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We present a proof of a martingale central limit theorem (Theorem 2)
due to McLeish (1974). Then, an application to Markov chains is given.

Lemma 1. For n ≥ 1, let Un, Tn be random variables such that

1. Un → a in probability.

2. {Tn} is uniformly integrable.

3. {|TnUn|} is uniformly integrable.

4. E(Tn)→ 1.

Then E(TnUn)→ a.

Proof. Write TnUn = Tn(Un − a) + aTn. As E[Tn] → 1, we need only
show that E[Tn(Un − a)]→ 0 to finish.

Since {Tn} is uniformly integrable, we have Tn(Un−a)→ 0 in probability.
Also, both TnUn and aTn are uniformly integrable, and so the combination
Tn(Un − a) is uniformly integrable. Hence, E[Tn(Un − a)]→ 0. �

A key observation for the following is the expansion,

exp (ix) = (1 + ix) exp (−x
2

2
+ r(x))

where |r(x)| ≤ |x|3 for real x.

Theorem 1. Let {Xnj : 1 ≤ j ≤ kn, n ≥ 1} be a triangular array of (any)
random variables. Let Sn =

∑
1≤j≤kn Xnj, Tn =

∏
1≤j≤kn(1 + itXnj), and

Un = exp (− t2

2

∑
j X

2
nj +

∑
j r(tXnj)). Suppose that

1. E(Tn)→ 1.
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2. {Tn} is uniformly integrable.

3.
∑

j X
2
nj → 1 in probability.

4. maxj |Xnj| → 0 in probability.

Then E(exp (itSn))→ exp (− t2

2
).

Proof. Let t be fixed. From conditions (3) and (4), bound

|
∑
j

r(tXnj)| ≤ |t|3
∑
j

|Xnj|3

≤ |t|3 max
j
|Xnj|

∑
j

X2
nj = o(1).

Then,

Un = exp (−t
2

2

∑
j

X2
nj +

∑
j

r(tXnj))

= exp (−t
2

2
+ o(1)).

This verifies condition (1) of Lemma 1 with a = exp (− t2

2
).

Conditions (2) and (4) of Lemma 1 are our present conditions (2) and
(1), respectively. Condition (3) of Lemma 1 follows from the fact

|TnUn| = | exp itSn| = | exp it
∑
j

Xnj| = 1.

Thus E(exp itSn) = E(TnUn)→ exp (−t2/2). �

Theorem 2. Let {Xnj, 1 ≤ j ≤ kn, n ≥ 1} be a martingale difference array
with respect to nested σ-fields {Fnj : 1 ≤ j ≤ kn, n ≥ 1}, Fnj ⊂ Fnk for
j ≤ k, such that

1. E(maxj |Xnj|)→ 0.

2.
∑

j X
2
nj → 1 in probability.

Then Sn =
∑

j Xnj ⇒ N(0, 1) in distribution.
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Proof. Define Zn1 = Xn1, and Znj = XnjI(
∑

1≤r≤j−1X
2
nr ≤ 2) for 2 ≤

j ≤ kn and n ≥ 1. Then {Znj : 1 ≤ j ≤ kn, n ≥ 1} is also martingale
difference array with respect to {Fnj} because

E(Znj|Fn(j−1)) = I
( ∑
r≤j−1

X2
nr ≤ 2

)
E(Xnj|Fn(j−1)) = 0.

Let now J = inf{j :
∑

1≤r≤j X
2
nr > 2} ∧ kn. Then,

P (Xnr 6= Znr for some r ≤ kn) = P (J ≤ kn − 1)

≤ P (
∑
r≤kn

X2
nr > 2)→ 0 (1)

from the third assumption.
It is also to easy that the variables {Znj} satisfy the conditions of the

Theorem 2.
We now show that {Znj} satisfies the conditions of Theorem 1. Let

Tn =
∏

j≤kn(1 + itZnj). Since |(1 + itx)|2 = (1 + t2x2) ≤ exp (t2x2), we have

|Tn| =
∏

1≤r≤J−1

(1 + t2X2
nr)

1/2(1 + t2X2
nJ)1/2

≤ exp ((t2/2)
∑

1≤r≤J−1

X2
nr)(1 + |t||XnJ |)

≤ exp(t2)(1 + |t|max
j
|Xnj|).

Since E(maxj |Xnj|)→ 0, {maxj |Xnj|} is uniformly integrable, and therefore
{Tn} is uniformly integrable. Also, as {Znr} is a martingale difference array,
we have by successive conditioning that E(Tn) = 1. Hence, conditons (1),
(2) and (4) of Theorem 1 for {Znj} are met.

Clearly condition (3) of Theorem 1 also holds for the array {Znj} in view
of (1).

Thus all the conditions of Theorem 1 hold, and we conclude
∑

r≤kn Znr →
N(0, 1). But, by (1), we have then that

∑
Xnr → N(0, 1) also. �

For some applications, the following corollary of Theorem 2 is convenient.

Theorem 3. Let {Zj : j ≥ 1} be a stationary ergodic sequence such that
σ2 = E[Z2

1 ] <∞, and E[Zn+1|Fn] = 0 where Fn = σ{Zj : j ≤ n}. Then, we
have

Yn =
1√
n

[Z1 + · · ·Zn]⇒ N(0, σ2).
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Proof. Let Xnj = Zj/
√
n and Fnj = Fj for 1 ≤ j ≤ n and n ≥ 1. Then,

{Xnj} is a martingale difference array with respect to {Fnj}.
We now argue that condition (1) of Theorem 2 is satisfied with Znj =

Zj/
√
n. It is an exercise to show that for a sequence of identically (not

necessarily independent) distributed r.v.’s {ηj}, with finite mean, that

lim
n→∞

1

n
E
[

max
1≤j≤n

|ηj|
]

= 0.

Given this claim, by stationarity of {Zj} and E[Z2
1 ] <∞, and taking ηj = Z2

j ,
E(maxj |Zj|/

√
n)→ 0 follows. Finally, as ergodicity of the sequence verifies

condition (2) of Theorem 2, Theorem 3 follows from Theorem 2.
The exercise is proved as follows: Truncate

|ηj| = |ηj|1[|ηj |≤M ] + |ηj|1|ηj |>M ]

= Aj +Bj.

Write
max
j
|ηj| ≤ max

j
Aj + max

j
Bj.

Of course, (1/n)E[maxj Aj]→ 0.
Note, using E[Y ] =

∫∞
0
P (Y ≥ x)dx for nonnegative Y ,

E[max
j
Bj] =

∫ ∞
0

P (max
j
Bj ≥ x)dx

≤
∫ ∞
0

P ( ∪nj=1 {Bj ≥ x})dx

≤
n∑
j=1

∫ ∞
0

P (Bj ≥ x)dx

= n

∫ ∞
0

P (B1 ≥ x)dx = nE[|η1|, |η1| > M ].

Then, limn(1/n)E[maxj |ηj|] ≤ E[|η1|, |η1| > M ] which given the finite
mean of |η1| can be made small as M arbitrary. �

We now present an application of Theorem 3 to finite state Markov chains
in discrete time.

Application. Let Σ be a finite state space with r letters, |Σ| = r. Let
{Xi : i ≥ 1} be an ergodic Markov chain on Σ with transition matrix P
starting under the stationary measure π.
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Let also f : Σ→ R be a mean-zero function with respect to π, Eπ[f ] = 0.
Consider now the sum Sn =

∑n
i=1 f(Xi).

The aim of this application is to show that Sn/
√
n converges in distribu-

tion to N(0, σ2) for some σ2 <∞ with the help of Theorem 3.
A preliminary lemma will be useful. Let Ir be the r × r identity matrix.

Also note that f can be represented as a vector, f = 〈f(i) : i ∈ Σ〉 ∈ Rr.

Lemma 2. There is a function u : Σ→ R such that f = (Ir − P )u.

Proof. Write

Rr = Null(I − P ∗)⊕ Range(I − P )

where P ∗ is the adjoint of P . Then, as π[I − P ] = 0, and π is unique, we
have

Null(I − P ∗) = {cπ : c ∈ R},
a one-parameter space. However, since Eπ[f ] = 0 and so f ⊥ π, we must
have f ∈ Range(I − P ). �

We now approximate Sn/
√
n by a martingale. For n ≥ 1, define

Mn =
n∑
i=1

[u(Xi)− (Pu)(Xi−1)] and Fn = σ{Xi : 1 ≤ i ≤ n}.

From the Markov property, the conditional expectation, E[u(Xi)|Fi−1] =
(Pu)(Xi−1). Therefore, {Mn} is martingale sequence with respect to {Fn}
with stationary ergodic L2(π) differences.

Write

1√
n

n∑
i=1

f(Xi) =
1√
n

[ n∑
i=1

u(Xi)−
n∑
i=1

(Pu)(Xi)
]

=
Mn√
n

+
(Pu)(X0)− (Pu)(Xn)√

n
.

As u is bounded, the error in the martingale approximation vanishes,

[(Pu)(X0)− (Pu)(Xn)]/
√
n→ 0.

We now compute the variance σ2:

lim
n→∞

1

n
Eπ[M2

n] = Eπ[(u(X1)− (Pu)(X0))
2]

= Eπ[u2 − (Pu)2]

= σ2.
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As long as f is non-constant, u is non-constant and σ2 > 0. Also, as u is
bounded, σ2 <∞.

Hence, by Theorem 3, we have Sn/
√
n⇒ N(0, σ2). �

I would like to thank at this point T. Kurtz for pointing out a simplifica-
tion in Theorem 2, and M. Balazs and G. Giacomin and J. Sethuraman for
helpful discussions.
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