A Martingale Central Limit Theorem
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We present a proof of a martingale central limit theorem (Theorem 2)
due to McLeish (1974). Then, an application to Markov chains is given.

Lemma 1. For n > 1, let U,, T}, be random variables such that
1. U, — a in probability.
2. {T,,} is uniformly integrable.
3. {|TU,|} is uniformly integrable.
4. E(T,,) — L.
Then E(T,U,) — a.

Proof. Write T,,U, = T,,(U, — a) + aT,,. As E[T,] — 1, we need only
show that E[T,(U, — a)] — 0 to finish.

Since {7} is uniformly integrable, we have T,,(U,, —a) — 0 in probability.
Also, both T,U, and aT,, are uniformly integrable, and so the combination
T, (U, — a) is uniformly integrable. Hence, E[T,,(U,, — a)] — 0. O

A key observation for the following is the expansion,
22
exp (ix) = (1 + iz) exp (—? +7(x))
where |r(z)| < |z|® for real x.

Theorem 1. Let {X,; : 1 < j < k,,n > 1} be a triangular array of (any)
random variables. Let S, = Z1gj§kn Xoj, T, = ngjgkn(l + itX,,;), and

U, = exp (—% > Xai+ 32, r(tXn;)). Suppose that

1. E(T,) — 1.



2. {T,,} is uniformly integrable.
3. 32, X;; — 1 in probability.
4. max; | X,,;| = 0 in probability.
Then E(exp (itS,)) — exp (—%)
Proof. Let t be fixed. From conditions (3) and (4), bound

Dot X))l < P Xl
J J

3 2 _
< ¢ mJaX|an| % X,; = o(1).
Then,

t2
U, = exp(—EZij—i—Zr(tan))
J J
t2

= exp (=5 +o(l)).

This verifies condition (1) of Lemma 1 with a = exp (—%)
Conditions (2) and (4) of Lemma 1 are our present conditions (2) and
(1), respectively. Condition (3) of Lemma 1 follows from the fact

[ TUn| = |expitS,| = |eXpitZan] =1.

J
Thus E(expitS,) = E(T,U,) — exp (—t?/2). O

Theorem 2. Let {X,,;,1 <j <k,,n> 1} be a martingale difference array
with respect to nested o-fields {F,; : 1 < j < k,,n > 1}, F,; C Fp for
7 < k, such that

1. E(max;|X,;|) — 0.
2. 37, X;; — 1 in probability.

Then S, = }_; X,; = N(0,1) in distribution.



Proof. Define Z,; = X,,1, and Z,; = X"JI(21<7’<] (X2 < 2)for2 <
j < kpandn > 1. Then {Z,; : 1 < j < k,,n > 1} is also martingale
difference array with respect to {F,;} because

E( "J|]:7"0(J 1 _]< Z X2 <2> nJ|]: (- 1)) 0.

r<j—1
Let now J = inf{j:>7, ;X7 > 2} Ak, Then,
P(X, # Zy, for some r <k, = P(J<k,—1)
< P(Y X7 >2) (1)
r<kn

from the third assumption.

It is also to easy that the variables {Z,;} satisfy the conditions of the
Theorem 2.

We now show that {Z,;} satisfies the conditions of Theorem 1. Let
T = [;<p, (1 +itZy;). Since (1 +itx)[* = (1 + t°27) < exp (t?2?), we have

T = J] +EXE)RexE)Y

1<r<J—1

< exp((t?/2) Y X)L+ |t Xas])

1<r<J—1
< exp(t?)(1 + || max | X,,;).
J

Since E(max; |X,;|) = 0, {max; | X,;|} is uniformly integrable, and therefore
{T,,} is uniformly integrable. Also, as {Z,,} is a martingale difference array,
we have by successive conditioning that F(7,) = 1. Hence, conditons (1),
(2) and (4) of Theorem 1 for {Z,,} are met.

Clearly condition (3) of Theorem 1 also holds for the array {Z,;} in view
of (1).

Thus all the conditions of Theorem 1 hold, and we conclude ), ko Ly —>
N(0,1). But, by (1), we have then that Y X, — N(0,1) also. O

For some applications, the following corollary of Theorem 2 is convenient.

Theorem 3. Let {Z; : j > 1} be a stationary ergodic sequence such that
= E|Z}] < o0, and E[Z,11|F,] = 0 where F,, = 0{Z; : j < n}. Then, we
have )

Y, = —
NLD

[Z1+ - Z,) = N(0,07).



Proof. Let X,; = Z;/y/n and F,,; = F; for 1 < j <n and n > 1. Then,
{X,;} is a martingale difference array with respect to {F,;}.

We now argue that condition (1) of Theorem 2 is satisfied with Z,; =
Z;/v/n. It is an exercise to show that for a sequence of identically (not
necessarily independent) distributed r.v.’s {n;}, with finite mean, that

.1
i 8 s ] = 0

Given this claim, by stationarity of { Z;} and E[Z}] < oo, and taking 7; = Z7,
E(max; |Z;|/v/n) — 0 follows. Finally, as ergodicity of the sequence verifies
condition (2) of Theorem 2, Theorem 3 follows from Theorem 2.

The exercise is proved as follows: Truncate

il = 051 <a0 + (0511150500
— A;+B,

Write

max |1;] < max A; + max B;.
J J J
Of course, (1/n)E[max; A;] — 0.

Note, using E[Y] = [;° P(Y > x)dx for nonnegative Y,

Elmax B;| = / P(max B; > z)dx
0

J J

< [ PUL B 2o
0

< Z/ P(B; > z)dx
j=1"0

= n/ P(B; > x)dx = nE[|m|,|m| > M].
0

Then, lim,(1/n)E[max; [n;|] < E[|m]|, |m| > M] which given the finite
mean of |n;| can be made small as M arbitrary. O

We now present an application of Theorem 3 to finite state Markov chains
in discrete time.

Application. Let ¥ be a finite state space with r letters, |X| = r. Let
{X; : i > 1} be an ergodic Markov chain on ¥ with transition matrix P
starting under the stationary measure 7.
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Let also f : ¥ — R be a mean-zero function with respect to m, E;[f] = 0.
Consider now the sum S, = > | f(X;).

The aim of this application is to show that S, /4/n converges in distribu-
tion to N(0,0?) for some 02 < oo with the help of Theorem 3.

A preliminary lemma will be useful. Let I, be the r x r identity matrix.
Also note that f can be represented as a vector, f = (f(i) :i € ¥) € R".

Lemma 2. There is a function u : ¥ — R such that f = (I, — P)u.
Proof. Write
R" = Null(I — P*) & Range(I — P)

where P* is the adjoint of P. Then, as [l — P] = 0, and 7 is unique, we
have

Null(I — P*) = {cr: c € R},
a one-parameter space. However, since E.[f] = 0 and so f L m, we must
have f € Range(I — P). O

We now approximate S, /4/n by a martingale. For n > 1, define
M, = Z[U(X,) — (Pu)(X;—1)] and F, =0{X;:1<i<n}.
i=1

From the Markov property, the conditional expectation, Flu(X;)|Fi—i] =
(Pu)(X;-1). Therefore, {M,} is martingale sequence with respect to {F,}
with stationary ergodic L?(r) differences.

Write

n n

[ D ulx) = Y (Pu)(X)

i=1 =1

My | (Pu)(X) = (P)(X)

Vi v

As u is bounded, the error in the martingale approximation vanishes,

[(Pu)(Xo) = (Pu)(Xy)]/v/n = 0.

We now compute the variance o

Si-

=31 =

lim %EW[M,%] — B (X)) — (Pu)(X0))?
== Eﬂ[u2 - (Pu>2]



As long as f is non-constant, « is non-constant and ¢? > 0. Also, as u is
bounded, 02 < oo.
Hence, by Theorem 3, we have S,,/v/n = N(0,0?). O

I would like to thank at this point T. Kurtz for pointing out a simplifica-
tion in Theorem 2, and M. Balazs and G. Giacomin and J. Sethuraman for
helpful discussions.
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