A Martingale Central Limit Theorem

Sunder Sethuraman

We present a proof of a martingale central limit theorem (Theorem 2) due to McLeish (1974). Then, an application to Markov chains is given.

Lemma 1. For $n \geq 1$, let U_n, T_n be random variables such that

- 1. $U_n \to a$ in probability.
- 2. $\{T_n\}$ is uniformly integrable.
- 3. $\{|T_nU_n|\}$ is uniformly integrable.
- 4. $E(T_n) \to 1$.

Then $E(T_nU_n) \to a$.

Proof. Write $T_nU_n = T_n(U_n - a) + aT_n$. As $E[T_n] \to 1$, we need only show that $E[T_n(U_n - a)] \to 0$ to finish.

Since $\{T_n\}$ is uniformly integrable, we have $T_n(U_n-a) \to 0$ in probability. Also, both T_nU_n and aT_n are uniformly integrable, and so the combination $T_n(U_n-a)$ is uniformly integrable. Hence, $E[T_n(U_n-a)] \to 0$.

A key observation for the following is the expansion,

$$\exp(ix) = (1 + ix) \exp(-\frac{x^2}{2} + r(x))$$

where $|r(x)| \le |x|^3$ for real x.

Theorem 1. Let $\{X_{nj}: 1 \leq j \leq k_n, n \geq 1\}$ be a triangular array of (any) random variables. Let $S_n = \sum_{1 \leq j \leq k_n} X_{nj}, T_n = \prod_{1 \leq j \leq k_n} (1 + itX_{nj})$, and $U_n = \exp\left(-\frac{t^2}{2}\sum_j X_{nj}^2 + \sum_j r(tX_{nj})\right)$. Suppose that

1.
$$E(T_n) \to 1$$
.

- 2. $\{T_n\}$ is uniformly integrable.
- 3. $\sum_{i} X_{ni}^2 \to 1$ in probability.
- 4. $\max_{j} |X_{nj}| \to 0$ in probability.

Then $E(\exp{(itS_n)}) \to \exp{(-\frac{t^2}{2})}$.

Proof. Let t be fixed. From conditions (3) and (4), bound

$$|\sum_{j} r(tX_{nj})| \leq |t|^{3} \sum_{j} |X_{nj}|^{3}$$

$$\leq |t|^{3} \max_{j} |X_{nj}| \sum_{j} X_{nj}^{2} = o(1).$$

Then,

$$U_n = \exp\left(-\frac{t^2}{2}\sum_{j}X_{nj}^2 + \sum_{j}r(tX_{nj})\right)$$
$$= \exp\left(-\frac{t^2}{2} + o(1)\right).$$

This verifies condition (1) of Lemma 1 with $a = \exp\left(-\frac{t^2}{2}\right)$.

Conditions (2) and (4) of Lemma 1 are our present conditions (2) and (1), respectively. Condition (3) of Lemma 1 follows from the fact

$$|T_n U_n| = |\exp it S_n| = |\exp it \sum_j X_{nj}| = 1.$$

Thus $E(\exp itS_n) = E(T_nU_n) \to \exp(-t^2/2)$.

Theorem 2. Let $\{X_{nj}, 1 \leq j \leq k_n, n \geq 1\}$ be a martingale difference array with respect to nested σ -fields $\{\mathcal{F}_{nj}: 1 \leq j \leq k_n, n \geq 1\}$, $\mathcal{F}_{nj} \subset \mathcal{F}_{nk}$ for $j \leq k$, such that

- 1. $E(\max_j |X_{nj}|) \to 0$.
- 2. $\sum_{j} X_{nj}^2 \to 1$ in probability.

Then $S_n = \sum_j X_{nj} \Rightarrow N(0,1)$ in distribution.

Proof. Define $Z_{n1} = X_{n1}$, and $Z_{nj} = X_{nj}I(\sum_{1 \le r \le j-1}X_{nr}^2 \le 2)$ for $2 \le j \le k_n$ and $n \ge 1$. Then $\{Z_{nj} : 1 \le j \le k_n, n \ge 1\}$ is also martingale difference array with respect to $\{\mathcal{F}_{nj}\}$ because

$$E(Z_{nj}|\mathcal{F}_{n(j-1)}) = I\left(\sum_{r < j-1} X_{nr}^2 \le 2\right) E(X_{nj}|\mathcal{F}_{n(j-1)}) = 0.$$

Let now $J = \inf\{j : \sum_{1 \le r \le j} X_{nr}^2 > 2\} \wedge k_n$. Then,

$$P(X_{nr} \neq Z_{nr} \text{ for some } r \leq k_n) = P(J \leq k_n - 1)$$

 $\leq P(\sum_{r \leq k_n} X_{nr}^2 > 2) \to 0$ (1)

from the third assumption.

It is also to easy that the variables $\{Z_{nj}\}$ satisfy the conditions of the Theorem 2

We now show that $\{Z_{nj}\}$ satisfies the conditions of Theorem 1. Let $T_n = \prod_{j \leq k_n} (1 + itZ_{nj})$. Since $|(1 + itx)|^2 = (1 + t^2x^2) \leq \exp(t^2x^2)$, we have

$$|T_n| = \prod_{1 \le r \le J-1} (1 + t^2 X_{nr}^2)^{1/2} (1 + t^2 X_{nJ}^2)^{1/2}$$

$$\le \exp((t^2/2) \sum_{1 \le r \le J-1} X_{nr}^2) (1 + |t||X_{nJ}|)$$

$$\le \exp(t^2) (1 + |t| \max_j |X_{nj}|).$$

Since $E(\max_j |X_{nj}|) \to 0$, $\{\max_j |X_{nj}|\}$ is uniformly integrable, and therefore $\{T_n\}$ is uniformly integrable. Also, as $\{Z_{nr}\}$ is a martingale difference array, we have by successive conditioning that $E(T_n) = 1$. Hence, conditions (1), (2) and (4) of Theorem 1 for $\{Z_{nj}\}$ are met.

Clearly condition (3) of Theorem 1 also holds for the array $\{Z_{nj}\}$ in view of (1).

Thus all the conditions of Theorem 1 hold, and we conclude $\sum_{r \leq k_n} Z_{nr} \to N(0,1)$. But, by (1), we have then that $\sum X_{nr} \to N(0,1)$ also.

For some applications, the following corollary of Theorem 2 is convenient.

Theorem 3. Let $\{Z_j : j \geq 1\}$ be a stationary ergodic sequence such that $\sigma^2 = E[Z_1^2] < \infty$, and $E[Z_{n+1}|\mathcal{F}_n] = 0$ where $\mathcal{F}_n = \sigma\{Z_j : j \leq n\}$. Then, we have

$$Y_n = \frac{1}{\sqrt{n}}[Z_1 + \cdots Z_n] \Rightarrow N(0, \sigma^2).$$

Proof. Let $X_{nj} = Z_j / \sqrt{n}$ and $\mathcal{F}_{nj} = \mathcal{F}_j$ for $1 \leq j \leq n$ and $n \geq 1$. Then, $\{X_{nj}\}\$ is a martingale difference array with respect to $\{\mathcal{F}_{nj}\}$.

We now argue that condition (1) of Theorem 2 is satisfied with $Z_{nj} =$ Z_i/\sqrt{n} . It is an exercise to show that for a sequence of identically (not necessarily independent) distributed r.v.'s $\{\eta_i\}$, with finite mean, that

$$\lim_{n \to \infty} \frac{1}{n} E \Big[\max_{1 \le j \le n} |\eta_j| \Big] = 0.$$

Given this claim, by stationarity of $\{Z_j\}$ and $E[Z_1^2] < \infty$, and taking $\eta_j = Z_j^2$, $E(\max_i |Z_i|/\sqrt{n}) \to 0$ follows. Finally, as ergodicity of the sequence verifies condition (2) of Theorem 2, Theorem 3 follows from Theorem 2.

The exercise is proved as follows: Truncate

$$|\eta_j| = |\eta_j|1_{[|\eta_j| \le M]} + |\eta_j|1_{|\eta_j| > M]}$$

= $A_j + B_j$.

Write

$$\max_{j} |\eta_j| \leq \max_{j} A_j + \max_{j} B_j.$$

Of course, $(1/n)E[\max_j A_j] \to 0$. Note, using $E[Y] = \int_0^\infty P(Y \ge x) dx$ for nonnegative Y,

$$E[\max_{j} B_{j}] = \int_{0}^{\infty} P(\max_{j} B_{j} \ge x) dx$$

$$\leq \int_{0}^{\infty} P(\bigcup_{j=1}^{n} \{B_{j} \ge x\}) dx$$

$$\leq \sum_{j=1}^{n} \int_{0}^{\infty} P(B_{j} \ge x) dx$$

$$= n \int_{0}^{\infty} P(B_{1} \ge x) dx = nE[|\eta_{1}|, |\eta_{1}| > M].$$

Then, $\lim_{n} (1/n) E[\max_{j} |\eta_{j}|] \leq E[|\eta_{1}|, |\eta_{1}| > M]$ which given the finite mean of $|\eta_1|$ can be made small as M arbitrary.

We now present an application of Theorem 3 to finite state Markov chains in discrete time.

Application. Let Σ be a finite state space with r letters, $|\Sigma| = r$. Let $\{X_i: i \geq 1\}$ be an ergodic Markov chain on Σ with transition matrix P starting under the stationary measure π .

Let also $f: \Sigma \to R$ be a mean-zero function with respect to π , $E_{\pi}[f] = 0$. Consider now the sum $S_n = \sum_{i=1}^n f(X_i)$.

The aim of this application is to show that S_n/\sqrt{n} converges in distribution to $N(0, \sigma^2)$ for some $\sigma^2 < \infty$ with the help of Theorem 3.

A preliminary lemma will be useful. Let I_r be the $r \times r$ identity matrix. Also note that f can be represented as a vector, $f = \langle f(i) : i \in \Sigma \rangle \in \mathbb{R}^r$.

Lemma 2. There is a function $u: \Sigma \to R$ such that $f = (I_r - P)u$.

Proof. Write

$$R^r = \text{Null}(I - P^*) \oplus \text{Range}(I - P)$$

where P^* is the adjoint of P. Then, as $\pi[I-P]=0$, and π is unique, we have

$$Null(I - P^*) = \{c\pi : c \in R\},\$$

a one-parameter space. However, since $E_{\pi}[f] = 0$ and so $f \perp \pi$, we must have $f \in \text{Range}(I - P)$.

We now approximate S_n/\sqrt{n} by a martingale. For $n \geq 1$, define

$$M_n = \sum_{i=1}^n [u(X_i) - (Pu)(X_{i-1})]$$
 and $\mathcal{F}_n = \sigma\{X_i : 1 \le i \le n\}.$

From the Markov property, the conditional expectation, $E[u(X_i)|\mathcal{F}_{i-1}] = (Pu)(X_{i-1})$. Therefore, $\{M_n\}$ is martingale sequence with respect to $\{\mathcal{F}_n\}$ with stationary ergodic $L^2(\pi)$ differences.

Write

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} f(X_i) = \frac{1}{\sqrt{n}} \left[\sum_{i=1}^{n} u(X_i) - \sum_{i=1}^{n} (Pu)(X_i) \right]$$
$$= \frac{M_n}{\sqrt{n}} + \frac{(Pu)(X_0) - (Pu)(X_n)}{\sqrt{n}}.$$

As u is bounded, the error in the martingale approximation vanishes,

$$[(Pu)(X_0) - (Pu)(X_n)]/\sqrt{n} \to 0.$$

We now compute the variance σ^2 :

$$\lim_{n \to \infty} \frac{1}{n} E_{\pi}[M_n^2] = E_{\pi}[(u(X_1) - (Pu)(X_0))^2]$$

$$= E_{\pi}[u^2 - (Pu)^2]$$

$$= \sigma^2.$$

As long as f is non-constant, u is non-constant and $\sigma^2 > 0$. Also, as u is bounded, $\sigma^2 < \infty$.

Hence, by Theorem 3, we have $S_n/\sqrt{n} \Rightarrow N(0, \sigma^2)$.

I would like to thank at this point T. Kurtz for pointing out a simplification in Theorem 2, and M. Balazs and G. Giacomin and J. Sethuraman for helpful discussions.

References.

- 1. D. L. McLeish (1974) Dependent Central Limit Theorems and Invariance Principles $Ann.\ Prob.\ 2$ 620-628.
- 2. Hall, P. and Heyde, C.C. (1980) Martingale limit theory and its application. Academic Press, New York.
- 3. Helland, I.S. (1982) Central limit theorems for martingales with discrete or continuous time. *Scand. J. Statist.* **9** 79-94.