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Abstract

We study periodic homogenization problems for second-order nonlinear pde with oscillatory
Neumann boundary conditions, in domains with general geometry. Our results are new even
for the linear PDEs with non-divergence structure. The key observation in our analysis is the
continuity property of the linear approximation of the problem in half-space domains whose
normal belongs to “irrational” directions.

1 Introduction

In this paper, we are interested in the homogenization in the second order, uniformly elliptic PDEs
of non-divergence form with oscillating Neumann data. To be precise, let Sn be the normed space
of symmetric n× n matrices and consider the function F (M) : Sn → IR which satisfies

(F1) F is uniformly elliptic, i.e., there exists constants 0 < λ < Λ such that

λ‖N‖ ≤ F (M + N)− F (M) ≤ Λ‖N‖ for any N ≥ 0;

(F2) (homogeneity) F (tM) = tF (M) for any M ∈ Sn and t > 0. In particular F (0) = 0;

(F3) F is continuous with respect to M .

Typical examples of operators which satisfy (F1)-(F3) are the Pucci extremal operators:

P+(Du(x)) = λ
∑
µi<0

µi + Λ
∑

µi≥0

µi; P−(Du(x)) = Λ
∑
µi<0

µi + λ
∑

µi≥0

µi

where µ1, · · · , µn are eigenvalues of D2u(x).
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Figure 1

Let g(x) : IRn → IR be a hölder continuous function, which is periodic with respect to the orthonor-
mal basis {e1, ..., en} of IRn: i.e.,

g(x + ek) = g(x) for x ∈ IRn and k = 1, ..., n.

Next, let Ω be a domain in IRn which contains a compact set K. (See Figure 1.)

Our goal is to describe the limiting behavior of uε as ε → 0, where uε satisfies

(Pε)





F (D2uε) = 0 in Ω−K

ν ·Duε = g(x
ε ) on ∂Ω.

u = 1 on K.

Here ν = νx denotes the outward normal vector at x ∈ ∂Ω with respect to Ω. See [7], [8] and [9] for
discussion of existence and uniqueness properties of (Pε).

Remark 1.1. 1. Our method can be applied to the operators of the form F (D2u, x) = f(x) with
F and f continuous in x, but we will restrict ourselves to the simple case discussed in (Pε) for the
clarity of exposition.
2. The fixed boundary data on K is introduced to avoid discussion of the compatibility condition on
g.
3. The homogeneity condition (F2) can be relaxed (e.g. see (F4) of [2]).

Homogenization of elliptic equations with oscillating coefficients is a classical subject. For the linear,
divergence form operator of the form

∇ · (A(
x

ε
)∇uε) = 0, (1)

with the Neumann (co-normal) condition

ν · (A(x/ε)∇u)(x) = g(x, x/ε), x ∈ ∂Ω, (2)
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the problem has been widely studied and by now has been well-understood (see [3] for an overview),
via the energy method. Here two cases must be distinguished: if ∂Ω does not contain flat pieces
whose normal vectors belong to IRZZn, then uε converges weakly to the solution of




−∇ · (A0∇u0)(x) = 0 for x ∈ Ω,

ν · (A0∇u0) =< g > (x) for x ∈ ∂Ω

where < g > (x) =
∫
[0,1]n

g(x, y
ε )dy. On the other hand if ∂Ω does contain a flat piece whose normal

vector belongs to IRZZn, then g(x, x/ε) may have a continuum of accumulation points as ε → 0, and
thus uε may have different subsequences converging to different Neumann boundary data. We refer
to [3] for details.

On the other hand, for the non-divergence type operator, little is known for the homogenization of the
oscillating Neumann boundary data partly due to the lack of energy method. Most available results
concern half-space domains with its normal parallel to a vector in ZZn. In [12], Tanaka considered
some model problems in half-space whose boundary is parallel to the axes of the periodicity by
purely probabilistic methods. In [1], Arisawa studied special cases of problems, again in half-space
type domains going through origin, under rather restrictive assumptions, using viscosity solutions
as well as stochastic control theory. Generalizing the results of [1], Barles, Da Lio and Souganidis
[2] studied the problem for operators with oscillating coefficients, with a series of assumptions which
guarantee the existence of approximate corrector.

In this paper we extend above results to the setting of general domains. Before stating the main
theorem, let us introduce some notations.

Definition 1.2.

1. ν ∈ Sn−1 is a rational direction if ν ∈ IRZZn.

2. ν ∈ Sn−1 is an irrational direction if ν is not a rational direction.

3. The domain Ω is irrationally dense if ∂Ω is C2 and if ∂Ω does not contain any flat piece
which is normal to a rational vector.

Now we are ready to state the main results in this paper. We begin with studying half-space type
domains.

Theorem 1.3 (Main Theorem I). Let uε solve




F (D2uε) = 0 in Σ := {x : −1 < (x− p) · ν < 0};

ν ·Du = g(x
ε ) on Γ0 := {x : (x− p) · ν = 0};

u = 1 on ΓI := {x : (x− p) · ν = −1}.

Then the following holds:
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(i) If ν is irrational, then there is a unique constant µ(ν) ∈ [min g, max g] such that uε locally
uniformly converges to the solution of





F (D2u) = 0 in Σ

ν ·Du = µ(ν) on Γ0

u = 1 on ΓI .

(ii) µ(ν) : (Sn−1 − IRZZn) → IR has a continuous extension µ̄(ν) : Sn−1 → IR.

(iii) For rational directions ν, if Γ0 goes through the origin (that is if p ·ν = 0), then the statements
in (i) holds for ν as well.

Moreover, we have the following (rough) error estimate: for β = α/4

|uε − u| ≤ εβ in Ω, (3)

where 0 < α < 1 is the constant given in Theorem 2.3.

Remark 1.4. 1. As shown in [3] for (1) -(2), for a rational direction ν ∈ Sn−1 with p · ν 6= 0, uε

can have different subsequential limits converging to different Neumann data.

2. The error estimate (3) is not sharp: we suspect that more careful scaling argument would yield
error estimate of up to the order of εα. Of course, since the estimate is based on the regularity result
(Theorem 2.3), further studies on the regularity properties of uε may produce better estimates. Also
see [3](linear case), [5] (nonlinear elliptic PDEs in periodic media) and [6](in random media) for
relevant results and discussions on the error estimates.

Theorem 1.3 (ii) as well as viscosity solutions theory enables the following result in the general
domain:

Theorem 1.5 (Main Theorem II). Let uε and µ̄(ν) be as above and suppose Ω is irrationally dense.
Then the solution uε of (Pε) locally uniformly converges to u solving the following PDE:





F (D2u) = 0 in Ω

ν ·Du = µ̄(ν) on ∂Ω

u = 1 on K.

Remark 1.6 (Open questions). While our results extend the results of [2] in the case of homo-
geneous F , the arguments presented here cannot handle the case where the operator F depends on
the oscillatory variable x

ε : the proof for the continuity property of the limiting slope (Theorem 1.3
(ii)) seems to fail in this case. It remains open to handle oscillation of the operator as well as the
oscillation of the boundary data at the same time, in the general domain.

4



2 Preliminary results

Let Ω and K be as before, and let f(x, ν) : IRn × Sn−1 → IR be a continuous function. Let us
introduce a definition of viscosity solutions for the following problem:

(P )f





F (D2u) = 0 in Ω−K;

ν ·Du = f(x, ν) on ∂Ω;

u = 1 on K

The following definition is equivalent to the ones given in [7]:

Definition 2.1. (a) An upper semi-continuous function u : Ω̄ → IR is a viscosity subsolution of
(P )f if u cannot cross from below any C2 function φ which satisfies

F (D2φ) > 0 in Ω−K; ν ·Dφ > f(x, ν) on ∂Ω; φ ≥ 1 on K.

(b) A lower semi-continuous function u : Ω̄ → IR is a viscosity supersolution of (P )f if u cannot
cross from above any C2 function ϕ which satisfies

F (D2ϕ) < 0 in Ω−K; ν ·Dϕ > f(x, ν) on ∂Ω; ϕ ≥ 1 on K.

(c) u is a viscosity solution of (P )f if u is both a viscosity sub- and supersolution of (P )f .

The existence and uniqueness of viscosity solutions of (P )f follow from the comparison principle we
state below:

Theorem 2.2 (Section V, [9]). Let F ,K,Ω, ν be as given in the introduction, and let f : Sn−1 → IR
be a continuous function of ν in Sn−1. let u and v respectively be sub- and supersolution of (P )f .
Then u ≤ v in Ω.

Next we state some regularity results that will be used in the paper.

Theorem 2.3 (Chapter 8, [4]: modified for our setting). Let u be a viscosity solution of

F (D2u) = 0

in a domain Ω. Then for any 0 < α < 1 and a compact subset Ω′ of Ω, we have

‖u‖Cα(Ω′) ≤ Cd−α‖u‖L∞(Ω) < ∞

for a uniform constant C > 0 depending on n, λ, Λ, where d = d(Ω′, ∂Ω).

Theorem 2.4 (Theorem 8.2, [11]: modified for our setting). Let

B+
1 := {|x| < 1} ∩ {x · en ≥ 0} and Γ = {x · en = 0} ∩B1.

Consider g ∈ Cβ(B+
1 ) for some β ∈ (0, 1). Let u solve F (D2u) = 0 in B+

1 and ν · Du = g in Γ.
Then u is C1,α(B+

1/2) where α = min(α0, β) and α0 = α0(n, λ, Λ). Moreover, we have the estimate

‖u‖
C1,α(B+

1/2)
≤ C(‖u‖

C(B+
1 )

+ ‖g‖Cβ(Γ)),

where C is a constant depending only on n, λ, Λ and α.
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Weyl’s criterion gives us the following Weyl’s lemma.

Lemma 2.5 (Weyl’s Lemma). (i) Let α be an irrational number. Then, kα (mod 1), for k ∈ ZZ,
is uniformly distributed on [0, 1].

(ii) Let αn = 1 and (α1, · · · , αn) be an irrational direction. Then,

n∑

i=1

kiαi (mod 1),

for ki ∈ ZZ, is uniformly distributed on [0, 1], which means for any subsinterval A ⊂ [0, 1] and
IN = {m ∈ ZZn : |ki| < N, i = 1, · · · , n},

1
|IN |

∑

k∈IN

χ
A
(k · α) → |A|,

as N →∞.

3 In the strip domain

Let us begin with the base case which we will apply to address the general domain.

Fix p ∈ IRn and ν ∈ Sn−1 such that p · ν 6= 0. Let

Ω = Ων := {x ∈ IRn : −1 ≤ (x− p) · ν ≤ 0} (4)

and let uε be a bounded solution of

(PSε)





F (D2uε) = 0 in Ω

∂uε/∂ν = g(x/ε) on Γ0 := {x : (x− p) · ν = 0}

uε = 1 on ΓI := {x : (x− p) · ν = −1}.

Existence and uniqueness for bounded solutions of (PSε) can be proved via a blow-up process,
equi-continuity properties as well as the comparison principle. In fact the following result holds:

Lemma 3.1 (Measurement of side effect). Suppose F (D2w1) = F (D2w2) = 0 in

Σ := Ω ∩ {|x− p| ≤ R}

for R > 2, with ∂w1/∂ν = ∂w2/∂ν on Γ0, w1 = w2 on ΓI and w1 = 1, w2 = 2 on Ω∩{|x−p| = R}.
Then

w1 ≤ w2 ≤ w1 +
1 + 3C

R2
in Ω ∩B1(p),

where C = nΛ
λ .
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Proof. Without loss of generality, let us set ν = en and p = 0. The first inequality directly follows
from the comparison principle. Hence let us show the second inequality.

Let ω̃ = w1 + h1 + h2, where

h1 =
1

R2
(|x1|2 + ... + |xn|2) and h2 =

C

R2
(1− |xn|2)

for C = nΛ
λ . Note that

F (D2ω̃) = F (D2w1 + D2h1 + D2h2)

≤ F (D2w1)− 2
R2 (Cλ− nΛ) ≤ F (D2w1).

Moreover, {xn = 0}, ω̃ satisfies
∂xn

ω̃ = ∂xn
ω1 = ∂xn

ω2.

Lastly, on the rest of the boundary of Ω, ω̃ satisfies w2 ≤ ω̃. Hence by Theorem 2.2 we have w2 ≤ ω̃
and we can conclude.

In the rest of the paper, we will repeatedly use the fact that linear profiles as well as constants solve
F (D2u) = 0.

Lemma 3.2. Let 0 < ε < 1. Suppose that w1 and w2 solve the equation

(P ) F
(
D2wi

)
= 0

in Ω with 


|w1 − w2| ≤ ε on ΓI

∂w1/∂ν − ∂w2/∂ν = A on Γ0.

Then in B1/2(p) ∩ Ω
|w1 − w2| ≥ CA − ε

where CA > 0 is a constant depending on A.

Proof. Let w̃ := w2 +h, where h(x) = A(x−p) · ν +A− ε. Then ω̃ satisfies the same Neumann data
with ω1. Further, on ΓI we have ω̃ ≤ w1. Hence we conclude that w2 + h ≤ w1. Since h ≥ A/2− ε
in B1/2(p), we conclude.

Lemma 3.3. For x0 ∈ Ω, let H(x0) be the hyperplane, which contains x0 and is parallel to Γ0. Let
0 < ε < dist(x0, Γ0).

(i) Suppose that ν is a rational direction. Then for any x ∈ H(x0), there is y ∈ H(x0) such that

|x− y| ≤ Mνε; y − x0 ∈ εZZn

where Mν > 0 is a constant depending on ν.
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(ii) Suppose that ν is an irrational direction. Then for any x ∈ H(x0), there is y ∈ Ω such that

|x− y| ≤ Mνε1/2; y − x0 ∈ εZZn

and
dist(x0, Γ0) < dist(y, Γ0) < dist(x0,Γ0) + ε3/2

where Mν > 0 is a constant depending on ν.

Proof. (i) follows since for any rational direction ν, there exists an integer M > 0 depending on ν
such that Mν ∈ ZZn. Next, let ν be an irrational direction and let x ∈ H(x0). Then by Weyl’s
Lemma, there exists an integer M > 0 depending on ν such that Bε−1/2εM (x) ∩ H(x0) contains a
point z satisfying

|x0 − z| < ε1/2ε, mod εZZn.

Hence we can find a point y satisfying the conditions in (ii).

Lemma 3.4. Let Ω̃ = Ω + aν for some 0 ≤ a ≤ ε3/2. Let uε and ũε solve (PSε) in Ω and Ω̃,
respectively. Then in Ω ∩ Ω̃,

|uε − ũε| ≤ Cεα/2.

Proof. 1. Let vε = ũε(x + aν) so that vε and uε are defined in the same domain Ω. Since g is
continuous, |∂vε/∂ν − ∂uε/∂ν| ≤ ε1/2 on Γ0.

2. On ΓI , uε = vε = 1. So now you are talking about two solutions with very small difference in
Neumann data. In particular one can compare uε±ε1/2(x−p) ·ν with ũε to obtain |uε−vε| ≤ Cε1/2.
Also by Hölder regularity, |vε − ũε| ≤ Cεα/2. Hence we conclude |uε − ũε| ≤ Cεα/2.

Lemma 3.5. Let v and w solve (P ) in Ω. If v = w on ΓI and v − w ≥ A > 0 on Γ0, then

v(p− ν

2
)− w(p− ν

2
) ≥ CA > 0.

Proof. Due to the boundary condition, v ≥ ω + A((x− p) · ν + 1). So we conclude.

The next lemma follows from the C1,α estimates (Lemma 2.4).

Lemma 3.6. Let vj be a solution of (PSε) with a constant Neumann condition g(x) = µj. If
µj → µ, then vj converges to v such that ∂v/∂ν = µ on Γ0.

4 Proof of the theorem in a strip region

Here we prove the statements in Theorem 1.3.
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4.1 Proof of Theorem 1.3 (i) and (iii)

Suppose 0 ∈ Ω = {−1 ≤ (x− p) · ν ≤ 0}, which is a point of reference. Recall

Γ0 = {x : (x− p) · ν = 0}; ΓI = {x : (x− p) · ν = −1}.

Due to the interior regularity (Theorem 2.3) along subsequences uεj
→ u uniformly on compact

subsets of Ω. Note that there could be different limits along different subsequences εj , and here we
consider one of the subsequential limits.

Denote uεj = uj . Then for each j, there exists a constant µj and a function vj in Ω such that




F (D2vj) = 0 in Ω

∂vj/∂ν = µj on Γ0

vj = uj = 1 on ΓI

vj = uj at x = 0.

Claim 1. µj → µ for some µ as j →∞. (µ may be different for different subsequences {εj}.)

Proof. Suppose not, then there would be a constant A > 0 such that for any N > 0, |µm − µn| ≥ A
for some m,n > N . Then by lemma 3.2, |vm(0) − vn(0)| ≥ CA, which would contradict vj(0) =
uj(0) → u(0) as j →∞. 2

Claim 2. Away from the Neumann boundary Γ0, uε is almost a constant on hyperplanes parallel
to Γ0. More precisely, let x0 ∈ Ω with dist(x0, Γ0) > ε1/4. Then there exists a constant C > 0
depending on ν, such that for any x ∈ H(x0)

|uε(x)− uε(x0)| ≤ Cεα/4 (5)

where 0 < α < 1.

Proof. First, let ν be a rational direction. Lemma 3.3 implies that for any x ∈ H(x0), there is
y ∈ H(x0) such that |x− y| ≤ Mνε and uε(y) = uε(x0). Then by Lemma 2.3,

|uε(x0)− uε(x)| ≤ Cε−α/4(Mνε)α ≤ Cεα/4.

Next, we assume that ν is an irrational direction and x ∈ H(x0). By Lemma 3.3, there exists y ∈ Ω
such that |x− y| ≤ Mνε1/2, y − x0 ∈ εZZn and

dist(x0,Γ0) < dist(y, Γ0) < dist(x0, Γ0) + ε3/2.
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Then we obtain

|uε(x0)− uε(x)| ≤ |uε(x0)− uε(y)|+ |uε(y)− uε(x)|
≤ Cε1/2 + |uε(y)− uε(x)|
≤ Cε1/2 + Cε−α/4(Mνε1/2)α

≤ Cεα/4

where the second inequality follows from Lemma 3.4 and the third inequality follows from Lemma 2.3.

2

By Claim 2 and comparison, we obtain the following estimate: For x ∈ Ω,

|uε(x)− vε(x)| ≤ Cεα/4 (6)

where C is a constant depending on ν.

Claim 3. lim vj = lim uj and hence ∂u/∂ν = µ on Γ0.

Proof. Observe that vj solves (PSεj ) with g = µj . Let x0 be a point between Γ0 and H(0). Then
by Claim 2, applied to uj and vj ,

|(uj(x)− vj(x))− (uj(x0)− vj(x0))| ≤ Cε
α/4
j

for all x ∈ H(x0), if j is sufficiently large. Since uj(0) = vj(0), the above inequality and Lemma 3.5
imply that

|uj(x0)− vj(x0)| → 0 as j →∞.

Hence we get vj → u in each compact subset of Ω. By Claim 1 and Lemma 3.6, the limit u of vj

satisfies ∂u/∂ν = µ on Γ0. 2

Claim 4. If ν is an irrational direction, ∂u/∂ν = µν for a constant µν which depends on ν, not on
the subsequence εj.

Proof. Let 0 < η < ε be sufficiently small. After translations, we may let wε(x) :=
uε(εx)

ε
and

wη(x) :=
uη(ηx)

η
be defined on the extended strips

Ωε := {x : −1
ε
≤ (x− p) · ν ≤ 0}

and
Ωη := {x : −1

η
≤ (x− p) · ν ≤ 0}.

By Weyl’s lemma, we can make translation so that ∂wε/∂ν = g(x) and ∂wη/∂ν = g̃(x) := g(x− z0)
on Γ0, where |z0| ≤ η. Observe |g − g̃| ≤ ξη for some ξη → 0 as η → 0.
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Figure 2

By Claim 2,

|wε(x)− vε(εx)
ε

| ≤ εα/4

ε
.

Recall that vε is a solution of the problem (P) with constant Neumann data, which coincides with
uε at the reference point 0 and on ΓI . Note that vε is simply a linear profile with slope µε.

In particular

−h(x) ≤ wε(x)− vε(εx)
ε

≤ h(x) where h(x) := εα/4((x− p) · ν + 1/ε). (7)

2. (7) means that the slope of wε in the direction of ν (i.e. ν ·Dwε) is between that of µε + εα/4 and
µε − εα/4 on {x : (x − p) · ν = − 1

ε }. Now let us consider linear profiles l1 and l2, whose respective
slope is µε + εα/4 and µε − εα/4, and

l1 = l2 = ωη(x) on {x : (x− p) · ν = −1
η
}.

3. Now we define

w̄(x) :=





l1(x) in {−1/η ≤ (x− p) · ν ≤ −1/ε}

wε(x) + c1 in {−1/ε ≤ (x− p) · ν ≤ 0}

and

w(x) :=





l2(x) in {−1/η ≤ (x− p) · ν ≤ −1/ε}

wε(x) + c2 in {−1/ε ≤ (x− p) · ν ≤ 0}
where c1 and c2 are constants satisfying l1 = wε + c1 and l2 = wε + c2 on {(x− p) · ν = −1/ε}. (See
Figure 2.)
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Then due to the observation made in step 2, w̄ and w are respectively super- and subsolution of (P).
Let us define

h1(x) = η((x− p) · ν + 1/η).

Then w̄ + h1 and w − h1 are also super- and subsolution of (P). Since |g − g̃| < η, by comparison,

w − h1 ≤ wη ≤ w̄ + h1 in Ωη. (8)

Hence we conclude
|µη − µε| ≤ εα/4 + η,

where µη is the slope of vη. 2

Claim 4’. If the Neumann boundary Γ0 passes through p = 0, then ∂u/∂ν depends on ν, not on the
subsequence εj.

Proof. It can be proved by parallel argument as in Claim 4. Since Ωε and Ωη have Neumann
boundary passing through 0, ∂wε/∂ν = g(x) = ∂wη/∂ν without translation. 2

Remark 4.1. As mentioned in the introduction, if ν is a rational direction with p · ν 6= 0, the value
of g(·/ε) on ∂Ωε and ∂Ωη may be very different under any translation, and in that case, the proof
of Claim 4 fails. In this case uε may converge to solutions of different Neumann boundary data
depending on the subsequences.

4.2 Proof of Theorem 1.3 (ii)

Proposition 4.2 (Theorem 1.3 (ii)). The homogenized limit µ(ν) along irrational directions in Sn−1

has a continuous extension µ̄(ν) over Sn−1.

Proof. Let us fix a unit vector ν ∈ Sn−1. Given δ > 0, we will show that there exists ε > 0 depending
on the choice of ν such that for any irrational ν1, ν2 ∈ Sn−1,

|µ(ν1)− µ(ν2)| < Cδ1/2 whenever |ν1 − ν|, |ν2 − ν| < ε, (9)

where C depends on the choice of ν.

1. For simplicity of proof, we first present the case n = 2. Without loss of generality, we may also
assume that ν = en = e2 and p = 0. We point out that in the proof presented below it does not make
any difference in proof if ν were irrational, because here we do not use periodicity of the boundary.
Indeed, as we will see, more delicate proofs are required when ν is a rational direction.

Then we have
Ω0 := Ων = {(x, y) ∈ IR2 : −1 ≤ y ≤ 0}.

Let us define Ωk := Ωνk
for k = 1, 2, and define the family of functions (see Figure 3)

gi(x1, x2) := g(x1, δ(i− 1)), where i = 1, ..., m := [
1
δ
] + 1.
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Figure 3

Before moving onto the next step in the proof, Let us briefly discuss the heuristics in the proof.

Proof by heuristics:

Since the domains Ω1 and Ω2 point toward with different directions ν1 and ν2, we cannot directly
compare their boundary data, even if ∂Ω1 and ∂Ω2 cover most part of the unit cell in IRn/ZZn. To
overcome this difficulty we perform a two-scale homogenization.

First we consider the functions gi (i = 1, ..,m), whose profiles cover most values of g (up to an order
of δ). Note that most values of g are taken on ∂Ωk for k = 1, 2 since νk’s are irrational. On the
other hand, since νk’s are very close to ν which may be a rational direction, the averaging behavior
of a solution uε would appear only after ε gets very small as νk approaches ν.

If |ν1 − ν| is chosen much smaller than δ, we can say that the Neumann data g1(·/ε) is (almost)
repeated N times on ∂Ω1 with period ε, up to the error O(δ). (See Figure 4.) Here N is a sufficiently
large number depending on δ and |ν1−ν|. Similarly, on the next piece of boundary g2(·/ε) is (almost)
repeated N times and then g3(·/ε) is repeated N times: this pattern will repeat with gk, k = 3, 4, ....

Since N is sufficiently large, the solution uε will exhibit averaged behavior, Nε-away from ∂Ω1.
More precisely, on the hyperplane H located Nε-away from ∂Ω1, uε would be homogenized by the
repeating profiles of gi with an error of O(δ). This is the first homogenization of uε near the boundary
of Ω1: we denote the corresponding values of homogenized slopes of uε on H by µ(gi).

Now a unit distance away from ∂Ω1, we obtain the second homogenization of uε, whose slope is
determined by µ(gi), i = 1, ..,m. Note that this estimation does not depend on the direction ν1, but
on the quantity |ν1−en|. Hence applying the same argument for ν2, we conclude that |µ(ν1)−µ(ν2)|
is small. 2

A rigorous proof of above observation is unfortunately rather lengthy: it is given in step 2.-7. below.

2. Let η := |ν1 − en|8/7 and N = [
δ

η7/8
], define

I1 = [−Nη,Nη]× IR
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Figure 4

and
Ik = [−kNη, kNη]× IR− ∪k−1

i=1 Ii, k ∈ IN.

Note that gk is (almost) repeated N times on Ik ∩∂Ω1. This and the Lipschitz continuity of g yields
that

|g(
x

η
,
y

η
)− gk̃(

x

η
)| < δ on ∂Ω1 ∩ Ik (10)

where k̃ ∈ [0, m− 1] denotes k in modulo m.

3. Let wη solve (P ) in Ω0 with




∂wη

∂ν (x, 0) = gk̃(x
η ) for (x, 0) ∈ Ik

wη = 1 on {y = −1}.
Next let uη solve (P ) in Ω1 with





∂uη

∂ν1
(x, 0) = g(x

η , y
η ) on {(x, y) · ν1 = 0},

uη = 1 on {(x, y) · ν1 = −1}.

Then by (10)
|µ(wη)− µ(uη)| < Cδ, (11)

where µ(wη) is the slope of the linear approximation of wη, as given in Claim 3. Note that µ(wη) is
unique since ν1 is irrational.

14



4. Next, we will approximate ∂wη

∂ν , Nη-away from ∂Ω0, using its linear approximation vη which we
will define below. Let

H := ∂Ω0 −Nην = ∂Ω0 −Nηe2 = {(x, y) : y = −Nη}.
Then for any x, y ∈ H with |x− y| < Nηδ−1/2, we can find z ∈ H such that

x = z modulo ηZZ2 and |z − y| ≤ η.

Then as in Claim 2, for α given in Lemma 2.3

|wη(x)− wη(y)| ≤ |wη(x)− wη(z)|+ |wη(z)− wη(y)|
≤ δ1/2 + Cηα(Nη)−α

≤ δ1/2 + C(
η7/8

δ
)α < Cδ1/2 (12)

if η is sufficiently small compared to δ.

On the other hand, there exists a constant µη and a linear solution vη such that




vη = wη(−Nην) = wη(−Nηe2) on H = {y = −Nη}
∂vη

∂ν = µη on ∂Ω0 = {y = 0}

vη(−Nην
2 ) = wη(−Nην

2 ).

Now (12) and Lemma 3.1 imply that

|vη − wη| ≤ C((
1
N

)α/4 + δ1/2) ≤ Cδ1/2 in BNηδ−1/4(0).

Let µ1/N (g1) be the slope of the linear approximation of a solution whose Neumann data is 1/N -
periodic with profile g1. By a parallel argument as in (7)

µ1/N (g1)− Cδ1/2 ≤ ∂wη

∂ν
≤ µ1/N (g1) + Cδ1/2 on H ∩ I1. (13)

Similarly arguments applies to gk to yield the following:

µ1/N (gk̃)− Cδ1/2 ≤ ∂wη

∂ν
≤ µ1/N (gk̃) + Cδ1/2 on H ∩ Ik. (14)

5. Parallel arguments as in step 2. 4. applies to the other direction ν2: if we define η̄, N̄ and H̄ by

|ν2 − e2| = η̄7/8, N̄ = [
δ

η̄7/8
], and H̄ = {y = −N̄ η̄},

then we have
µ 1

N̄
(gk)− Cδ1/2 ≤ ∂wη̄

∂ν
≤ µ 1

N̄
(gk) + Cδ1/2 on H̄ ∩ Īk. (15)
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6. By Claim 4,

|µ 1
N̄

(gk)− µ 1
N

(gk)| < (
1
N

)α/4 +
1
N̄

< δ (16)

if η and η̄ are sufficiently small compared to δ. Let us denote µ 1
N

(gk) = µk,N and let us consider h

and h̄ solve 



−∆h = 1 in {−1 ≤ y ≤ −Nη}

h = 1 on {y = −1}
∂h
∂ν = µk̃,N on H ∩ Ik

and 



−∆h̄ = 1 in {−1 ≤ y ≤ −Nη̄}

h̄ = 1 on {y = −1}

∂h̄
∂ν = µk̃,N̄ on H̄ ∩ Īk

Let µ(h) and µ(h̄) be the respective linear approximation for h and h̄. Due to (16), it follows that

|µ(h)− µ(h̄)| < Cδ (17)

Lastly, observe that by (14) and (15),

|µ(wη)− µ(h)| < Cδ1/2 and |µ(wη̄)− µ(h̄) < Cδ1/2,

yielding
|µ(wη)− µ(wη̄)| < Cδ1/2.

Then we conclude from (10) that

|µ(uη)− µ(uη̄)| < Cδ1/2,

proving our claim.

7. For the general dimensions, let us define gi : IRn−1 → IR by

gi(x1, ..., xn−1) = g(x1, ..., xn−1, δ(i− 1))

for i = 0, 1, ..., m := [δ−1].

Let us also define
I1 := [−Nη,Nη]n−1 × IR,

and for integers k > 1
Ik := [−kNη, KNη]n−1 × IR− ∪k−1

i=1 Ii.

Then parallel arguments as in step 1.-6. would apply to yield the lemma for ν = en and p = 0.
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5 Proof of main theorems in general domains

In this section we will use the results obtained in the strip domains as well as stability properties of
viscosity solutions to derive the main theorems.

First we show that the solution in Ω near a point p ∈ ∂Ω can be approximated by corresponding
solutions in strip domains. Let Ω be a bounded domain with C2 boundary. Suppose p ∈ ∂Ω and Ω
has the irrational normal direction ν at p. Let

L0 := {x : ν · (x− p) = 0} and L1 = L0 − εkν,

where 0 < k < 1 is to be determined.

For the domain
Σk := Ω ∩ {x : −εk < ν · (x− p) < 0},

Let wε solve 



F (Dw2
ε ) = 0 in Σk

∂wε/∂νx = g(x
ε ) on ∂Ω ∩ Σk

wε = 1 on L1

where νx is normal to ∂Ω at x ∈ ∂Ω. Note that Σk has width εk.

Next, let Σ̃k be the thin region between L0 and L1 and let vε solve




F (Dv2
ε ) = 0 in Σ̃k

∂vε/∂ν = g(x
ε ) on L0

vε = 1 on L1

Since Ω is C2, we may assume that L0 is contained in the ε4k/3-neighborhood of ∂Ω in Bε2k/3(p).
Then for x ∈ L0 and y = x + aν ∈ ∂Ω, we have

|x− y| ≤ ε4k/3. (18)

Lemma 5.1. If k is sufficiently close to 1, then there exists 0 < β < 1 such that

|wε − vε| ≤ εk+β

in Σk ∩Bε2k/3(p).

Proof. Let p = 0 for convenience. First note that wε and vε will oscillate at most of order εk in
their respective domains Σk ∩Bεk/2 and Σ̃k ∩Bεk/2 : This can be checked by comparison with linear
profiles, because the strip is εk -close to the domain in Bεk/2 and g oscillates with unit size. Let

w̃(x) = wε(εx)/ε and ṽ(x) = vε(εx)/ε.
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Then Theorem 2.4 as well as the fact that g is Lipschitz continuous and w̃ and ṽ oscillates up to
εk−1 yields that

‖w̃‖C1,α , |ṽ‖C1,α ≤ Cεk−1

in their respective domains 1
ε Σk and 1

ε Σ̃k.

Observe that, due to (18), the Neumann boundary of 1
ε Σ̃k is ε5k/4−1 close to that of 1

ε Σk in Bε5k/8−1 .
Therefore we conclude that vε can be extended to satisfy the Neumann boundary data

g(
x

ε
) + O(εk−1+( 4k

3 −1)α) on ∂Ω ∩Bε5k/8 .

Let us choose k sufficiently close to 1 so that k − 1 + ( 5k
8 − 1)α > α/6.

Let β = α/6. Now by comparison principle we have

|wε(x)− vε(x)| ≤ εβ(ν · (x− p) + εk) + h(x) in Σk ∩Bε5k/8 ,

where h(x) is the parabola ε−k/4(x−x ·ν−p)2 introduced to control the side effects at Σk∩∂Bε5k/8 .
Hence we conclude by evaluating above upper bound in Σk ∩Bε2k/3 .

We are now ready to show the main proposition. Let us define

lim sup∗uε(x, t) := lim
ε→0

(sup{uε(y, s) : y ∈ Ω̄, s ≥ 0 and |x− y|, |t− s| ≤ ε})

and
lim inf∗uε(x, t) := lim

ε→0
(inf{uε(y, s) : y ∈ Ω̄, s ≥ 0 and |x− y|, |t− s| ≤ ε}).

Proposition 5.2. Let µ̄(ν) : Sn−1 → IR be the continuous extension of µ(ν) obtained in Proposi-
tion 4.2. Then

(a) ū := lim sup∗ uε is the viscosity subsolution of (P );

(b) u := lim inf∗ uε is the viscosity supersolution of (P ).

Before proving the proposition, let us first prove the main theorem.

Proof of Theorem 1.5. Due to above proposition and Theorem 2.2, we have ū ≤ u in Ω. The
locally uniform convergence of uε then follows from the definition of ū and u. 2

Proof of Proposition 5.2

1. We will only prove (a), since (b) can be proved via parallel arguments.

2. It follows from standard viscosity solution theory that F (D2ū) ≤ 0 in Ω in the viscosity sense.
Also due to interior regularity of uε it is straightforward to show that ū ≤ 1 on K. Therefore if ū
fails to be a subsolution of (P ), then there exists a smooth function φ which touches ū from above
at a boundary point x0 ∈ ∂Ω and satisfies, for some δ > 0,

F (D2φ)(x0) > 0 and
∂φ

∂ν
(x0) ≥ µν + 2δ (19)
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where ν = nux0 . Let us decompose φ into φ = φ1 + φ2 where

φ1(x) = (x− x0) · (Dφ− ν(ν ·Dφ))(x0).

Then
ν ·Dφ1(x0) = 0 and Dφ2(x0) = ν(ν ·Dφ2)(x0).

Observe that since φ1 is a linear function, φ2 still satisfies (19) instead of φ. Furthermore, since φ2

is smooth, we may choose ε sufficiently small to replace φ2 (with an error ε4k/3) by a linear profile
ϕ with normal ν and

ν ·Dϕ ≥ µν + 2δ − εk/2 ≥ µν + δ

in Bε2k/3(x0).

3. Case I: when νx0 is a irrational direction

To illustrate the idea, first assume that x0 points toward an irrational direction. Let us consider vε

solving 



F (D2vε) = 0 in Σ := {x : −εk ≤ (x− x0) · ν ≤ 0}

ν ·Dvε = g(x
ε )− C1ε

k/2 on Γ0 := {x : (x− x0) · ν = 0}

vε = ϕ on ΓI := {x : (x− x0) · ν = −εk}
where C1 is the C2 norm of φ near x0. Note that ϕ is a constant in the inner strip. From the
homogenization result on the strip domain pointing towards an irrational direction (see the proof of
Claim 4 in section 4) and a re-scaling argument, it follows that for ε sufficiently small depending on
δ, we have

vε ≤ φ− εkδ/2 + C1ε
β+k in Bε2k/3(x0). (20)

Here 0 < β < 1 is the constant obtained in (8).

Therefore
vε(x0) ≤ φ(x0)− cekδ/2 (21)

Next consider wε: the viscosity solution of

(P̃ )





F (D2wε) = 0 in Σ ∩ Ω

ν ·Dwε = g(x
ε )− C1ε

k/2 on ∂Ω0

wε = ϕ on ΓI := {x : (x− x0) · ν = −εk}.

Let us define ũε := uε−φ1−C1ε
4k/3.Then ũε satisfies F (D2ũε) = F (D2uε) = 0 in Ω, ũε ≤ φ2−Cεk ≤

ϕ in Ω ∩Bεk/2(x0) and

ν ·Dũε = g(
x

ε
)− ν ·Dφ1(x) ≤ g(

x

ε
) + C1ε

k/2 on ∂Ω ∩Bεk/2(x0)

Therefore ũε is a viscosity supersolution of (P̃ ), and due to Theorem 2.2 we have

wε ≤ ũε in Σ ∩ Ω.
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Hence it follows that
wε(x0) ≤ φ(x0)− Cε4k/3. (22)

Now (21) and (22) contradicts Lemma 5.1 if ε is sufficiently small.

4. Case II: General case

Finally we discuss the general situation. Due to the fact that Ω is irrationally dense, one can find
y0 ∈ ∂Ω pointing toward an irrational direction in arbitrarily small vicinity of a boundary point
x0 ∈ ∂Ω. Below we will to divide ∂Ω into small neighborhoods of different sizes to argue as above,
but with y0 in place of x0.

Let us pick a δ > 0 and any given boundary point y0 ∈ ∂Ω whose normal νy0 = p is an irrational
direction. Then there exists ε0(y0) = ε(δ, p) such that (20) will hold in Bε2k/3(y0) for 0 < ε < ε0
and we will run into a contradiction with smooth φ satisfying (19) and touching uε from above at a
point x0 ∈ 1

2Bε2k/3(y0).

Since Ω is irrationally dense, the union of r(y0) := 1
2 (ε0(y0))2k/3-neighborhood of y0 over all y0 ∈ ∂Ω

whose normal is irrational covers all of the ∂Ω. Let us call this covering N (δ).

Now suppose ū fails to be a subsolution of (P ). Then as before, there exists a smooth function φ
which touches ū from above at a boundary point x0 ∈ ∂Ω and satisfies, for some δ > 0,

F (D2φ) > 0 and
∂φ

∂ν
≥ µν + 2δ in Br(y0)(y0), (23)

Now due to above discussion, there exists y0 ∈ ∂Ω such that
x0 ∈ Br(y0)(y0) ∈ N (δ). Now proceeding as in step 2.-3. would yield a contradiction. 2

Remark 5.3. All the argument in the general domain, with little modification, extends to the Neu-
mann boundary data g(x, x/ε) and the elliptic operator F (D2u, x) with F being continuous with
respect to each variable.
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