3.21)

Then by (3.18), (3.19), (3.20) and (3.21)

min
Br0/2(0)

u(·, tj+1) ≥ Cu(0, tk)

≥ CC2
3

C4

√
T − tk

≥ CC2
3

C4

√
tj+1 − tk

≥ CC2
3

C4
· r0

≥ CC2
3

√
T − tj+1

where C denote constants depending on n and M . In other words, u(·, tj+1)
has a lower bound CC2

3

√
T − tj+1 on the large ball Br0/2(0) with the radius

r0/2 ≥ C4

√
T − tj+1/8.

Hence if C4 = C4(n,M, C3) is chosen sufficiently large, then u would have an
extinction time larger than T , contradicting u(·, T ) ≡ 0. Hence we conclude
rout(tj+1) ≤ (C4/8)

√
T − tj+1.
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If U is a self-similar solution with an extinction time T , then the normal
velocity of its free boundary at time t is comparable to 1/

√
T − t ≈ 1/rin(t), and

hence Γ(U) is Lipschitz in a parabolic scaling in each Qrin(t)(x, t), (x, t) ∈ Γ(U).
Recall that Ωin = Ωin(u) is the maximal radial subregion of Ω(u), i.e., its time
cross section Ωin

t is given by

Ωin
t = Brin(t)(0) for 0 ≤ t ≤ T.

In the next lemma, we prove an analogous result that the average normal
velocity of ∂Ωin is bounded above by C(n,M)/

√
T − t on each time interval

[t, t+αrin(t)2] for t ≥ T/2. This gives that the inner region Ωin can be approx-
imated by a subregion Ω1 which is Lipschitz in a parabolic scaling.

Lemma 3.2. Let u0 be as in Theorem 1.1 and let α ≤ α(n,M) for a sufficiently
small α(n,M) > 0. Then there exists a space-time region Ω1 ⊂ Ωin, which is
radial in space and satisfies the following conditions:

(i) For i ≥ 1 (i.e., for ti ≥ T/2)

Si := Ω1 ∩ {ti ≤ t ≤ ti+1}

is Lipschitz in a parabolic scaling with a Lipschitz constant C(n,M), i.e.,
the normal velocity of ∂Si is bounded above by C(n,M)/rin(ti).

(ii) ∂Si is located in the C(n,M)αrin(ti)-neighborhood of ∂Ωin.

In particular,
u ≤ C(n, M)αrin(ti) on ∂Si. (3.22)

Proof. Suppose that we have a subregion Ω1 of Ωin satisfying the conditions (i)
and (ii). Then for a constant C depending on n and M ,

max
∂Si

u ≤ max
∂Ωin∩{ti≤t≤ti+1}

u + Cαrin(ti) ≤ Cαrin(ti)

where the first inequality follows from |∇u| ≤ C0M (Lemma 2.5), and the last
inequality follows from (3.15).

Denote by VI , the average normal velocity of ∂Ωin on the time interval I.
Decompose the time interval [ti, ti+1] into subintervals of length αrin(ti)2, i.e.,
let

ti = ti0 < ti1 = ti0 + αrin(ti)2 < ti2 = ti1 + αrin(ti)2 < ... < tik = ti+1.
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For the construction of Ω1 satisfying the condition of the lemma, it suffices to
prove that

V[tij , ti j+1] ≤ C(n,M)/rin(ti). (3.23)

More precisely, given the estimate (3.23), the Lipschitz subregion Ω1 can be
constructed so that ∂Ω1 and ∂Ωin intersect at times t = sm with {sm} ⊂ [ti, ti+1]
and |sm+1 − sm| ≤ αrin(ti)2.

Below we prove (3.23). Let i ≥ 1. By Lemma 3.1, the average velocity of
∂Ωin on [ti−1, ti], that is V[ti−1,ti], is bounded above by

C(n,M)/
√

T − ti ≈ C(n,M)/rin(ti).

Then there exists τ ∈ [(ti−1 + ti)/2, ti] such that V[t,τ ] ≤ C(n,M)/rin(ti) for all
t ∈ [ti−1, τ ]. In particular, V[τ−αrin(ti)2,τ ] ≤ C(n,M)/rin(ti). Let

Σ = Brin(τ)(0)× [τ − αrin(ti)2, τ ].

Denote τ̃ = τ − αrin(ti)2 and let φ̃(x, t) be the maximal radial function such
that φ̃(x, t) ≤ u(x, t). Let ψ(x, t) be a solution of





∆ψ = ψt in Σ

ψ = 0 on ∂Σ

ψ = φ̃ on {t = τ̃}.

Then ψ ≤ u and by Lemma 2.1, ψ(·, τ) is almost harmonic in the c
√

αrin(ti)-
neighborhood of ∂Ωin

τ . Observe that ∂Σ is located in the Cαrin(ti)-neighborhood
of ∂Ωin, since V[τ̃ ,τ ] ≤ C(n,M)/rin(ti). Then by a similar argument as in (3.15)
and (3.16),

u− ψ = u ≤ C(n,M)αrin(ti) in Ω ∩ {τ̃ ≤ t ≤ τ} − Σ.

Also since the initial perturbation ρ ≤ α ≤ αM maxφ0,

ψ ≥ (1− C(n,M)α)u on Στ̃ .

Hence on ∂B(1−c
√

α)rin(ti)(0),

ψ(·, τ) ≥ u(·, τ)− C(n, M)αrin(ti) ≥ (1− C
√

α)u(·, τ) (3.24)

and |∇ψ| ≥ 1− C
√

α on ∂Ωin
τ for a constant C depending on n and M . (Oth-

erwise, there would exist a free boundary point at which |∇u| < 1.) Hence
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u(·, τ) is bounded below by a function ψ(·, τ) which is almost harmonic in the
c
√

αrin(ti)-neighborhood of ∂Ωin
τ with |∇ψ| ≥ 1 − C

√
α on ∂Ωin

τ . In fact, this
lower bound can be obtained with α replaced by any number ≥ α. Then by a
barrier argument, u(·, τ + αrin(ti)2) > 0 on Brin(τ)−Cαrin(ti)(0), i.e.,

V[τ,τ+αrin(ti)2] ≤ C(n,M)/rin(ti).

Next, we take τ1 ∈ [τ+αrin(ti)2/2, τ+αrin(ti)2] such that V[t,τ1] ≤ C(n,M)/rin(ti)
for all t ∈ [τ, τ1]. Then by a similar argument, we obtain (3.23) on the interval
[τ1, τ1 + αrin(ti)2]. By induction, (3.23) holds on each time interval with length
αrin(ti)2.

4 α-flatness of free boundary

In this section we prove the α-flatness of the free boundary Γ(u). More precisely,
for (x, t) ∈ Γ(u) we locate the free boundary part Γ(u)∩Q−

r(t)(x, t) in the Kαr(t)-
neighborhood of the Lipschitz boundary ∂Ω1. Here α is the size of the initial
perturbation and K is a constant depending on n and M .

• Denote by r(t), the radius of the time cross-section of Ω1 at time t, i.e.,

Ω1t = Br(t)(0) for 0 ≤ t ≤ T.

Note that by Lemma 3.2, r(t) ≤ rin(t) ≤ (1+Cα)r(t) for a constant C depending
on n and M .

Lemma 4.1. Let u0 be as in Theorem 1.1 and let α ≤ α(n,M) for a sufficiently
small α(n,M) > 0. Then

r(t) ≤ rout(t) ≤ (1 + Kα)r(t)

for t2 ≤ t ≤ T , and for a constant K > 0 depending on n and M . In other
words, Γt(u) is contained in the annulus B(1+Kα)r(t)(0)−Br(t)(0) for t2 ≤ t ≤ T .

Proof. Let K be a sufficiently large constant depending on n and M , which will
be chosen later. Let Ω2 be a space time region containing Ω1 such that its time
cross-section Ω2t is given by

Ω2t = (1 + Kα)Ω1t := B(1+Kα)r(t)(0)

for 0 ≤ t ≤ T . Since Ω1 is Lipschitz in a parabolic scaling for t ≥ t1, Ω2 is
also Lipschitz in a parabolic scaling for t ≥ t1. Now modify Ω2 as below for
0 ≤ t ≤ t2 so that it is Lipschitz for all t ≥ 0. Since rout(t1) ≈ rout(t2) ≈ 2, we
can construct Ω̃2 satisfying
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a. Ω̃2 ∩ {0 ≤ t ≤ t1} = B2(0)× [0, t1]

b. Ω̃2 ∩ {t1 ≤ t ≤ t2} ⊃ Ω2 ∩ {t1 ≤ t ≤ t2}
c. Ω̃2 ∩ {t2 ≤ t < T} = Ω2 ∩ {t2 ≤ t < T}
d. Ω̃2 is Lipschitz in a parabolic scaling.

Let w be a caloric function in Ω̃2 − Ω1 such that




∆w = wt in Ω̃2 − Ω1

w = u on {t = 0} ∪ (∂Ω1 ∩ {t > 0})

w = 0 on ∂Ω̃2 ∩ {t > 0}.

For the proof of the lemma, it suffices to prove u ≤ w since this inequality would
imply that the free boundary Γ(u) in contained in Ω2 for t ≥ t2, i.e., the outer
radius rout(t) ≤ (1 + Kα)r(t) for t ≥ t2. Below we prove u ≤ w.

1. Since the free boundary of u shrinks in time,

u ≤ w for 0 ≤ t ≤ t1. (4.1)

2. Using (3.22) and the Lipschitz property of Ω̃2, we will show that

u ≤ w for t1 ≤ t ≤ t4. (4.2)

Since u(·, t1) ≤ w(·, t1) (see (4.1)) and u = w on ∂Ω1, it suffices to prove that w
is a supersolution of (P ) for t1 < t < t4. Since u0 = ρ ≤ α on (Ω̃2−Ω1)∩{t = 0},
the bound (3.22) and the construction of w yield

maxw ≤ C0α (4.3)

for C0 = C0(n,M). On the other hand, since Ω̃2 is Lipschitz in a parabolic
scaling for t ≥ 0, w(·, t) is almost harmonic near its vanishing boundary ∂Ω̃2t

for t ≥ t1 (see Lemma 2.1). Observe that for t2 ≤ t ≤ t4

Ωt(w) = Ω̃2t − Ω1t = B(1+Kα)r(t)(0)−Br(t)(0)

and for t1 ≤ t ≤ t2

Ωt(w) ⊃ B(1+Kα)r(t)(0)−Br(t)(0)
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where r(t) ≈ 1 for t1 ≤ t ≤ t4 (see (3.2) and (3.12)). Hence we can observe that
if K = K(n, M) is chosen sufficiently large, then the almost harmonicity of w
with its upper bound (4.3) implies that w is bounded from above by a radial
linear function with a small slope so that

|∇w| < 1 on ∂Ω̃2 ∩ {t1 ≤ t ≤ t4}. (4.4)

Hence w is a supersolution for t1 < t < t4 and (4.2) follows.

3. Now suppose
u ≤ w for 0 ≤ t ≤ ti (4.5)

for a fixed i ≥ 4 and we show

u ≤ w for ti ≤ t ≤ ti+1.

First, observe that (4.5) implies the free boundary Γti−2(u) is trapped between

∂Ω1ti−2 = ∂Br(ti−2)(0) and ∂Ω̃2ti−2 = ∂B(1+Kα)r(ti−2)(0).

In other words, the inner and outer boundaries of Ω̃2 − Ω1 at time t = ti−2 are
located within a distance Kαr(ti−2) from the free boundary of u. Then since
|∇u| ≤ C0M , we obtain

u ≤ CKαr(ti−2) on (Ω̃2 − Ω1) ∩ {t = ti−2} (4.6)

for some C = C(n,M). Also by (3.22),

u ≤ Cαr(t) ≤ Cαr(ti−2) on ∂Ω1 ∩ {ti−2 ≤ t ≤ ti+1}. (4.7)

Now construct two caloric functions w1 and w2 in

Π := (Ω̃2 − Ω1) ∩ {ti−2 ≤ t ≤ ti+1}
such that 




∆w1 = ∂w1/∂t in Π

w1 = u on {t = ti−2}

w1 = 0 on ∂Ω1 ∪ ∂Ω̃2

and that 



∆w2 = ∂w2/∂t in Π

w2 = 0 on {t = ti−2} ∪ ∂Ω̃2

w2 = u on ∂Ω1.
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Below we prove
u ≤ w1 + w2

in Π ∩ {ti ≤ t ≤ ti+1} by showing that w1 + w2 is a supersolution of (P ) for
ti ≤ t ≤ ti+1. On Π ∩ {t = ti−1},

w1 + w2 ≤ maxw1(·, ti−1) + Cαr(ti−2)
≤ 2Cαr(ti−2) (4.8)

where the first inequality follows from (4.7) and the last inequality follows from
(4.6) if α ≤ α(n,M) for a sufficiently small α(n, M) > 0 since the time cross-
section of the domain Π, that is B(1+Kα)r(ti−2)(0)−Br(ti−2)(0), has a sufficiently
small thickness Kαr(t) for ti−2 ≤ t ≤ ti−1. By (4.7) and (4.8),

w1 + w2 ≤ C(n,M)αr(ti−2)

on the parabolic boundary of Π ∩ {ti−1 ≤ t ≤ ti+1} and hence

max
Π∩{ti−1≤t≤ti+1}

w1 + w2 ≤ C(n,M)αr(ti−2). (4.9)

Then by a similar argument as in (4.4) with (4.3) replaced by (4.9), we obtain

|∇(w1 + w2)| < 1

on ∂Ω̃2 ∩ {ti ≤ t ≤ ti+1} if α ≤ α(n,M) for a sufficiently small α(n,M) > 0.
Hence we conclude w1 + w2 is a supersolution of (P ) for ti ≤ t ≤ ti+1.

By the construction of w1 and w2,

u = w1 + w2

on the inner lateral boundary ∂Ω1 ∩{ti ≤ t ≤ ti+1} of Π∩{ti ≤ t ≤ ti+1}. Also

u(·, ti) ≤ (w1 + w2)(·, ti)
since the assumption (4.5) implies Ω(u) ∩ {ti−2 ≤ t ≤ ti} ⊂ Ω̃2. Hence we
conclude

u ≤ w1 + w2

in Π ∩ {ti ≤ t ≤ ti+1}. This implies that the free boundary Γt(u) is contained
in Ω̃2 for ti ≤ t ≤ ti+1. Now recall that the caloric function w has positive set
Ω̃2 − Ω1 with w = u on ∂Ω1 and w = 0 on ∂Ω̃2. Also by (4.5), u ≤ w at time
t = ti. Hence by comparison,

u ≤ w for ti ≤ t ≤ ti+1.
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5 Interior approximation of u by a radial function φ

In this section, we approximate the solution u by a radial function φ at interior
points, located α2/3r(t)-away from ∂Br(t)(0).

• Let φ be a radially symmetric function defined in Ω1 such that on each time
interval [ti, ti+1), φ(x, t) solves





∆φ = φt in Ω1 ∩ {ti < t < ti+1}

φ = 0 on ∂Ω1 ∩ {ti < t < ti+1}

φ(x, ti) = φ(|x|, ti) = min
{y:|y|=|x|}

u(y, ti) on Ω1 ∩ {t = ti}.

In other words,

(i) φ(·, ti) is the maximal radial function ≤ u.

(ii) φ(x, t) is caloric in Ω1∩{ti < t < ti+1} with φ = 0 on ∂Ω1∩{ti < t < ti+1},
and φ = φ(·, ti) on Ω1 ∩ {t = ti}.

Note that φ need not be continuous at t = ti. By comparison, φ ≤ u.

Lemma 5.1. Let u0 be as in Theorem 1.1 and let α ≤ α(n,M) for a sufficiently
small α(n,M) > 0. Let ε = 2/3 and let t ∈ [t2, T ). Then on B(1−αε)r(t)(0)

φ(·, t) ≤ u(·, t) ≤ (1 + Cα1−ε)φ(·, t) (5.1)

for a constant C > 0 depending on n and M .

Proof. Fix τ ∈ [ti, ti+1) for i ≥ 2. Let w solve




∆w = wt in Ω1 ∩ {ti−1 < t < τ}

w = 0 on ∂Ω1 ∩ {ti−1 < t < τ}

w = φ on Ω1 ∩ {t = ti−1}.
Observe that w is a radially symmetric function with w ≤ u. Since φ(·, ti) is
the maximal radial function ≤ u(·, ti), we obtain

w(·, ti) ≤ φ(·, ti).
Then by comparison

w ≤ φ for ti−1 ≤ t ≤ τ. (5.2)
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On the other hand, by a similar argument as in the proof of (3.15) we obtain

u(·, ti)− φ(·, ti) ≤ Cαr(ti) (5.3)

for C = C(n, M) > 0 and i ∈ N since u is periodic in angle with period ≤ α,
|∇u| ≤ C0M and φ(·, ti) is the maximal radial function ≤ u(·, ti). Hence for
some C = C(n,M) > 0

Cr(ti−1) ≤ maxu(·, ti−1)
≤ 2maxφ(·, ti−1) = 2 maxw(·, ti−1)

where the first inequality follows from Lemma 3.1 and the second inequality
follows from (5.3). The above inequality implies that for C = C(n,M) > 0

Cr(τ) ≤ maxw(·, τ) (5.4)

since r(ti−1) ≈ r(t) for ti−1 ≤ t ≤ τ (Lemma 3.1), |∇u| ≤ C0M (Lemma 2.5) and
Ω1 is Lipschitz in a parabolic scaling. The Lipschitz property of Ω1∩{ti−1 ≤ t ≤
τ} implies that w(·, τ) is almost harmonic near ∂Ω1τ (Lemma 2.1). Then by a
similar reasoning as in (4.4) with the lower bound (5.4), we obtain that w(|x|, τ)
is bounded from below by a radial linear function vanishing on |x| = r(τ), with
slope c = c(n,M). Hence on B(1−αε)r(τ)(0)

c(n,M)αεr(τ) ≤ w(·, τ) ≤ φ(·, τ) (5.5)

where the last inequality follows from (5.2).
Now observe that by (5.3)

u(·, ti)− φ(·, ti) ≤ Cαr(ti)

and on ∂Ω1 ∩ {ti < t < τ}
u− φ = u ≤ Cαr(ti)

where the inequality follows from (3.22) and Lemma 3.1. Hence by comparison

u(·, t)− φ(·, t) ≤ Cαr(ti) (5.6)

for ti ≤ t ≤ τ . Conclude that on B(1−αε)r(τ)(0)

u(·, τ)− φ(·, τ) ≤ Cαr(ti)
≤ Cαr(τ)
≤ Cα1−εφ(·, τ)

for C = C(n,M) > 0 where the first inequality follows from (5.6), the second
inequality follows from Lemma 3.1 and the last inequality follows from (5.5).
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6 Interior improvement by flatness of boundary

We improve the interior estimate in Lemma 5.1, using the flatness of the free
boundary, that is Lemma 4.1. More precisely, the constant C in the interior
estimate (5.1) improves in time, up to an order determined by the ‘flatness
constant’ of the free boundary. Let u0 be as in Theorem 1.1 and let α ≤ α(n,M)
for a sufficiently small α(n,M) > 0, throughout the rest of the paper.

• Let φ̃ be a radially symmetric function defined in Ω1 such that

φ̃(x, t) = φ̃(|x|, t) = min
{y:|y|=|x|}

u(y, t).

In other words, φ̃ is the maximal radial function in Ω1 such that φ̃ ≤ u. Note
that φ(·, ti) = φ̃(·, ti) for i ∈ N, and φ ≤ φ̃ since φ is radial with φ ≤ u.

Lemma 6.1. Let ε = 2/3. Assume

(a) (5.1) holds at time t = ti, i.e., on B(1−αε)r(ti)(0)

u(·, ti) ≤ (1 + Cα1−ε)φ(·, ti)

(b) For ti ≤ t ≤ ti+1, Γt(u) is contained in B(1+Kα)r(t)(0)−Br(t)(0) for some
constant K satisfying

1 ≤ K < α
ε−1
2 C (6.1)

(c) on Br(ti)(0)−B(1−αε)r(ti)(0),

u(·, ti) ≤ φ(·, ti) + L(C + K)αr(ti)

where L is a positive constant depending on n and M ; C and K are the same
constants as in (a) and (b). Then for a constant 0 < h = h(n,M) < 1, the
condition (a) holds with C replaced by hC at time t = ti+1, i.e.,

u(·, ti+1) ≤ (1 + hCα1−ε)φ(·, ti+1) (6.2)

on B(1−αε)r(ti+1)(0). If we further assume

u(x, t) ≤ (1 + Cα1−ε)φ̃(x, t) (6.3)

for ti ≤ t ≤ ti+1 and x ∈ B(1−αε)r(t)(0), then the condition (c) holds with C
replaced by hC at time t = ti+1, i.e.,

u(·, ti+1) ≤ φ(·, ti+1) + L(hC + K)αr(ti+1) (6.4)

on Br(ti+1)(0)−B(1−αε)r(ti+1)(0).
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Proof. For the proof of (6.2), construct caloric functions ψ1, ψ2, ψ3 and ψ4 in
Σ := Ω1 ∩ {ti < t < ti+1} with the following boundary values





ψ1 = φ on Br(ti)(0)× {t = ti}

ψ1 = 0 otherwise on ∂Σ





ψ2 = u− φ on B(1−αε)r(ti)(0)× {t = ti}

ψ2 = 0 otherwise on ∂Σ





ψ3 = u− φ on Br(ti)(0)−B(1−αε)r(ti)(0)× {t = ti}

ψ3 = 0 otherwise on ∂Σ





ψ4 = u on ∂Σ ∩ {ti < t < ti+1}

ψ4 = 0 otherwise on ∂Σ.

Then in Σ
u = ψ1 + ψ2 + ψ3 + ψ4

where ψ1 is radially symmetric since φ is radially symmetric and Ω1 is radial.
For j = 2, 3, 4, let ψj1(·) be the maximal radial function on Br(ti+1)(0) such that
ψj1(·) ≤ ψj(·, ti+1) and write ψj(·, ti+1) = ψj1(·) + ψj2(·). Since φ(·, ti+1) is the
maximal radial function ≤ u(·, ti+1),

φ(·, ti+1) ≥ ψ1(·, ti+1) + ψ21(·) + ψ31(·) + ψ41(·).
Hence for (6.2), it suffices to prove

ψ22(·) + ψ32(·) + ψ42(·) ≤ hCα1−εφ(·, ti+1).

1. First, we prove that for some constant 0 < h0 = h0(n,M) < 1

ψ22(·) ≤ h0Cα1−εφ(·, ti+1). (6.5)

Suppose that at some x ∈ Br(ti+1)(0)

ψ2(x, ti+1) >
1
2
Cα1−εψ1(x, ti+1). (6.6)

(Otherwise, (6.5) would hold with h0 = 1/2 since ψ1 ≤ φ and ψ22 ≤ ψ2.) Since
Σ is Lipschitz in a parabolic scaling (Lemma 3.2), Lemma 2.1 imply that near
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the vanishing boundary ∂Br(ti+1)(0), ψ1(·, ti+1) and ψ2(·, ti+1) are comparable
to some harmonic functions vanishing on ∂Br(ti+1)(0). Hence (6.6) implies that
on Br(ti+1)(0)

ψ2(·, ti+1) ≥ h1Cα1−εψ1(·, ti+1)

for some constant 0 < h1 = h1(n,M) < 1. Since ψ1 is radially symmetric and
ψ21 is the maximal radial function ≤ ψ2, the above inequality implies

ψ21 ≥ h1Cα1−εψ1(·, ti+1). (6.7)

Let h0 = 1− h1, then on Br(ti+1)(0)

ψ22(·) = ψ2(·, ti+1)− ψ21(·) ≤ Cα1−εψ1(·, ti+1)− ψ21(·)
≤ (1− h1)Cα1−εψ1(·, ti+1)
≤ h0Cα1−εφ(·, ti+1)

where the first inequality follows from the assumption (a) with the construction
of ψ1 and ψ2, and the second inequality follows from (6.7). Hence we obtain
the upper bound (6.5) of ψ22.

2. Next we show

ψ32(·) ≤ 1− h0

3
Cα1−εφ(·, ti+1). (6.8)

By the assumption (c) with the construction of ψ3,

maxψ3(·, ti) ≤ L(C + K)αr(ti)

on the annulus R := Br(ti)(0)−B(1−αε)r(ti)(0). Let |R| denote the volume of R,
then |R| ≈ αε|Br(ti)(0)|. Hence there exists a small constant c(αε, n) > 0 such
that

maxψ3(·, ti+1) ≤ c(αε, n)L(C + K)αr(ti)

where c(αε, n) → 0 as α → 0. Since r(ti) ≈ r(ti+1) ≈ maxψ1(·, ti+1) (Lemma 3.1),

maxψ3(·, ti+1) ≤ c(αε, n)C0(n,M)L(C + K)α maxψ1(·, ti+1) (6.9)

for some C0(n, M) > 0. Hence on Br(ti+1)(0)

ψ32(·) ≤ ψ3(·, ti+1) ≤ c(αε, n)C1(n,M)L(C + K)αψ1(·, ti+1)
≤ c(αε, n)C1(n,M)L(C + K)αφ(·, ti+1)

≤ c(αε, n)C2(n,M)LCα
ε+1
2 φ(·, ti+1)

≤ 1− h0

3
Cα1−εφ(·, ti+1) (6.10)
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where C1(n,M) and C2(n,M) are positive constants depending on n and M , the
first inequality follows from the almost harmonicity of ψ3(·, ti+1) and ψ1(·, ti+1)
with (6.9), the second inequality follows since ψ1 ≤ φ, the third inequality
follows from (6.1), and the last inequality follows if α < α(n,M) for a sufficiently
small α(n,M) > 0 (since ε = 2/3 and L and h0 are constants depending on n
and M).

3. Since ψ42(·) = ψ4(·, ti+1) − ψ41(·) where ψ41(·) is the maximal radial
function ≤ ψ4(·, ti+1),

max
∂Bs(0)

ψ42(·) = max
∂Bs(0)

ψ4(·, ti+1)− ψ41|∂Bs(0)

= max
∂Bs(0)

ψ4(·, ti+1)− min
∂Bs(0)

ψ4(·, ti+1) (6.11)

for 0 ≤ s ≤ r(ti+1). Below we prove that the right hand side of (6.11) is bounded
from above by

1− h0

3
Cα1−εφ(·, ti+1)

if 0 ≤ s ≤ (1− αε)r(ti+1).
Let 0 < s ≤ (1 − αε)r(ti+1). Let x1 be a maximum point of ψ4 on ∂Bs(0),

i.e.,
max

∂Bs(0)
ψ4(·, ti+1) = ψ4(x1, ti+1).

Since ψ4 is periodic in angle with period ≤ α, there exists a minimum point x2

of ψ4 on ∂Bs(0) such that

min
∂Bs(0)

ψ4(·, ti+1) = ψ4(x2, ti+1)

and
|x1 − x2| < Cnαr(ti+1)

where Cn is a dimensional constant. Recall that ψ4 is a nonnegative caloric
function in Σ with

max
Σ

ψ4 = max
∂Ω1∩{ti<t<ti+1}

u ≤ C(n, M)αr(ti) ≤ C(n,M)Kαr(ti) (6.12)

where the first inequality follows from (3.22) and the last inequality follows if
K ≥ 1. Now apply Lemma 2.4 for ψ4 with δ = αεr(ti+1) and σ = Cnαr(ti+1)/δ.
Then the upper bound (6.12) of ψ4 implies that on Q−

σδ(x1, ti+1)

|∇ψ4| ≤ C(n,M)Kαr(ti)
αεr(ti+1)

.
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Since |x1 − x2| < Cnαr(ti+1) = σδ, the above bound on |∇ψ4| yields that

max
∂Bs(0)

ψ4(·, ti+1)− min
∂Bs(0)

ψ4(·, ti+1) = ψ4(x1, ti+1)− ψ4(x2, ti+1)

≤ C(n,M)Kα2−εr(ti)
≤ C1Kα2−εr(ti+1) (6.13)

for a constant C1 depending on n and M . Suppose α < α(n,M) for a sufficiently
small constant α(n,M) > 0, then we can bound the right hand side of (6.13) as
in below

C1Kα2−εr(ti+1) ≤ C1Kα2−2ε min{φ(x, ti+1) : x ∈ B(1−αε)r(ti+1)(0)}
≤ C1Cα3(1−ε)/2 min{φ(x, ti+1) : x ∈ B(1−αε)r(ti+1)(0)}

≤ 1− h0

3
Cα1−ε min{φ(·, ti+1) : x ∈ B(1−αε)r(ti+1)(0)}

where C1 denotes a constant depending on n and M different in places, the first
inequality follows from (5.5), the second inequality follows from (6.1), and the
last inequality follows if α(n,M) is sufficiently small since ε = 2/3 and h0 is a
constant depending on n and M . Combining the above inequality with (6.11)
and (6.13) we obtain that

ψ42(·, ti+1) ≤ 1− h0

3
Cα1−εφ(·, ti+1) (6.14)

on B(1−αε)r(ti+1)(0).
From the upper bounds (6.5), (6.8) and (6.14) on ψ22, ψ32 and ψ42, we

conclude
ψ22 + ψ32 + ψ42 ≤ h0 + 2

3
Cα1−εφ(·, ti+1)

on B(1−αε)r(ti+1)(0). Hence the first part of the lemma, that is (6.2), follows for
the constant h := (h0 + 2)/3 < 1.

Next we prove the second part of the lemma, that is (6.4). Let Π be a thin
subregion of Ω1 ∩ {ti ≤ t ≤ ti+1} such that

Πt = Br(t)(0)−B(1−αε)r(t)(0)

for ti ≤ t ≤ ti+1. Decompose u into a sum of three caloric functions w1, w2 and
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w3, which are defined in Π with the following boundary conditions




w1(·, t) = u(·, t) on ∂B(1−αε)r(t)(0) for ti ≤ t ≤ ti+1

w1 = 0 otherwise on ∂Π





w2(·, t) = u(·, t) on ∂Br(t)(0) for ti ≤ t ≤ ti+1

w2 = 0 otherwise on ∂Π





w3(·, ti) = u(·, ti) on Br(ti)(0)−B(1−αε)r(ti)(0)

w3 = 0 otherwise on ∂Π.

Observe u = w1 + w2 + w3 in Π. Let w11 be the maximal radial function such
that w11(·) ≤ w1(·, ti+1) and let w31 be the maximal radial function such that
w31(·) ≤ w3(·, ti+1). Then on Br(ti+1)(0)−B(1−αε)r(ti+1)(0)× {t = ti+1}

u− φ ≤ (w1 − w11) + w2 + (w3 − w31)

since φ(·, ti+1) is the maximal radial function ≤ u(·, ti+1). Hence for (6.4), it
suffices to prove that the right hand side of the above inequality is bounded by
L(hC + K)αr(ti+1).

1. Bound on w1 − w11:

w1(·, ti+1)− w11(·) ≤ Cα1−εw11(·)
≤ Cα1−εC1(n,M)αεr(ti+1)

≤ hCL

2
αr(ti+1)

where the first inequality follows from the assumption (6.3) since

w1 = u ≤ φ̃ + Cα1−εφ̃

on ∂B(1−αε)r(t)(0)×{t} and w11 is bounded below by a radial caloric function in
Π with boundary value φ̃ on ∂B(1−αε)r(t)(0)×{t}, the second inequality follows
from maxw11 ≤ max

Π
u ≤ C1(n,M)αεr(ti+1), and the last inequality holds if

L = L(n,M) is a sufficiently large constant depending on n an M .

2. Bound on w2: For ti ≤ t ≤ ti+1,

max
∂Br(t)(0)

u(·, t) ≤ C(n,M)αr(t) ≤ C(n,M)Kαr(t) (6.15)
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where the first inequality follows from (3.22) and the last inequality follows if
K ≥ 1. Hence from the construction of w2,

maxw2(·, ti+1) ≤ C(n,M)Kαr(ti+1)

≤ LK

2
αr(ti+1)

where the last inequality follows if L = L(n, M) is sufficiently large.

3. Bound on w3−w31: A similar argument as in (6.9) shows that (c) implies

w3(·, ti+1)− w31(·) ≤ c(αε, n)C(n,M)L(C + K)αr(ti+1)

where c(αε, n) → 0 as α → 0. Hence if α < α(n,M) for a sufficiently small
α(n,M), then

w3(·, ti+1)− w31(·) ≤ hL(C + K)
2

αr(ti+1).

Combing the above bounds on w1 − w11, w2, and w3 − w31, we conclude

u(·, ti+1)− φ(·, ti+1) ≤ w1(·, ti+1)− w11 + w2(·, ti+1) + w3(·, ti+1)− w31

≤ L(hC + K)αr(ti+1)

Remark 4. In Lemma 6.1, we assume K ≥ 1 for the simplicity of proof.
In the proof of Lemma 6.1, this assumption is used only for (6.12) and (6.15),
i.e., for a bound on max∂Ω1 u. Later, to iterate Lemma 6.1 and Lemma 7.1 for
a decreasing sequence of K < 1, we will modify and improve the inner region
Ω1 so that (6.12) and (6.15) are guaranteed for K < 1 (see Corollary 7.2).

Corollary 6.2. Let 0 < h < 1 and ε = 2/3 be as in Lemma 6.1. Let m be the
largest integer satisfying

1 < α
ε−1
2 hm.

Then for j ≥ m + 2, (a) and (c) of Lemma 6.1 hold with C replaced by α
1−ε
2 C

at time t = tj. Here C > 0 is a constant depending on n and M .

Proof. By Lemma 4.1 and Lemma 5.1, the conditions (a) and (b) of Lemma 6.1
are satisfied with C = K = C(n,M) ≥ 1 for i ≥ 2. The condition (c) of
Lemma 6.1 follows from (5.6) for i ≥ 2. Also the condition (6.3) holds for t ≥ t2
by Lemma 5.1 with φ ≤ φ̃. Hence applying Lemma 6.1, we obtain that the
conditions (a) and (c) hold with C replaced by hC for i ≥ 3.
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On the other hand, the inequality (6.1) of the condition (b) holds for the
constants K and hC if α < α(n,M) for a sufficiently small α(n,M) so that
K = C < α

ε−1
2 hC. Hence the condition (b) holds for i ≥ 3 with the improved

constant hC.
Next we verify the condition (6.3) with C replaced by hC for t ≥ t3. Fix

τ ∈ (ti, ti+1) for i ≥ 3. Decompose the time interval (0, T ) so that

0 < s1 = t1 < ... < si−1 = ti−1 < si = τ < si+1 = ti+2 < ... < T.

Then by a similar argument as in the proof of (6.2) of Lemma 6.1,

u(·, τ) ≤ (1 + hCα1−ε)φ̃(·, τ) on B(1−αε)r(τ)(0).

Hence the condition (6.3) is satisfied for t ≥ t3 with C replaced by hC. Then
applying Lemma 6.1 for i ≥ 3, we obtain a better constant h2C for the conditions
(a) and (c) for i ≥ 4.

Now let m be the largest integer satisfying

1 < α
ε−1
2 hm.

Then the inequality (6.1) holds with C replaces by hjC for 1 ≤ j ≤ m. Hence
we can iterate Lemma 6.1 m times, as above, and obtain the improved constant
α

1−ε
2 C in (a) and (c) for i ≥ m + 2. In other words, for i ≥ m + 2

u(·, ti) ≤ (1 + α
1−ε
2 Cα1−ε)φ(·, ti)

on B(1−αε)r(ti)(0) and

u(·, ti) ≤ φ(·, ti) + L(α
1−ε
2 C + K)αr(ti)

on Br(ti)(0)−B(1−αε)r(ti)(0).

7 Improvement on flatness by interior estimate;
Asymptotic behavior of free boundary

In this section we show that the improved interior estimate, as in Corollary 6.2,
propagates to the free boundary at later times and gives an improved estimate
on the location of the free boundary. More precisely, we improve the constant K
in condition (b) of Lemma 6.1, using the improved constants in the conditions
(a) and (c).
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Lemma 7.1. Suppose that (a), (b) and (c) of Lemma 6.1 hold for i ≥ i0 with
C = β, a small constant. Then for i ≥ i0 +2, (b) and (c) holds with K replaced
by C1β, for a constant C1 > 0 depending on n and M . In other words, Γt(u) is
contained in B(1+C1βα)r(t)(0)−Br(t)(0) for t ≥ ti0+2, and

u(·, ti) ≤ φ(·, ti) + L(β + C1β)αr(ti)

on Br(ti)(0)−B(1−αε)r(ti)(0) for i ≥ i0 + 2.

Proof. To prove the lemma at t = ti0+2, we will construct a radially symmetric
caloric function w ≤ u and a radially symmetric supercaloric function v ≥
u such that their free boundaries Γti0+2(w) and Γti0+2(v) are located in the
C1βαr(ti0+2)-neighborhood of each other. Recall that u is well approximated
by a radial function φ on each dyadic time interval. However the function φ (or
w1 which will be constructed below) does not catch up the change in values of u
caused by the displacement of the free boundary from ∂Ω1. Hence we modify the
approximating function w1 by adding an auxiliary function w2, and construct
two caloric functions w ≤ u and v ≥ u using the modified approximation,
w1 + w2, of u.

Let w1 solve




∆w1 = ∂w1/∂t in Ω1 ∩ {ti0 < t < ti0+2}

w1 = φ on Ω1 ∩ {t = ti0}

w1 = 0 on ∂Ω1 ∩ {ti0 < t < ti0+2}.

Note that w1 = φ for ti0 ≤ t < ti0+1 and w1 ≤ φ for ti0+1 ≤ t ≤ ti0+2.
Recall that ψi (1 ≤ i ≤ 4) are the caloric functions constructed in the proof of
Lemma 6.1. Let ψ̃4 solve





∆ψ̃4 = ∂ψ̃4/∂t in Ω1 ∩ {ti0 < t < ti0+2}

ψ̃4 = 0 on Ω1 ∩ {t = ti0}

ψ̃4 = u on ∂Ω1 ∩ {ti0 < t < ti0+2}.

Note that ψ̃4 = ψ4 for ti0 ≤ t < ti0+1 and ψ̃4 ≥ ψ4 for ti0+1 ≤ t ≤ ti0+2. Let Σ′

be a space time region in Ω1 ∩ {ti0 ≤ t ≤ ti0+2} such that its time cross-section

Σ′t = Br(t)(0)−B(1−αε)r(t)(0)
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for ti0 ≤ t ≤ ti0+2. Let w2 solve




∆w2 = ∂w2/∂t in Σ′

w2 = 0 on {t = ti0} ∪ ∂Ω1

w2 = ψ̃4 on ∂Σ′ − {t = ti0} − ∂Ω1.

Note that w2 has a nonzero boundary values ψ̃4(·, t) only on the inner boundary
∂B(1−αε)r(t)(0)× {t} of Σ′. Now let

w = w1 + w2 in Σ′.

Then w = φ ≤ u on {t = ti0} and w = w1+ψ̃4 ≤ u on ∂B(1−αε)r(t)(0)×{t} since
w1 + ψ̃4 is caloric in Ω1 ∩{ti0 < t < ti0+2} with w1 + ψ̃4 ≤ u on ∂Ω1 ∪{t = ti0}.
Hence by comparison

w ≤ u in Σ′.

Next to construct a supercaloric function v ≥ u, we modify the boundary of
w on the time interval [ti0+1, ti0+2] and also modify the values of w in the new
region so that it is a supersolution of (P ) with larger boundary values than u.
Let f(t) be the linear function defined on the interval [ti0+1, ti0+2] such that





f(ti0+1) = 1− C1Kα

f(ti0+2) = 1− 2C1βα

where C1 = C1(n,M) is a sufficiently large constant which will be determined
later. Here we assume K > 2β since otherwise the lemma would hold with
C1 = 2. For a fixed t ∈ [ti0+1, ti0+2], let g(x, t) be the harmonic function defined
in Br(t)/f(t)(0)−B(1−αε)r(t)/f(t)(0) such that





g(x, t) = 1 for x ∈ ∂Br(t)/f(t)(0)

g(x, t) = 1− C1Kα for x ∈ ∂B(1−αε)r(t)/f(t)(0).

Let Π be a space time region constructed on the time interval [ti0+1, ti0+2] such
that its time cross-section

Πt = Br(t)/f(t)(0)−B(1−αε)r(t)/f(t)

for t ∈ [ti0+1, tt+2]. Now construct a function v in Π as follows

v(x, t) = g(x, t)w(f(t)x, t).
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We will show that v is a supersolution of (P ) satisfying v ≥ u on the parabolic
boundary of Π.

1. To prove that v is supercaloric in Π, we find some bounds on |f ′(t)|, |gt|,
|∇g|, w, |∇w| and |wt|.

(1) Since f is linear and ti0+2 − ti0+1 ≈ r2(ti0+1) (Lemma 3.1)

|f ′(t)| ≤ C(n,M)C1Kα

r2(ti0+1)
. (7.1)

(2) Since g(·, t) is harmonic on the annulus Br(t)/f(t)(0)−B(1−αε)r(t)/f(t)(0)

c(n)C1Kα

αer(t)
≤ |∇g| ≤ C(n)C1Kα

αer(t)
. (7.2)

(3) From the construction of g

|gt| ≤ max |∇g|( d

dt

r(t)
f(t)

+ r′(t))

≤ max |∇g|C(n,M)(
C1Kα

r(ti0+1)
+ r′(t))

≤ max |∇g|C(n,M)
C1Kα + 1
r(ti0+1)

≤ C(n,M)C1Kα(C1Kα + 1)
αer2(ti0+1)

(7.3)

where the second inequality follows from (7.1), the third inequality follows
from the Lipschitz property of Ω1 (Lemma 3.2) with Lemma 3.1, and the
last inequality follows from (7.2) with Lemma 3.1.

(4) Since maxφ(·, t) ≈ maxu(·, t) ≈ r(t),

maxw1(·, t) ≈ r(t). (7.4)

(5) Since w1 is a caloric function vanishing on the Lipschitz boundary ∂Ω1 ∩
{ti0 < t < ti0+2}, w1 is almost harmonic near ∂Ω1∩{ti0+1 ≤ t ≤ ti0+2} by
Lemma 2.1. Hence (7.4) implies that for (x, t) ∈ Σ′ ∩ {ti0+1 ≤ t ≤ ti0+2}

c(n,M)dist(x, ∂Br(t)(0)) ≤ w1(x, t) ≤ C(n,M)dist(x, ∂Br(t)(0)). (7.5)
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(6) Applying Lemma 2.3 to the re-scaled w1(
√

ti0+2x, ti0+2t), we obtain that
for t ∈ (ti0+1, ti0+2) and x ∈ Br(t)(0)−B(1−αε)r(t)(0)

c(n,M) ≤ |∇w1(x, t)| ≤ C(n,M) (7.6)

and
|∂w1/∂t| ≤ C(n,M)r(ti0+1)

ti0+2
≤ C(n,M)

r(ti0+1)
(7.7)

where (7.6) and the first inequality of (7.7) follow from (7.5) and the
second inequality of (7.7) follows from Lemma 3.1.

(7) From the construction of ψ̃4,

max ψ̃4 = max
∂Ω1∩{ti0≤t≤ti0+2}

u ≤ C(n,M)Kαr(ti0)

where the last inequality follows from |∇u| ≤ C0M (Lemma 2.5) and the
condition (b). Hence by Lemma 2.4,

max
∂B(1−αε)r(t)(0)

|∇ψ̃4(x, t)| ≤ C(n,M)Kα1−ε

and

max
∂B(1−αε)r(t)(0)

|∂ψ̃4

∂t
(x, t)| ≤ C(n,M)Kα1−2ε

r(t)
.

Recall that the caloric function w2 vanishes on the Lipschitz boundary
∂Ω1 and on {t = ti0}, and it has nonzero boundary values ψ̃4 only on
the inner boundary of Σ′, i.e., on ∂B(1−αε)r(t)(0) × {t}. Since the inner
boundary of Σ′ is also Lipschitz in a parabolic scaling, the above bounds
on |∇ψ̃4| and |∂ψ̃4/∂t| yield that

|∇w2| ≤ C(n,M)Kα1−ε, |∂w2/∂t| ≤ C(n,M)Kα1−2ε

r(t)
in Σ′. (7.8)

(8) Combining (7.5), (7.6), (7.7) and (7.8), we obtain

c(n,M)dist(x, ∂Br(t)(0)) ≤ w(x, t) ≤ C(n,M)dist(x, ∂Br(t)(0)) (7.9)

c(n,M) ≤ |∇w(x, t)| ≤ C(n, M) (7.10)

and
|∂w/∂t| ≤ C(n,M)

r(ti0+1)
. (7.11)

(Here recall that ε = 2/3 and α < α(n,M) for a sufficiently small α(n, M).)
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Now we prove the supercaloricity of v in Π.

∆v − vt ≤ 2f∇g · ∇w + gf2∆w − gtw + g|∇w||f ′||x| − gwt

≤ 2f∇g · ∇w − gtw + g|∇w||f ′||x|+ 2C1Kαg|wt|
≤ −C(n,M)|∇g||∇w|+ |gt|w + g|∇w||f ′||x|+ 2C1Kαg|wt|
≤ −C(n, M)C1Kα

αer(ti0+1)
+

C ′(n, M)C1Kα

r(ti0+1)
≤ 0

where the first and second inequalities follow from the construction of v, the
third inequality follows from the monotonicity of w1, i.e., from Lemma 2.2
applied for w1 with the gradient bounds (7.6) and (7.8) of w1 and w2 (note g is
radial and increasing in |x|), the forth inequality follows from (7.1), (7.2), (7.3),
(7.9), (7.10) and (7.11) for constants C(n, M) and C ′(n,M) depending on n
and M , and the last inequality follows if α < α(n,M) for a sufficiently small
α(n,M) > 0.

2. For x ∈ ∂Br(t)/f(t)(0) and t ∈ [ti0+1, ti0+2],

|∇v(x, t)| = |w(f(t)x, t)∇g(x, t) + g(x, t)f(t)∇w(f(t)x, t)|
= |g(x, t)f(t)∇w(f(t)x, t)|
≤ (1− 2C1βα)|∇w| ≤ 1

where the second equality follows since w = w1 + w2 = 0 on ∂Br(t)(0), the first
inequality follows since f ≤ 1− 2C1βα and g = 1 on ∂Br(t)/f(t)(0), and the last
inequality follows since w ≤ u and ∂Ω1 and ∂Ω(u) intersect on each small time
interval. Hence v is a supersolution of (P ) in Π.

3. We show u ≤ v on Π∩ {t = ti0+1}. Recall that w1 = φ for ti0 ≤ t < ti0+1

and w1 is not necessarily equal to φ at time t = ti0+1 since φ(·, ti0+1) is defined
to be the maximal radial function ≤ u(·, ti0+1). However by a similar argument
as in the proof of Lemma 6.1, we can show that if the assumptions (a), (b) and
(c) of Lemma 6.1 hold for i = i0 and C = β then

u(·, ti0+1) ≤ w1(·, ti0+1) + C(n,M)Kαr(ti0+1) (7.12)

on Br(ti0+1)(0)−B(1−αε)r(ti0+1)(0) where C(n,M) is a constant depending on n
and M . To prove (7.12), recall that

u = ψ1 + ψ2 + ψ3 + ψ4

in Ω1 ∩ {ti0 ≤ t ≤ ti0+1}, where ψi are the caloric functions constructed in the
proof of Lemma 6.1 with i = i0. From the construction of ψ1, we can observe
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w1(·, ti0+1) = ψ1(·, ti0+1). Also on Br(ti0+1)(0)× {t = ti0+1}
ψ2 + ψ3 + ψ4 ≤ βα1−εψ1 + ψ3 + ψ4

≤ 2βα1−εψ1 + ψ4

≤ 2βα1−εψ1 + C(n,M)Kαr(ti0+1) (7.13)

where the first inequality follows from the construction of ψ1 and ψ2 and the
condition (a) with i = i0 and C = β, the second inequality follows from (6.10)
with C = β and with ψ1 in place of φ, and the last inequality follows from (6.12)
and Lemma 3.1. Hence on Br(ti0+1)(0)−B(1−αε)r(ti0+1)(0)× {t = ti0+1}

u = w1 + ψ2 + ψ3 + ψ4

≤ (1 + 2βα1−ε)w1 + C(n,M)Kαr(ti0+1)
≤ w1 + C(n,M)(βαr(ti0+1) + Kαr(ti0+1))
≤ w1 + C(n,M)Kαr(ti0+1)

where the equality follows from ψ1 = w1, the first inequality follows from (7.13),
the second inequality follows from (7.6), and the last inequality follows since
K > 2β. Hence we obtain (7.12).

Now on Π ∩ {t = ti0+1} (= Br(ti0+1)(0)−B(1−αε)r(ti0+1)(0)× {t = ti0+1})
v(x, ti0+1) ≥ (1− C1Kα)w1((1− C1Kα)x, ti0+1)

≥ (1− C1Kα)(w1(x, ti0+1) + c(n,M)C1Kαr(ti0+1))
≥ w1(x, ti0+1)− C(n,M)C1Kα1+εr(ti0+1) + C(n,M)C1Kαr(ti0+1)
≥ w1(x, ti0+1) + C(n,M)C1Kαr(ti0+1)
≥ u(x, ti0+1)

where the first inequality follows from the construction of v, the second in-
equality follows from (7.6) with the monotonicity of w1 (Lemma 2.2), the third
inequality follows from (7.6), the forth inequality follows if α < α(n,M) for a
sufficiently small α(n,M) > 0, and the last inequality follows form (7.12) if we
choose a sufficiently large constant C1 depending on n and M .

4. We show v ≥ u on the inner lateral boundary of Π, i.e., on the set
∂B(1−αε)r(t)(0)× {t} for t ∈ [ti0+1, ti0+2]. By the construction of w,

w = w1 + ψ̃4 on ∂B(1−αε)r(t)(0)× {t}. (7.14)

Here recall that w1 + ψ̃4 is a caloric function in Ω1 ∩ {ti0 ≤ t ≤ ti0+2} with
boundary values u on ∂Ω1, and φ on {t = ti0}. Then by a similar argument as
in (7.13),

u− (w1 + ψ̃4) ≤ 2βα1−εw1 (7.15)
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in Ω1 ∩ {ti0+1 ≤ t ≤ ti0+2}. Combining (7.14) and (7.15) we obtain that on
∂B(1−αε)r(t)(0)× {t} and for t ∈ [ti0+1, ti0+2]

u ≤ w + 2βα1−εw1 ≤ (1 + 2βα1−ε)w. (7.16)

Now for x ∈ ∂B(1−αε)r(t)(0) and t ∈ [ti0+1, ti0+2],

v(x, t) ≥ (1− C1Kα)w((1− 2C1βα)x, t)
≥ (1− C1Kα)(w(x, t) + C(n,M)C1βαr(t))
≥ w(x, t) + C(n,M)C1βαr(t)− C(n,M)C1Kα1+εr(t)

≥ w(x, t) + C(n,M)C1βαr(t)− C(n,M)C1α
ε−1
2 βα1+εr(t)

≥ w(x, t) + C(n,M)C1βαr(t)
≥ (1 + 2βα1−ε)w(x, t)
≥ u(x, t)

where the first inequality follows since w is decreasing in |x|, the second and third
inequalities follow from (7.10), the fourth inequality follows from the assumption
(6.1) with C = β, that is K < α(ε−1)/2β, the fifth inequality follows since
ε = 2/3, the sixth inequality follows from (7.10) if C1 = C1(n,M) is chosen
sufficiently large, and the last inequality follows from (7.16).

5. Conclude from 1, 2, 3 and 4 that v is a supersolution of (P ) in Π such
that v ≥ u on ∂Π ∩ {t = ti0+1} and on the inner lateral boundary of Π. By
comparison, v ≥ u in Π. Recall that w ≤ u in Σ′. Hence the free boundary
Γt(u) of u is trapped between Γt(v) and Γt(w) for ti0+1 ≤ t ≤ ti0+2. Now let
d(t) be the distance between Γt(v) and Γt(w). Then by the construction of v,

d(t) = r(t)(
1

f(t)
− 1).

Since 0 < f(t) < 1 increases in time on the time interval [ti0+1, ti0+2], the
function 1/f(t) − 1 decreases in time on [ti0+1, ti0+2]. Hence we can obtain
an improved estimate on the location of the free boundary at the later time
t = ti0+2. Since f(ti0+2) = 1− 2C1βα,

d(ti0+2) ≤ 3C1βαr(ti0+2).

We conclude that the condition (b) holds with K replaced by 3C1β for a constant
C1 depending on n and M .

6. Lastly, if (b) holds for K = 3C1β and i ≥ i0 + 2, i.e.,

Γt(u) ⊂ B(1+3C1βα)r(t)(0)−Br(t)(0)
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for t ≥ ti0+2, then since |∇u| ≤ C0M ,

u− φ = u ≤ C(n,M)βαr(t)

on ∂Ω1 ∩ {t ≥ ti0+2}.
Remark 5. Note that in the proof of Lemma 7.1, we use the condition

K ≥ 1 only for (7.13), i.e., for (6.12).

Corollary 7.2. For i ≥ 2, the conditions (a), (b) and (c) of Lemma 6.1 hold
with C replaced by hiC for constants 0 < h < 1 and C > 0 depending on n and
M . In other words,

u(·, ti) ≤ (1 + Chiα1−ε)φ(·, ti) on B(1−αε)r(ti)(0), (7.17)

Γt(u) is contained in the

Chiαr(t)- neighborhood of ∂Br(t)(0) (7.18)

for t ∈ [ti, ti+1], and

u(·, ti) ≤ φ(·, ti) + Chiα
ε+1
2 r(ti) (7.19)

on Br(ti)(0)−B(1−αε)r(ti)(0).

Proof. As in the proof of Corollary 6.2, the conditions (a), (b) and (c) are
satisfies with constant C = K = C(n, M) ≥ 1 for i ≥ 2. Let m be the integer
as in Corollary 6.2 and let ε = 2/3. Then for t ≥ tm+4, the constants C and
K can be replaced, respectively, by β = α

1−ε
2 C and C1β (see Corollary 6.2

and Lemma 7.1). Here C1 is a constant depending on n and M . Then by the
condition (b) with the improved constants, for t ≥ tm+4,

Γt(u) ⊂ B(1+C1βα)r(t)(0)−Br(t)(0). (7.20)

for a constant C1 > 0 depending on n and M . Fix i ≥ m+4. Decompose [ti, ti+1]
into subintervals of length βαrin(ti)2 and let τ , τ̃ and Σ be given similarly as
in Lemma 3.2, so that Σ = Brin(τ)(0) × [τ̃ , τ ], τ − τ̃ = βαrin(ti)2 and V[τ̃ ,τ ] ≤
C(n,M)/rin(ti). Recall that V[τ̃ ,τ ] is the average velocity of ∂Ωin on [τ̃ , τ ]. Then
using the upper bound on V[τ̃ ,τ ],

rin(t)− rin(τ) ≤ rin(τ̃)− rin(τ) ≤ C(n,M)βαrin(ti). (7.21)

for all t ∈ [τ̃ , τ ]. By (7.20) and (7.21) with |∇u| ≤ C0M ,

max
∂Brin(τ)(0)

u(·, t) ≤ C(n,M)βαrin(ti)
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for all t ∈ [τ̃ , τ ]. In other words,

u ≤ C(n,M)βαrin(ti) on ∂Σ (7.22)

Let ψ be a caloric function in Σ constructed as in Lemma 3.2, then by (7.22)
and the improved condition (c),

ψ(·, τ) ≥ u(·, τ)− C(n,M)βαrin(ti) ≥ (1− C(n,M)
√

βα)u(·, τ) (7.23)

on ∂B(1−c
√

βα)rin(ti)
(0). Using (7.23) instead of (3.24), the construction of Ω1

can be improved so that ∂Ω1∩{ti ≤ t ≤ ti+1} is located in the C(n,M)βαrin(ti)-
neighborhood of ∂Ωin, for i ≥ m+4. Then using the bound |∇u| ≤ C0M again,

max
∂Br(t)(0)

u(·, t) ≤ C(n,M)βαr(t).

Note that the above inequality gives (6.12), (6.15) and (7.13) for K = C1β < 1
and t ≥ tm+4. Then as mentioned in Remarks 4, we iterate Lemma 6.1 and
Lemma 7.1 for K < 1, improving the approximating region Ω1 at later times.

8 Asymptotic behavior of u; Regularity of Γ(u)

(7.18) of Corollary 7.2 says that the free boundary of u is asymptotically spher-
ical. Using this result, we approximate u by radially symmetric functions wk

supported on Ω1 ∩ {tk ≤ t < T} such that wk is caloric and its gradient is close
to 1 on ∂Ω1. Then u turns out to be asymptotically self-similar by Lemma 2.8,
and we also obtain the regularity of Γ(u) by Lemma 2.9.

Proposition 8.1. Let 0 < h = h(n,M) < 1 be as in Lemma 6.1 and let ε = 2/3.
Then for k ≥ 2, there exists a radially symmetric caloric function wk defined in
Ω1 ∩ {tk ≤ t < T} such that

(i) For t ≥ tk, Γt(u) is located in the Chkαr(t)-neighborhood of Γt(wk)

(ii) For t ≥ tk

wk(·, t) ≤ u(·, t) ≤ wk(·, t) + Chkα1−ε maxu(·, t) (8.1)

where we let wk = 0 outside Ω(wk)

(iii) On ∂Ω(wk)
1− ChAkαAε ≤ |∇wk| ≤ 1 (8.2)

where A = A(n,M) > 0 is a constant depending on n and M .
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In (i), (ii) and (iii) C denotes a constant depending on n and M . By (i), the
free boundary Γt(u) is asymptotically spherical and by Lemma 2.8 with (i), (ii)
and (iii), u is asymptotically self-similar.

Proof. Recall that u is well approximated by a radial function φ, which is caloric
on each time interval (ti, ti+1). However φ does not solve a heat equation on
(tk, T ) since it is discontinuous at each ti (φ(·, ti) is defined to be the maximal
radial function ≤ u(·, ti)). Hence we construct another radial function wk ≤ φ
which is caloric on (tk, T ). Using Corollary 7.2, we show that the values of wk

are close to the values of u and the gradient of wk is sufficiently close to 1 on
its vanishing boundary.

For k ≥ 2, let wk solve




∆wk = ∂wk/∂t in Ω1 ∩ {t > tk−1}

wk = φ on {t = tk−1}

wk = 0 on ∂Ω1 ∩ {t > tk−1}
and let w̃k solve





∆w̃k = ∂w̃k/∂t in Ω1 ∩ {t > tk−1}

w̃k = u on {t = tk−1}

w̃k = 0 on ∂Ω1 ∩ {t > tk−1}.
Then for t ≥ tk,

wk ≤ w̃k ≤ (1 + Chkα1−ε)wk (8.3)

where C = C(n,M) > 0 and the second inequality follows from (7.17) and
(7.19) with ε = 2/3. For i ≥ k − 1, let vi be a caloric function defined in
Ω1 ∩ {t > tk−1} with the following boundary condition





vi = 0 on {t = tk−1}

vi = u on ∂Ω1 ∩ {ti < t < ti+1}

vi = 0 on ∂Ω1 ∩ {tk−1 < t < ti or t > ti+1}.
Then in Ω1 ∩ {t > tk−1}

u = w̃k +
∞∑

i=k−1

vi. (8.4)

41



Throughout the proof, let C denote a positive constant depending on n and M .
Then by (7.18) with |∇u| ≤ C0M (Lemma 2.5),

vi = u ≤ Chiαr(ti) (8.5)

on ∂Ω1 ∩ {ti < t < ti+1}. Hence in Ω1 ∩ {t ≥ ti+2},

vi ≤ Chiαu. (8.6)

Combining (8.3), (8.4), (8.5) and (8.6), we obtain that in Ω1 ∩ {t ≥ tk}

u ≤ (1 + Chkα1−ε)wk +
∞∑

i=k−1

Chiαu + Chkα maxu(·, t)

≤ (1 + Chkα1−ε)wk + Chkα maxu(·, t) (8.7)
≤ wk + Chkα1−ε maxu(·, t).

Also for t ∈ (ti, ti+1), i ≥ k, and x ∈ Ωt(u)− Ωt(wk),

u(x, t) ≤ Chiαr(ti) ≤ Chkαr(ti) ≤ Chkα1−ε maxu(·, t)

where the first inequality follows from a similar argument as in (8.5). Hence we
obtain the second part (ii) of the lemma. Observe that the first part (i) follows
from Corollary 7.2 since Γt(wk) = ∂Br(t)(0) for t ≥ tk.

Next we prove (iii) that |∇wk| is sufficiently close to 1 on ∂Ω1 ∩ {t ≥ tk}.
Since wk ≤ u and the free boundary Γt(wk), that is ∂Br(t)(0), intersects Γt(u)
at each t, we obtain the upper bound

|∇wk| ≤ 1 on ∂Ω1 ∩ {t ≥ tk}.

To obtain the lower bound of |∇wk|, i.e., for the first inequality of (8.2),
we compare wk with some harmonic functions near the vanishing boundary
∂Br(t)(0). Fix a dyadic interval (ti, ti+1] ⊂ (tk, T ). For t ∈ (ti, ti+1], let H(t)(·) be
the harmonic function defined in Br(t)(0)−B(1−hk/2αε)r(t)(0) with the following
boundary data





H(t) = 0 on ∂Br(t)(0)

H(t)(·) = wk(·, t) on ∂B(1−hk/2αε)r(t)(0).

Then by Lemma 2.1 applied to wk,

H(t)(·) ≤ (1 + hak/2αaε)wk(·, t) (8.8)
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on Br(t)(0) − B(1−hk/2αε)r(t)(0) where a > 0 is a constant depending on n and
M . This implies

|∇H(t)| ≤ (1 + hak/2αaε)|∇wk| (8.9)

on ∂Br(t)(0). Let
A = A(n,M) = min{a/2, 1/2} > 0.

Then by (8.9) it suffices to prove

|∇H(t)| ≥ 1− ChAkαAε (8.10)

on ∂Br(t)(0) for t ∈ (ti, ti+1] ⊂ (tk, T ).
First we show (8.10) for time t in some subset {s1, ..., sm} of the interval

(ti, ti+1]. Recall

(a-1) By Lemma 3.2, the inner-radius r(t) is Lipschitz on [ti−1, ti+1], i.e.,

|r(t)− r(s)| ≤ C|t− s|/r(ti)

for t, s ∈ [ti−1, ti+1]

(a-2) By Corollary 7.2, the outer-radius rout(t) satisfies

r(t) ≤ rout(t) ≤ r(t) + Chiαr(ti) ≤ r(t) + Chkαr(ti)

for t ∈ [ti−1, ti+1].

Also recall that rout(t) is not necessarily Lipschitz on [ti−1, ti+1]. However using
the properties (a-1) and (a-2), we can construct a Lipschitz function R(t) on
[ti−1, ti+1] such that

(b-1) |R(t)−R(s)| ≤ C|t− s|/r(ti) for t, s ∈ [ti−1, ti+1]

(b-2) rout(t) ≤ R(t) ≤ r(t) + Chkαr(ti)

(b-3) R(t) = rout(t) for t in some subset {s1, ..., sm} of [ti, ti+1] such that
ti = s0 < s1 < ... < sm < sm+1 = ti+1 and

sj − sj−1 ≤ hkαr2(ti)

for 1 ≤ j ≤ m + 1.
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Now let Ω̃ be a space time region on the time interval [ti−1, ti+1] such that

Ω̃t = BR(t)(0)

for t ∈ [ti−1, ti+1]. Let ũ solve




∆ũ = ũt in Ω̃

ũ = u on {t = ti−1}

ũ = 0 on ∂Ω̃ ∩ {ti−1 < t < ti+1}.

Then by the construction of R(t),

u ≤ ũ ≤ u + Chkαr(ti) (8.11)

where the first inequality follows from the first inequality of (b-2) and the last
inequality follows from the last inequality of (b-2) with |∇u| ≤ C0M .

Fix t ∈ {s1, ..., sm}. Then Γt(u) intersects Γt(ũ) since Γt(ũ) = ∂Brout(t)(0).
Let x0 ∈ Γt(u) ∩ Γt(ũ), then by (8.11)

|∇ũ(x0, t)| ≥ 1. (8.12)

On the other hand, let H̃(·) be the harmonic function defined in Brout(t)(0) −
B(1−hk/2αε)r(t)(0) with the following boundary data





H̃ = 0 on ∂Brout(t)(0)

H̃ = m on ∂B(1−hk/2αε)r(t)(0)

where
m := max{u(x, t) : x ∈ ∂B(1−hk/2αε)r(t)(0)}+ Chkαr(ti).

Then by Lemma 2.1 applied to ũ with (8.11),

H̃(·) ≥ (1− hak/2αaε)ũ(·, t) (8.13)

in Brout(t)(0)−B(1−hk/2αε)r(t)(0) where a = a(n,M) > 0. Hence on ∂Brout(t)(0),

|∇H̃| ≥ (1− hak/2αaε)|∇ũ(x0, t)| ≥ 1− hak/2αaε (8.14)

where the last inequality follows from (8.12).
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Now we compare the harmonic functions H(t) and H̃ by comparing their
boundary values wk(·, t) and m on ∂B(1−hk/2αε)r(t)(0). (Recall t ∈ {s1, ..., sm}
is fixed.) For x ∈ ∂B(1−hk/2αε)r(t)(0)

m ≤ (1 + Chkα1−ε)wk(x, t) + Chkαr(ti)
≤ (1 + Chk/2α1−ε)wk(x, t) (8.15)

where the first inequality follows from (8.7) with the construction of m and
last inequality follows since (8.7) and the almost harmonicity of wk imply that
wk ≈ hk/2αεr(t) on ∂B(1−hk/2αε)r(t)(0). Then on ∂Br(t)(0)

|∇H(t)| ≥ (1− Chk/2α1−ε)
wk|∂B

(1−hk/2αε)r(t)
(0)

m
|∇H̃|

≥ 1− ChAkαAε (8.16)

where the first inequality follows from the constructions of H(t) and H̃ with
(b-2) and the last inequality follows from (8.14) and (8.15) with the constants
A = min{a/2, 1/2} and ε = 2/3. Hence we obtain the desired inequality (8.10)
for time t in the subset {s1, ..., sm} of (ti, ti+1].

Next we show (8.10) for t ∈ (sj−1, sj), 1 ≤ j ≤ m. Since φ is decreasing in
time on each dyadic time interval and the region Ω1 is shrinking in time, wk is
also decreasing in time. Hence on ∂B(1−hk/2αε)r(sj)

(0)

wk(·, t) ≥ wk(·, sj). (8.17)

By (a-1) with |t− sj | ≤ sj − sj−1 ≤ hkαr2(ti),

0 ≤ r(t)− r(sj) ≤ Chkαr(t). (8.18)

Then by (8.17) and (8.18) with the almost harmonicity of wk,

wk(·, t)|∂B
(1−hk/2αε)r(t)

(0) ≥ (1− Chk/2α1−ε)wk(·, sj)|∂B
(1−hk/2αε)r(sj)

(0). (8.19)

Hence we obtain

|∇H(t)|∂Br(t)(0) ≥ (1− Chk/2α1−ε)|∇H(sj)|∂Br(sj)(0)

≥ 1− ChAkαAε

where the first inequality follows from the construction of H(t) with (8.18) and
(8.19), the last inequality follows from (8.16). Since t ∈ (sj−1, sj ] for 1 ≤ j ≤ m,
we can conclude that (8.10) holds for all t ∈ (s0, sm] = (ti, sm] ⊂ (ti, ti+1]. Then
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by repeating the above argument with ti+1 replaced by ti+2, we can obtain
(8.10) for all t ∈ (ti, ti+1]. Recall that (8.10) implies the first inequality of (8.2).
Hence we obtain the properties (i), (ii) and (iii) of the proposition for the radial
function wk for k ≥ 2.

Observe that by (i) and (ii),

sup
tk<t<T

‖u(·, t)− wk(·, t)‖∞/‖u(·, t)‖∞ → 0 (8.20)

and
sup

tk<t<T
dist(Γt(u), Γt(wk))/r(t) → 0 (8.21)

as k →∞ where r(t) = diameter of Γt(wk)/2. On the other hand, (iii) implies
that the radial function wk is a supersolution of (P ) and also the function
(1 + ChAkαAε)wk is a subsolution of (P ), both of which vanish at time t = T .
Hence for some constant 1 ≤ β ≤ 1+ChAkαAε, a radial solution v of (P ) vanishes
at time t = T if v has an initial condition v(·, tk−1) = βwk(·, tk−1) = βφ(·, tk−1).
Then by a similar argument as in the proof of Lemma 3.1, we can show that
the free boundary Γt(v) is located in the C(n,M)hAkαAεr(t)-neighborhood of
Γt(wk) since v and wk, otherwise, would have different extinction times. Then
using the upper bounds of |∇wk| and |∇v| (Lemma 2.5),

|v(·, t)− wk(·, t)| ≤ C(n, M)hAkαAεr(t) (8.22)

where r(t) ≈ ‖wk(·, t)‖∞. By Lemma 2.8, v is asymptotically self-similar and
hence we can conclude from (8.20), (8.21) and (8.22) that u is asymptotically
self-similar.

The next corollary follows from Lemma 2.9 and the flatness of Γ(u). Note
that it was proved in [W] that a limit solution of (P ) is also a solution in the
sense of domain variation.

Corollary 8.2. Let 0 < h = h(n,M) < 1 be as in Lemma 6.1. Then there
exists a constant c0 > 0 depending on n and M such that if hkα ≤ c0 for some
k ≥ 2, then Γ(u) ∩ {tk < t < T} is a graph of C1+γ,γ function and the space
normal is Hölder continuous.

Proof. Let σ1 be the constant as in Lemma 2.9. Let

(y, τ) ∈ Γ(u) ∩ {tk < t < T}
where k is a sufficiently large integer which will be chosen later. Without loss
of generality, we assume that y = (0, ..., 0, yn) with yn > 0 and τ ∈ (tk, tk+1].
Let

ρ = δr(τ)
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where δ > 0 is a sufficiently small constant depending on n, M and σ1, which
will be chosen later. Let wk be the caloric function constructed as in the proof
of Proposition 8.1. Recall that Γ(wk) = ∂Ω1 ∩ {tk−1 < t < T} is Lipschiz in a
parabolic scaling (Lemma 3.2). Then by (i) of Proposition 8.1 and the Lipschitz
property of Γ(wk),

u = 0 in Q−
ρ (y, τ) ∩ {x : xn ≥ yn + σ1ρ} (8.23)

if δ = δ(n,M, σ1) > 0 is chosen sufficiently small and k = k(n,M, h, α, σ1, δ) is
chosen sufficiently large so that

C1h
kα

σ1
≤ δ ≤ C2σ1 (8.24)

where C1 = C1(n,M) > 0 is sufficiently large and C2 = C2(n,M) > 0 is
sufficiently small.

Next we show
|∇u| ≤ 1 + σ3

1 in Q−
ρ (y, τ).

Let Ω̃ ⊂ IRn × [tk−1, tk+1] be the Lipschitz region constructed as in the proof
of Proposition 8.1, which contains Ω(u) ∩ {tk−1 ≤ t ≤ tk+1}. Then since
max{|∇u|2 − 1, 0} is subcaloric in Ω(u) ∩ {tk−1 < t < tk+1},

|∇u|2 − 1 ≤ v (8.25)

where v solves




vt = ∆v in Ω̃

v = 0 on ∂Ω̃ ∩ {tk−1 < t < tk+1}

v = max{|∇u|2 − 1, 0} on {t = tk−1}.
Observe that by Lemma 2.5

max
Ω̃

v ≤ (C0M)2.

Also by Lemma 2.1, v(·, t) is almost harmonic near its vanishing boundary ∂Ω̃t

for t ∈ [(tk−1 + tk)/2, tk+1]. Hence we obtain that for t ∈ [(tk−1 + tk)/2, tk+1],

v(x, t) ≤ σ3
1 if dist(x, ∂Ω̃t) ≤ 3ρ = 3δr(τ) (8.26)

where δ = δ(n,M, σ1) > 0 is chosen sufficiently small.
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On the other hand, we can observe from the construction of Ω̃ that its bound-
ary ∂Ω̃t is located in the Chkαr(tk)-neighborhood of Γt(u) for t ∈ [tk−1, tk+1].
Hence for (x, t) ∈ Γ(u) ∩Q−

ρ (y, τ),

dist(x, ∂Ω̃t) ≤ Chkαr(tk) ≤ Cδσ1r(τ)
C1

≤ δr(τ) = ρ (8.27)

where the second and the last inequalities follow from (8.24) with a sufficiently
large C1 = C1(n,M). Then by (8.26) and (8.27),

|∇u|2 − 1 ≤ v ≤ σ3
1 in Q−

ρ (y, τ) (8.28)

where the first inequality follows from (8.25).
By Lemma 2.9 with (8.23) and (8.28), we conclude that Γ(u)∩{tk < t < T}

is a graph of C1+γ,γ function and the space normal is Hölder continuous, where
k is an integer satisfying (8.24).
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