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SPECTRAL GAP FOR ZERO-RANGE DYNAMICS

By C. Landim, S. Sethuraman and S. Varadhan1

IMPA and CNRS, Courant Institute and Courant Institute

We give a lower bound on the spectral gap for symmetric zero-range
processes. Under some conditions on the rate function, we show that the
gap shrinks as n−2, independent of the density, for the dynamics localized
on a cube of size nd. We follow the method outlined by Lu and Yau, where
a similar spectral gap is proved for Kawasaki dynamics.

1. Introduction and results. One of the basic estimates required for
the hydrodynamical limit of nongradient systems is a sharp lower bound
on the spectral gap of the finite coordinate process [13]. What is needed is
that the gap, for the process confined to cubes of linear size n, shrinks at a
rate n−2. Up to constants, this is heuristically the best possible lower bound,
in view of a comparison with random walk which prevents larger bounds.

Another application of such a bound is to establish an invariance principle
for conservative particle dynamics [11]. In that article, the bound is used to
estimate the rate of convergence of the canonical to the grand canonical en-
semble. Among the models discussed there are the zero-range processes. Our
intention in this paper is to prove the required lower bound for this type of
dynamics.

The symmetric zero-range processes consist of infinitely many particles
moving on the lattice Zd according to a Markovian law. The evolution of
the particles may be informally described as follows. Denote by N the set
of nonnegative integers, fix a nonnegative function cx N → R+ such that
c�0� = 0 < c�i� for i ≥ 1 and fix a symmetric transition measure p�·� on
Zd. If there are k particles at a site x of Zd, one of them jumps to y at rate
c�k�p�y− x�. This happens independently at each site. To fix ideas, we shall
consider in this paper only nearest-neighbor interactions: p�x� = 1/2 if �x� = 1
and 0 otherwise.

At this point some notation is required. The sites of Zd are denoted by x,
y and z, the state space NZd

by the symbol 6 and the configurations by the
Greek letters η and ξ. In this way ηx stands for the total number of particles
at site x for the configuration η.

These so-called zero-range processes are Markov processes with infinitesi-
mal generator L defined by its action on cylinder functions φ:

�Lφ��η� = 1
2

∑

�y−x�=1

c�ηx��φ�ηx;y� −φ�η��;
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where

�ηx;y�z =




ηx − 1; if z = x;
ηy + 1; if z = y;
ηz; if z 6= x;y

provided ηx ≥ 1 and x 6= y; otherwise, ηx;y ≡ η.
To ensure that the process is well defined on the infinite lattice NZd

we
shall assume throughout this article a Lipschitz condition on the rate:

(LG) supk �c�k+ 1� − c�k�� ≤ a1 <∞.

We refer to [1] for the details on the existence of this process.
As a conservative system where particles are neither created nor destroyed,

it is expected that the process possesses a family of invariant measures sup-
ported on configurations of fixed density. In order to describe these measures,
define the partition function Z�·� on R+ by

Z�α� =
∑
k≥0

αk

c�1� · · · c�k� :

It is clear that Z�·� is an increasing function. Let α∗ denote the radius of
convergence of Z:

α∗ = sup�αy Z�α� <∞�:

In order to avoid degeneracy we assume that the partition function Z diverges
at the boundary of its domain of definition:

lim
α→α∗

Z�α� = ∞:(1.1)

For 0 ≤ α < α∗, let P̄α be the translation invariant product measure on NZd

with marginals µα given by

µα�ηx = k� =
1

Z�α�
αk

c�1� · · · c�k� for k ≥ 0; x ∈ Zd:(1.2)

The family �P̄α; 0 ≤ α < α∗� is a one parameter set of reversible measures
for �ηt; t ≥ 0�.

A more intuitive parameterization is through the particle density. Let ρ�α�
be the density of particles for the measure P̄α,

ρ�α� = Ēα�η0�;

where Ēα refers to expectation with respect to P̄α.
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From assumption (1.1) it follows that ρx �0; α∗� → R+ is a smooth strictly
increasing bijection. Since ρ�α� has a physical meaning as the density of
particles, instead of parameterizing the above family of measures by α, we
parameterize it in terms of the density ρ and write for ρ ≥ 0,

Pρ = P̄α�ρ�:
Under this convention it follows then that for ρ ≥ 0,

α�ρ� = Eρ�c�η0��;
where Eρ refers to expectation with respect to Pρ. Moreover, a simple compu-
tation shows that

α′�ρ� = α�ρ�
σ�α�ρ��2 ;(1.3)

where σ�α�ρ��2 stands for the variance of η0 under P̄αx σ�α�ρ��2 = Ēα��η0 −
ρ�α��2�.

The associated Dirichlet form Dρ�φ� = −Eρ�φ�η��Lφ��η�� is defined by its
action on the test function φ:

Dρ�φ� = 1
4

∑

�x−y�=1

Eρ

[
c�ηx��φ�ηx;y� −φ�η��2

]
:

We now describe more precisely what we mean by the term “spectral gap.”
Consider the finite volume, finite particle zero-range process. This model gov-
erns the behavior of K particles jumping about in a finite cube, say to fix
ideas, 3n = �1;2; : : : ; n�d. The state space is then given as 6n;K = �η ∈
N3n x ∑x∈3n ηx = K�. For configurations η ∈ 6n;K and test functions φ, the
generator of this finite process takes the form

�Lnφ��η� = 1
2

∑

�x−y�=1
x;y∈3n

c�ηx��φ�ηx;y� −φ�η��:

The process defined by the generator Ln on the state space 6n;K is an
ergodic, reversible finite state Markov chain possessing discrete real-valued
spectrum. The operator Ln in L2�Pn;K� is negative definite and its largest
eigenvalue is 0. The absolute value of the next largest eigenvalue is the so-
called spectral gap of the process.

It is easily calculated that the ergodic measures Pn;K are equal to the
conditioned measure of the infinite volume invariant state on the restricted
hyperplane 6n;K:

Pn;K�·� = Pρ
(
·
∣∣∣
∑
x∈3n

ηx =K
)
:

Note that these definitions are independent of ρ.
The measures Pn;K, as alluded to earlier, are reversible and a simple cal-

culation yields

c�r+ 1�Pn;K�ηy ηe1
= r+ 1; η2e1

= l� = c�l+ 1�Pn;K�ηy ηe1
= r;η2e1

= l+ 1�
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or, what will be used later,

En;K�c�ηx��ηy = r� = c�r+ 1�
Pn;K�ηe1

= r+ 1�
Pn;K�ηe1

= r�(1.4)

for every x 6= y in 3n. Here En;K denotes expectation with respect to the
measure Pn;K and �ei; 1 ≤ i ≤ d� stands for the canonical basis of Rd. The
density of the measure Pn;K is denoted by ρ =K/nd.

The Dirichlet form for the finite process is defined as

Dn;K�φ� = −En;K�φ�Lnφ��
= 1

4

∑

�x−y�=1
x;y∈3n

En;K

[
c�ηx��φ�ηx;y� −φ�η��2

]
:

Consider now the quantity W�n;K� appearing in the Poincaré inequality

En;K

[
�f−En;K�f��2

]
≤W�n;K�Dn;K�f�(1.5)

for every f x 6n;K → �−∞;∞� in L2�Pn;K�, where W�n;K� is a constant
depending only on n and K.

This inequality gives another way to evaluate the spectral gap of the finite
volume process. In fact, as the inequality deals with mean-zero functions, the
smallest possible value of W�n;K� is the reciprocal of the gap.

We are interested in establishing the bound W�n;K� < W0n
2 for a constant

W0 independent of n and the total number of particles K. This would then
imply that the spectral gap is of O�n−2�.

Similar uniform O�n2� spectral gap estimates have been found for the sim-
ple exclusion process by Quastel [10], and for more general exclusion processes
by Lu and Yau [8]. The aim of this article is to determine for a class of zero-
range processes the spectral gap bound W�n;K� < W0n

2, where W0 is a
uniform constant. Such a demand rules out many zero-range processes, as
shown by the following example.

Example 1.1. Let c�r� = I�r ≥ 1�. By a clever transform in dimension
d = 1 [4], the corresponding zero-range process is mapped onto the simple
exclusion process where the gap is well known [10]. Inverting back, we deter-
mine that the zero-range process possesses a spectral gap of order �n+K�−2

which is clearly dependent on the density ρ.

Another illuminating example is the zero-range process where particles
evolve independently.

Example 1.2. Consider c�r� = r, the identity function. With this rate, the
corresponding zero-range dynamics are nothing more than a collection of mu-
tually independent symmetric random walks on �1; : : : ; n�d. For this process,
the n−2 spectral gap estimate, independent of ρ, is well known.
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To establish a spectral gap bound with constant W0 independent of n and
K we will impose a second assumption that rules out Example 1.1.

(M) There exists k0 ∈ N and a2 > 0 such that c�k� − c�j� ≥ a2 for all
k ≥ j+ k0.

Notice that, under assumptions (LG) and (M), α∗ is actually infinite. We are
now in a position to state the main theorem of this article.

Theorem 1.1. Given the conditions (LG) and (M), there exists a constant
W0 independent of n andK such that (1.5) holds withW�n;K� =W0n

2 for the
corresponding nearest-neighbor zero-range processes. This implies a spectral
gap of at least �W0n

2�−1 on a cube of volume nd.

We conclude this section with a few comments on the method of proof.
The approach we present here to prove a spectral gap independent of the
total number of particles is easily adapted to generalized exclusion processes
introduced in [6]. For attractive systems, a simpler proof can be given based
on coupling and positivity (cf. [3]). On the other hand, for the rate described in
Example 1.1 and for similar rates, we do not have yet methods to determine
a sharp spectral gap estimate. The difficulty arises in that the spectral gap
depends on the total number of particles and our approach is not adapted to
this situation.

To prove Theorem 1.1, we adapt Lu and Yau’s method [8] to the context
of zero-range processes where, by a clever induction argument, the Poincaré
inequality on f, ostensibly a function of nd coordinates, is reduced to an es-
timate involving a function of only one coordinate. At this point we prove a
spectral gap for functions that depend only on one site. This one site spectral
gap reduces the problem to the estimation of two terms. The first will yield
the desired Dirichlet form, while the second will give a smaller variance to be
absorbed into the variance on the left-hand side of (1.5).

Section 2 develops Lu and Yau’s basic ideas. Section 3 details the estimates
of the first and second terms and specifies the iteration. In Section 4 we prove
a spectral gap for functions depending only on one site. As a consequence
Theorem 1.1 is established for the initial case with two sites only. In Section 5
we prove some estimates on the one site marginal of the grand canonical zero-
range distribution important in the induction step of the proof and necessary
to obtain local central limit theorems uniform in the density. This last question
is the main theme of Section 6.

2. Proof of the main estimate. For simplicity we will prove Theorem 1.1
for dimension d = 1; the extension to higher dimensions is not difficult (cf. [5]).
We will employ an iteration aided by an induction. We will assume that we
have a spectral gap independent of the total number of particles for intervals
of length m ≤ n− 1x W�m� = supKW�m;K� is finite. Our efforts now will be
to use this hypothesis to set up a recursive equation for W�n�. For n large,
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say n > n0, we will give such a relation for W�n�. However, for n ≤ n0 slightly
different arguments are used to establish a recursion for W�n�. The results of
these two relations are then combined, giving that W�n� ≤W0n

2 is valid for
all n. The initial induction case n = 2 is a consequence of the one site spectral
gap and is further discussed in Section 4.

Step 1. Let us write the identity

f−En;K�f� = �f−En;K�f�η1�� + �En;K�f�η1� −En;K�f��:

Through this decomposition we may express the variance given in (1.5) as

En;K

[
�f−En;K�f��2

]

= En;K

[(
f−En;K�f�η1�

)2]+En;K

[(
En;K�f�η1� −En;K�f�

)2]
:

(2.1)

The first term on the right-hand side is easily analyzed through the induc-
tion assumption and a simple computation on the Dirichlet form. We write

En;K��f−En;K�f�η1��2�
= En;K�En;K��f−En;K�f�η1��2 �η1��
= En;K�En−1;K−η1

��f�η1; ·� −En−1;K−η1
�f�η1; ·���2��:

By the induction assumption this last expectation is bounded above by

K∑
r=0

Pn;K�η1 = r�W�n− 1�Dn−1;K−r�f�r; ·�� ≤W�n− 1�Dn;K�f�:

Step 2. The second term in (2.1) is nothing more than the variance of
En;K�f�η1�, a function of one variable. For each fixed K and n, let P1

n;K be
the one site marginal of the canonical measure Pn;K:

P1
n;K�r� = Pn;K�η1 = r� = Pρ

(
η1 = r

∣∣∣
n∑
x=1

ηx =K
)
:

Expectation with respect to P1
n;K is written E1

n;K.
On �0; : : : ;K� consider the birth and death process which jumps from r to

r± 1 with rates p�r; r± 1� given by

p�r; r− 1� = c�r� and p�r; r+ 1� = E1
n−1;K−r�c�η0��:

Denote the generator of this process by Ln;K. It is elementary to check that
P1
n;K is reversible for Ln;K. Moreover, if H x 6n;K → R is a function of only

one site [say H�η� =H�η1�], then

Dn;K�H� = −�1/2�E1
n;K�HLn;KH� =x D1

n;K�H�:
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In order to estimate a spectral gap for zero-range processes, our method re-
quires that the associated birth and death processes with generator Ln;K ex-
hibit a spectral gap with magnitude independent of n and K. We shall prove
in Section 4 the following one site spectral gap lemma.

Lemma 2.1. There exists a constant B0 = B0�a1; a2; k0� such that

E1
n;K

[
�H−E1

n;K�H��2
]
≤ B0D

1
n;K�H�

for all n ≥ 1, K ≥ 1 and H in L2�P1
n;K�.

This lemma applied to the function En;K�f�η1� shows that the second term
of (2.1) is bounded above by B0D

1
n;K�En;K�f�η1��. A few calculations simplify

the one-coordinate Dirichlet form:

Lemma 2.2. For every H =H�η1� in L2�Pn;K� we have

D1
n;K�H� = �1/2�

K−1∑
r=0

Pn;K�η1 = r+ 1�c�r+ 1��H�r+ 1� −H�r��2:

Proof. Recall P1
n;K�r� = Pn;K�η1 = r�. A simple computation shows that

the Dirichlet form 4D1
n;K�H�η1�� is equal to

En;K

[
c�η1��H�η1−1�−H�η1��2

]
+En;K

[
En;K�c�η2��η1��H�η1+1�−H�η1��2

]
:

In addition, taking advantage of the reversibility relation (1.4), we have that

En;K�c�η2��η1 = r� =
c�r+ 1�P1

n;K�r+ 1�
P1
n;K�r�

:(2.2)

Now, substituting this last identity into the previous formula, we obtain that

D1
n;K�H�η1�� = �1/2�

K−1∑
r=0

P1
n;K�r+ 1�c�r+ 1��H�r+ 1� −H�r��2:

The lemma is thus proved. 2

Step 3. Recall that our intention is to apply Lemmas 2.1 and 2.2 to the
one variable functionH�η1� = En;K�f�η1�. In this respect, we derive a simpler
expression for the difference

En;K�f�η1 = r+ 1� −En;K�f�η1 = r�;
taking advantage of the reversibility of Pn;K.

Lemma 2.3. Let M�η� be the function defined by

M�η� =
P1
n;K�η1�

P1
n;K�η1 + 1�c�η1 + 1�

1
n− 1

n∑
x=2

c�ηx�:
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Then, for every 0 ≤ r ≤K− 1, the difference

En;K�f�η1 = r+ 1� −En;K�f�η1 = r�
is equal to

1

P1
n;K�r+ 1�c�r+ 1�

1
n− 1

n∑
x=2

En;K�c�ηx��f�ηx;1� − f�η��I�η1 = r��

+En;K�M�η�y f�η��η1 = r�;
(2.3)

where En;K�gy h�η1 = r� is the covariance of g and h with respect to
En;K�·�η1 = r�.

Proof. Notice first that due to the reversibility criterion (2.2),

En;K�M�η��η1 = r� = 1(2.4)

for every 0 ≤ r ≤K− 1. On the other hand, exploiting again the reversibility
(1.4), we obtain that

En;K�f�η1 = r+ 1� = 1

P1
n;K�r+ 1�c�r+ 1�

En;K�f�ηx;1�c�ηx�I�η1 = r��

for every 2 ≤ x ≤ n. Adding and subtracting an appropriate term and then
averaging over x, this expression may be rewritten as

1

P1
n;K�r+ 1�c�r+ 1�

1
n− 1

n∑
x=2

En;K��f�ηx;1� − f�η��c�ηx�I�η1 = r��

+En;K�f�η�M�η��η1 = r�:
The observation (2.4) concludes the proof of the lemma. 2

Step 4. From Lemmas 2.1 and 2.2, the second term on the right-hand side
of (2.1) is bounded above by

1
2B0

K−1∑
r=0

P1
n;K�r+ 1�c�r+ 1��En;K�f�η1 = r+ 1� −En;K�f�η1 = r��2:

From Lemma 2.3 and the Schwarz inequality, this last sum is bounded
above by

B0

K−1∑
r=0

1

P1
n;K�r+ 1�c�r+ 1�

×
{
En;K

[
1

n− 1

n∑
x=2

c�ηx��f�ηx;1� − f�η��I�η1 = r�
]}2

+B0

K−1∑
r=0

P1
n;K�r+ 1�c�r+ 1��En;K�My f�η1 = r��2:

We denote the first line by B0A1�n;K;f� and the second by B0A2�n;K;f�.
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In Lemma 3.1 of Section 3 we establish that

A1�n;K;f� ≤ �n/2�Dn;K�f�:
In Lemma 3.2 we prove under assumptions (LG) and (M) that

A2�n;K;f� ≤ a2
1B0W�n− 1�Dn;K�f�:

This inequality shall be used to perform the iteration for small values of n. On
the other hand, using extensively the uniform Edgeworth expansion presented
in Section 6, in Proposition 3.1, under assumptions (LG) and (M), we prove
that for all ε > 0, there exist finite n0�ε� and C�ε� such that

A2�n;K;f� ≤ C�ε�Dn;K�f� + εn−1En;K��f−En;K�f��2�
for n ≥ n0�ε�.

In conclusion, from Step 1 and these estimates, the variance of f satisfies
the following relation:

En;K��f−En;K�f��2� ≤ ��1+ a2
1B

2
0�W�n− 1� + �nB0/2��Dn;K�f�

for n ≥ 2 and

En;K��f−En;K�f��2� ≤
{
W�n− 1� +

(
nB0

2

)
+B0C�ε�

}
Dn;K�f�

+ εB0

n
En;K��f−En;K�f��2�

for n ≥ n0�ε�. In other words, we have the following recurrence relations for
the sequence W�n�:

W�n� ≤ �1+ a2
1B

2
0�W�n− 1� + nB0

2
for n ≥ 2;

W�n� ≤
(

1− εB0

n

)−1{
W�n− 1� +

(
nB0

2

)
+B0C�ε�

}
for n ≥ n0�ε�:

This yields immediately that W�n� ≤ W0n
2 for some universal constant W0.

This concludes the proof of Theorem 1.1. 2

3. Technical bounds. The aim of this section is to estimate the two terms
A1 and A2 and thereby establish the iteration stated in Section 2. The first
term will be bounded by the full Dirichlet form multiplied by a factor of n.
This is accomplished in Lemma 3.1. The second term will be estimated by the
full variance multiplied by εn−1, where ε is an arbitrarily small number, and
the Dirichlet form. This takes place through several lemmas below. With this
bound, this “small” variance may be absorbed into the original variance. We
first estimate A1�n;K;f�.

Lemma 3.1. For every n ≥ 2 and positive integer K,

A1�n;K;f� ≤ �n/2�Dn;K�f�:



1880 C. LANDIM, S. SETHURAMAN AND S. VARADHAN

Proof. Recall the definition of A1�n;K;f�. It is equal to

K−1∑
r=0

1

P1
n;K�r+ 1�c�r+ 1�

{
En;K

[
1

n− 1

n∑
x=2

c�ηx��f�ηx;1� − f�η��I�η1 = r�
]}2

:

By the Schwarz inequality this sum is bounded above by
K−1∑
r=0

En;K

[
1

n− 1

n∑
x=2

c�ηx��f�ηx;1� − f�η��2I�η1 = r�
]

= En;K

[
1

n− 1

n∑
x=2

c�ηx��f�ηx;1� − f�η��2
]

since by reversibility we have that

En;K�c�ηx�I�η1 = r�� = P1
n;K�r+ 1�c�r+ 1�

for every 2 ≤ x ≤ n, 0 ≤ r ≤ K − 1. Straightforward computations show
that the last sum is bounded above by n/2 times the Dirichlet form of f. This
completes the proof of the lemma. 2

We now turn to the proof of an upper bound for A2�n;K;f�. The naive way
to approach this estimate is immediately to apply the Schwarz inequality to
A2�n;K;f� and then try to bound the object [recall the definition of M =
M�η�]

P1
n;K�r+ 1�c�r+ 1�

P1
n;K�r�

En;K�My M�η1 = r�

uniformly on r. The Edgeworth expansion gives a bound on this quan-
tity of type C�a1�n−1 and consequently A2�n;K;f� is bounded above by
C�a1�n−1En;K�f y f�. This is not enough to ensure that the iteration in the
previous section produces the estimate W�n� < Cn2. In order for the iteration
to succeed, an inequality such as A2�n;K;f� < C2n

−1En;K�f y f�, where C2 is
a small universal constant, is required. The naive approach is not successful
as there is no a priori smallness condition on the constant C�a1� arising from
the Edgeworth expansion. A more subtle analysis is therefore needed. This is
facilitated by the next two results. To carry this out we rewrite A2�n;K;f�
more appropriately.

Notice that by reversibility (2.2), M�η� may be rewritten as

1
En−1;K−η1

�c�η1��
1

n− 1

n∑
x=2

c�ηx�

and A2�n;K;f� as

En;K

[
1

En−1;K−η1
�c�η1��

(
En−1;K−η1

[
f y 1

n− 1

n∑
x=2

c�ηx�
])2]

:(3.1)

We shall first estimate A2�n;K;f� for n small using asumptions (LG) and
(M).
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Lemma 3.2. Under conditions (LG) and (M) we have, for n ≥ 2,

A2�n;K;f� ≤ a2
1B0W�n− 1�Dn;K�f�:

Proof. By the Schwarz inequality

(
En−1;K−η1

[
f y 1

n− 1

n∑
x=2

c�ηx�
])2

≤ En−1;K−η1
�f y f�En−1;K−η1

[
1

n− 1

n∑
x=2

c�ηx�y
1

n− 1

n∑
x=2

c�ηx�
]
:

A simple computation exploiting Lemmas 2.1 and 2.2 shows that for every
m ≥ 1 and L ≥ 0,

Em;L

[
1
m

m∑
x=1

c�ηx�y
1
m

m∑
x=1

c�ηx�
]
≤ Em;L��c�η1� −Em;L�c��2�

≤ 1
2
B0Em;L�c�η1��c�η1 − 1� − c�η1��2�:

Now by assumption (LG), �c�η1� − c�η1 − 1�� ≤ a1. Therefore A2�n;K;f� is
bounded by

1
2a

2
1B0En;K�En−1;K−η1

�f y f��:

By the induction assumption, En−1;K−η1
�f y f� is bounded by W�n − 1� ×

Dn−1;K−η1
�f�. Since En;K�Dn−1;K−η1

�f�� ≤ Dn;K�f�, the lemma is proved. 2

We now turn to the case where n is large enough that Edgeworth expansions
can be used to estimate expectations involving the canonical measures. Recall
the alternative formulation (3.1) for A2�n;K;f�. To keep notation simple, we
shall fix m = n − 1 and L = K − η1 and bound the expression inside the
expectation.

Proposition 3.1. For every ε > 0, there exists n0 in N and a finite constant
C�ε� so that

1
Em;L�c�η1��

(
Em;L

[
f y 1

m

m∑
x=1

c�ηx�
])2

≤ C�ε�Dm;L�f� +
ε

m
Em;L�f y f�

for all L and m ≥ n0.

The proof of this result is divided into several lemmas for purposes of clarity.
We first single out the case of small density.
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Lemma 3.3. For each ε > 0, there exists a positive integer n0 and a density
ρ0 such that

1
Em;L�c�η1��

Em;L

[
1
m

m∑
x=1

c�ηx�y
1
m

m∑
x=1

c�ηx�
]
≤ ε

m
(3.2)

for all m ≥ n0 and L/m ≤ ρ0.

Proof. First we compute the left-hand side in (3.2) using the reversibility
relation (1.4) and obtain that it is equal to

Em;L−1�c�η1�� −Em;L�c�η1�� +
1
m
Em;L−1�c�η1 + 1� − c�η1��:

The lemma follows from Corollary 6.3. 2

It remains to consider the case when the density is away from 0. Let n0 be
as specified in Corollary 6.4.

Lemma 3.4. For each ρ0 > 0, there exists a finite constant C�ρ0� and
n1�ρ0� ∈N such that the scaled square of the covariance

1
Em;L�c�η1��

(
Em;L

[
f y 1

m

m∑
x=1

c�ηx�
])2

≤ C�ρ0�
1
m

{
1
l
Em;L�f y f� + �l+ 1�W�l+ 1�Dm;L�f�

}

for each L/m ≥ ρ0, n0 ≤ l <
√
m and m ≥ n1.

Proof. Our strategy is to decompose the scaled covariance into two terms,
the first of which will produce the Dirichlet form multiplied by a controlled
factor; the second will yield the original variance with a small coefficient. In
order to take these factors and coefficients as universal numbers, required by
our iteration scheme in the previous section, we will need to use our assump-
tions (LG) and (M) on the rate c�·�.

In what follows, we abbreviate L/m by ρ. For a fixed positive integer l, we
divide the interval �1; : : : ;m� into �m/l� adjacent intervals of length l or l+1.
We denote by Bι the ιth interval, by �Bι� the total number of sites in Bι and by
yι the density of particles in Bιx yι = �Bι�−1∑

x∈Bι ηx. To keep notation simple,
we denote by E�Bι�; yι the expectation with respect to the canonical measure
on �Bι� sites and yι�Bι� particles.

By the Schwarz inequality, we have
(
Em;L

[
f y 1

m

m∑
x=1

c�ηx�
])2

≤ 2
(
Em;L

[
f y 1

m

�m/l�∑
ι=1

∑
x∈Bι
�c�ηx� −E�Bι�; yι�c��

])2

+ 2
(
Em;L

[
f y 1

m

∑
ι

�Bι�E�Bι�; yι�c�
])2

:
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Let I1 be the first term on the right-hand side and let I2 be the second.
We may estimate the first term through the elementary inequality 2ab ≤

ε−1a2 + εb2 and the induction assumption as follows. Taking conditional ex-
pectation with respect to yι, rewrite

√
�1/2�I1 as

∣∣∣∣
1
m

∑
ι

�Bι�Em;L

[
E�Bι�; yι

[
f y 1
�Bι�

∑
x∈Bι

c�ηx�
]] ∣∣∣∣

≤ ε

2m

∑
ι

�Bι�W��Bι��Em;L�D�Bι�; yι�f��

+ ε
−1

2m

∑
ι

�Bι�Em;L

[(
1
�Bι�

∑
x∈Bι

c�ηx� − α�ρ�
)2]

:

(3.3)

Here, the inequality follows from the induction assumption.
On the one hand, a straightforward computation shows that

∑
ι

Em;L�D�Bι�; yι�f��

is bounded above by Dm;L�f�. In particular the first term on the right-hand
side is bounded by ε�l+1�W�l+1��2m�−1Dm;L�f�. On the other hand, by the
Schwarz inequality, the second term is bounded above by

�2ε�−1Em;L��c�η1� − α�ρ��2�:
Since the density L/m is assumed to be bounded below by ρ0 > 0, Corol-
lary 6.1(c) is invoked and the previous variance is bounded by

E2�2ε�−1Eρ��c�η1� − α�ρ��2� ≤ E2�2ε�−1a1α�ρ�
for some universal constant E2 because by (5.1) the variance of c�η1� is dom-
inated by a1α�ρ�. Therefore the second term on the right-hand side of (3.3) is
dominated by �2ε�−1E2a1α�ρ�. Minimizing in ε, we have that I1 is bounded
above by C�a1; ρ0��l+ 1�W�l+ 1�m−1α�ρ�Dm;L�f�.

Finally, by Corollary 6.4 and (5.2), Em;L�c�η1�� is bounded below by
C�ρ0�α�ρ� for some positive constant C�ρ0� provided ρ ≥ ρ0. This shows that

I1 ≤ C�a1; ρ0��l+ 1�W�l+ 1�m−1Em;L�c�η1��Dm;L�f�:
We turn now to I2. We may rewrite this expression as

2
(
Em;L

[
f y 1

m

∑
ι

�Bι�
{
E�Bι�; yι�c� − α�ρ� − α

′�ρ�
[
yι −

L

m

]}])2

:

For 1 ≤ ι ≤ �m/l�, let F�yι� = E�Bι�; yι�c� − α�ρ� − α′�ρ��yι − L/m�. By the
Schwarz inequality this last expression is bounded by

2Em;L�f y f�Em;L

[(
1
m

∑
ι

�Bι�F�yι�
)2]

:(3.4)

To conclude the proof of the lemma it remains to show that the the second
expectation is bounded by εm−1Em;L�c�η1�� for sufficiently large l.



1884 C. LANDIM, S. SETHURAMAN AND S. VARADHAN

Assume, to keep notation simple, that �Bι� = l for all ι. In this case the
expectation is equal to

l

m
Em;L�F�y1�2� +

(
1− l

m

)
Em;L�F�y1�F�y2��:

Since, by assumption, the density L/m ≥ ρ0, we have that by Corol-
lary 6.1(b), Em;L�F�y1�2� and Em;L�F�y1�F�y2�� are, respectively, dominated
by

EL/m�F�y1�2� +
E�ρ0�l
m
�EL/m�F�y1�4��1/2(3.5)

and

�EL/m�F�y1���2 +
E�ρ0�l
m

EL/m�F�y1�2�:(3.6)

Notice that Eρ�F�y1�� = 0. In particular the second variance in (3.4) is
bounded by

E�ρ0�l
m

Eρ�F2� + E�ρ0�l2
m2

�Eρ�F4��1/2:(3.7)

We shall consider these two terms separately.
Recall from (1.3) that α′�ρ� = α�ρ�/σ�α�ρ��2. We prove in Section 5 [cf.

(5.2)] that α�ρ�/σ�α�ρ��2 and therefore α′�ρ� is uniformly bounded on R+.
Moreover, we show in Corollary 6.4 that �El; y1

�c� − α�y1�� is bounded by
C1l

−1
√

1+ α�y1� for some universal constant C1. Therefore we may bound
F by C��α′�∞; ρ0��l−1∑

1≤x≤l�ηx − ρ�� +C1l
−1
√

1+ α�ρ� and obtain that

Eρ�F4� ≤ C��α′�∞; ρ0; a1�
1
l2
σ�α�ρ��4

because, by Lemma 5.2, σ�α�−4Ēα��η0−ρ�α��4� is bounded for α away from the
origin and, by (5.2), σ�α�2/α is bounded below by a strictly positive constant
and above by a finite constant. In particular the second term in (3.7) is bounded
by C�ρ0�lm−2σ�α�ρ��2.

We turn now to the first term of (3.7). By the Schwarz inequality the ex-
pectation is bounded above by

2Eρ��El; y1
�c� − α�y1��2� + 2Eρ��α�y1� − α�ρ� − α′�ρ��y1 − ρ��2�:(3.8)

Again by Corollary 6.4, we may bound the first term in the last expression by

C1

l2
�1+ α�ρ� +Eρ�α�y1� − α�ρ���:

Much in the same way we estimated the second term in (3.7) we can prove
that this last expression is less than or equal to

C�ρ0�
l2
�1+ α�ρ� + σ�α�ρ��l−1/2� ≤ C�ρ0�

l2
�1+ σ�α�ρ��2�:

The second expectation in (3.8) is slightly more complicated.
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Denote l−1∑
1≤x≤l�ηx−ρ�/σ�α�ρ�� as Zσ and α�y1�−α�ρ�−α′�ρ��y1−ρ� as

F1. We shall decompose the second expectation in (3.8) according to the value
of Zσ . Fix some small parameter β. On the set where �Zσ � > β, since �F1� is
bounded by 2�α′�∞σ �Zσ �, the expectation is less than or equal to

C2σ�α�2Eρ�Z2
σ1�Zσ �>β� ≤ C2

σ�α�2
β2

Eρ�Z4
σ � ≤ C�ρ0�

σ�α�2
l2β2

because σ�α�−4Ēα��η0 − ρ�α��4� is bounded for α away from the origin by
Lemma 5.2.

On the set �Zσ � ≤ β, by Taylor’s expansion, F�y� is bounded by

�1/2�σ�α�ρ��2Z2
σ sup
�y−ρ�≤βσ

∣∣α′′�y�
∣∣:

We will prove below in Lemma 3.5 that for all ρ1 > 0, supy≥ρ1
σ�α�y���α′′�y�� ≤

C�ρ1� and that

sup
ρ≥ρ1

sup
�y−ρ�≤βσ�α�ρ��

σ�α�ρ��σ�α�y��−1 ≤ 2

for β = β�ρ1� small enough. In particular, on the set �Zσ � ≤ β the expectation
of F2 is bounded above by

C�ρ0�σ�α�ρ��2Eρ�Z4
σ � ≤ C�ρ0�σ�α�ρ��2l−2

because, by Lemma 5.2, σ�α�−4Ēα��η0 − ρ�α��4� is bounded for α away from
the origin.

In conclusion, we have shown that the second expectation in (3.8) is bounded
above by C�ρ0�σ�α�ρ��2l−2. Therefore the first expectation in (3.7) is bounded
above by

C�ρ0�
ml
�1+ σ�α�ρ��2�:

In particular, (3.7) is bounded by C�ρ0��ml�−1�1+ σ�α�ρ��2� for m ≥ l2.
Since by Corollary 6.1(b) and (5.1), Em;L�c�η1�� is bounded below by

C�ρ0�α�ρ� and since by (5.2), σ�α�ρ��2/α�ρ� ≤ C, we have now demonstrated
that I2 is dominated by C�ρ0��ml�−1Em;L�c�η1���f y f�m;L. This concludes
the proof of the lemma. 2

Lemma 3.5. (a) For all ρ1 > 0, there exists C�ρ1� <∞ such that

sup
ρ≥ρ1

σ�α�ρ���α′′�ρ� � ≤ C�ρ1�:

(b) For all ρ1 > 0, there exists a positive constant β = β�ρ1�, so that

sup
ρ≥ρ1

sup
�y−ρ�≤βσ�α�ρ��

σ�α�ρ��
σ�α�y�� ≤ 2:
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Proof. A simple computation shows that

α′′�ρ� = �σ�α�ρ��
2 −m3�α�ρ���α�ρ�
σ�α�ρ��6

provide m3�α�ρ�� stands for Ēα��η0 − ρ�α��3�. The first part of the lemma
follows therefore from inequality (5.2) and Lemma 5.2.

To prove (b), notice that ∂ρσ�α�ρ�� = m3�α�ρ��/2σ�α�ρ��3. By Lemma 5.2
this last quotient is bounded by C1�ρ1� for ρ ≥ ρ1. In particular, on the set
�y− ρ� ≤ βσ�α�ρ��, σ�α�y�� is at least �1−C1�ρ1�β�σ�α�ρ��. It remains to set
β = �2C1�ρ1��−1. 2

4. One site spectral gaps. In this section we will examine a one-
coordinate process and show that assumptions (LG) and (M) imply the one
site spectral gap for this model. The dynamics of the model are defined
implicitly by the Dirichlet form Dn;K�H� acting solely on functions of the
type H =H�η1�. After a few calculations we can recover the generator:

Dn;K�H�η1�� = −En;K�H�η1��LnH��η1��
= − 1

2En;K�c�η1��H�η1 − 1� −H�η1��H�η1��
− 1

2En;K�c�η2��H�η1 + 1� −H�η1��H�η1��:
The second term is then computed as

En;K�c�η2��H�η1 + 1� −H�η1��H�η1��
= En;K�En;K�c�η2��η1��H�η1 + 1� −H�η1��H�η1��
= En;K�En−1;K−η1

�c�η2���H�η1 + 1� −H�η1��H�η1��:
We conclude from these calculations that the generator specifies a biased

nearest-neighbor random walk, a birth–death process Xt, on the state space
�0;1; : : : ;K� with rates

�1/2�En−1;K−r�c�·�� for jumps r→ r+ 1;

�1/2�c�r� for jumps r→ r− 1;

and associated Dirichlet form D1
n;K given by

D1
n;K�f� = �1/2�E1

n;K�c�X��f�X− 1� − f�X��2�:
In the same way, if instead of the canonical measures Pn;K we consider the

grand canonical measures Pρ, we obtain a birth and death process Xt on N
with rates

�1/2�α�ρ� for jumps r→ r+ 1;

�1/2�c�r� for jumps r→ r− 1;

and associated Dirichlet form D1
ρ given by

D1
ρ�f� = �1/2�E1

ρ�c�X��f�X− 1� − f�X��2�:
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Here E1
ρ indicates expectation with respect to the one site marginal of the

product measure Pρ.
The purpose of this section is to prove a spectral gap independent of n, K

and ρ for birth and death processes with the stated rates.

Lemma 4.1. Under assumptions (LG) and (M), there exists a universal con-
stant B0 = B0�a1; a2; k0� such that

E1
n;K��H−E1

n;K�H��2� ≤ B0D
1
n;K�H�

for all n ≥ 1, K ≥ 1 and H in L2�P1
n;K�.

Lemma 4.2. Under assumptions (LG) and (M), there exists a universal con-
stant B′0 = B′0�a1; a2; k0� such that

Eρ��f�η1� −Eρ�f��2� ≤ B′0D1
ρ�f�

for all functions f x N→ R in L2�Pρ�.

Our proof relies on the following two general propositions. The proof of the
first one can be found in Lemma 3.11 and Lemma 3.12 of [12]. Consider a
continuous time Markov process Yt on some countable set E . For a site r in
E , denote by τYr the hitting time of r for the process Y.

Proposition 4.1. Let there exist r0 in E and λ>0 such thatEr�exp�λτYr0
��<

∞ for all r. Then the spectral gap is larger than λ.

Proposition 4.2. Denote by L the generator of Yt. Fix some r0 in E and
suppose u; vx E → R+ are functions satisfying Lv + uv = 0. If u�r� ≥ λ for
r 6= r0 and v�r� ≥ γ for all r in E , then Ex�exp�λτYr0

�� ≤ v�x�/γ.

Proof of Proposition 4.2. Define the martingale

m�t� = v�Yt� exp
(∫ t

0
u�Ys�ds

)
;

with respect to the usual σ-fields. By Doob’s stopping theorem,Ex�m�τYr0
∧t�� ≤

v�x� for all t ≥ 0. The result follows from the inequality Ex�m�τYr0
∧ t�� ≥

γEx�expλ�τYr0
∧ t�� and Fatou’s lemma. 2

We shall prove now a spectral gap for birth and death processes on N with
death rate equal to c�·� and some birth rate b�·� that we shall assume to be
Lipschitz.

From hypotheses (LG) and (M) we have that

c�k� − c�j� ≥ a2

[
k− j
k0

]
− a1k0 ≥

a2

k0
�k− j� − a2 − a1k0

for every k ≥ j. Here �r� denotes the integer part of r. Denote a2/k0 by J1
and a2 + a1k0 by e2.
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Lemma 4.3. Let Yt be a birth and death process on N with death rate
c�·� and birth rate bx N → R+. Assume that supk �b�k + 1� − b�k�� ≤ J2 <
J1. The spectral gap λ is bounded below by a strictly positive constant C =
C�J2; a1; a2; k0; c

∗�, where c∗ = mink c�k�.

Notice that Lemma 4.2 follows from this proposition since the birth rate is
constant.

Proof of Lemma 4.3. Denote by D�r� the inward drift at r:

D�r� = c�r� − b�r�:
Notice that D�0� = −b�0� ≤ 0. Let r0 be the first integer with nonnegative
inward drift: r0 = min�r ∈Ny D�r� ≥ 0�. For r ≥ r0, we have that

D�r� = c�r� − c�r0� +D�r0� + b�r0� − b�r� ≥ �J1 −J2��r− r0� − e2

because D�r0� ≥ 0 by definition of r0. For r ≥ r2 = r0 + 2e2/�J1 −J2�, D�r� ≥
I1�r−r0�, provided I1 = �J1−J2�/2. Moreover, for r0 ≤ r ≤ r2, b�r� ≤ c�r0�+I2
and c�r� ≥ c�r0� − I3, where I2 = J2�r2 − r0� and I3 = J1�r2 − r0�. Of course
c�r0�− I3 could be negative. In this case we have the alternative lower bound
c�r� ≥ c∗.

In possession of the above estimates, it is not difficult to find functions u
and v satisfying assumptions of Proposition 4.2 for some γ > 0 and some
λ = λ�J2; a1; a2; k0; c

∗�. We leave the details to the reader and just indicate
that v can be chosen to be quadratic on �r0; : : : ; r2� and linear on �r2; : : : ;∞�.

A similar argument applies to the set �0; : : : ; r0�. Proposition 4.1 concludes
the argument. 2

Proof of Lemma 4.1. Set J2 = J1/2. By Proposition 4.3, there exists n0
in N so that �En;K+1�c�η0�� − En;K�c�η0�� � is bounded by J2 for n ≥ n0. In
particular, in this case Lemma 4.1 follows from Lemma 4.3. For n ≤ n0 and
K ≥ K0, the proof of Lemma 4.1 is similar to the proof of Lemma 4.3 and
relies on the following inequality proved in Corollary 4.2:

En;K�c�η0�� ≤ En;K+B�c�η0�� +B4�c�
for all B ≥ B1n. We leave the details to the reader. Finally, since there are
only a finite number of cases for n ≤ n0 and K ≤K0 and since for each fixed
n and K the birth and death process is a finite state ergodic Markov process,
the lemma is proved. 2

We conclude this section with some estimates on the birth rate En;K�c�η0��
that were used above.

Proposition 4.3. There exists a constant B3 = B3�a1; a2; k0� such that

∣∣En;K+1�c�η0�� −En;K�c�η0��
∣∣ ≤ B3

n

for all n ≥ 1 and K ≥ 0.
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We first show that the difference is bounded in absolute value by a constant
independent of n and K. The proof of this statement relies on a coupling
argument.

Lemma 4.4. There exists a constant B1 = B1�a1; a2; k0� such that

Pn;K ≤ Pn;K+B for all B ≥ B1n and K in N.

Proof. To clarify the proof, we shall assume that c�k�−c�j� ≥ 0 if k−j ≥ 2.
It is not difficult to adapt this proof to assumption (M).

Fix n, K and some positive integer B. Consider the zero range process on
�1; : : : ; n� where particles jump to any site with rate c�·�. Its generator L̃n
acts on functions as

�L̃nf��η� =
∑

1≤x;y≤n
c�ηx��f�ηx;y� − f�η��:

Notice that the canonical measures Pn;K are ergodic and reversible for this
Markov process.

Fix two configurations η and ξ, respectively, on 6n;K and 6n;K+B such that
η ≤ ξ. The proof consists of finding a coupled process �η�t�; ξ�t�� with three
properties. We require that η�0� = η, ξ�0� = ξ, both marginals to evolve as
zero-range processes with generator L̃n, and that η�t� ≤ ξ�t� for all t ≥ 0. This
can be easily done in the case where the jump rate c is a nondecreasing func-
tion (cf. [1]). We extend here the coupling for processes satisfying assumptions
(LG) and (M).

It is enough to show that for any two configurations �η; ξ� in 6n;K×6n;K+B
such that η ≤ ξ, we may couple the η-particles’ jumps with the ξ-particles’
jumps for the order to be maintained after any possible jump.

Fix therefore two such configurations. Denote by b0 (b1) the total number
of sites where the number of η and ξ particles differ by 0 (1). Since η ≤ ξ,

b0 =
∣∣�xy η�x� = ξ�x��

∣∣ and b1 =
∣∣�xy η�x� = ξ�x� − 1�

∣∣:

Since particles jump indifferently to any site and since c�k�− c�j� ≥ 0 as long
as k ≥ j + 2, by assumption (LG), the rate at which an uncoupled η particle
appears is bounded above by b0b1a1.

To conclude the proof it remains to show that for B ≥ B1n, the rate at which
one uncoupled ξ particle in the remaining b = n−b0−b1 sites jumps to one of
the b0 sites is bounded below by b0b1a1. Denote by u1; : : : ; ub the number of
uncoupled ξ particles in the remaining b sites. Notice that

∑
1≤i≤b ui = B−b1.

By assumption (M), the rate at which one uncoupled ξ particle jumps to one
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of the b0 sites with equal numbers of η and ξ particles is bounded below by

b0

b∑
i=1

{
a2

[
ui
k0

]
− a1k0

}
≥ b0

b∑
i=1

{
a2

{
ui
k0
− 1

}
− a1k0

}

= a2b0

k0
�B− b1� − a2bb0 − a1k0bb0

≥ a2b0

k0
B− b0n

{
a2 +

a2

k0
+ a1k0

}
:

We just have to take B1 = a1a
−1
2 k0�k0 + 1� + k0 + 1. 2

Corollary 4.1. There exists a constant B2 = B2�k0; a1; a2� such that
∣∣En;K+1�c�η0�� −En;K�c�η0��

∣∣ ≤ B2

for all n ≥ 1 and K ≥ 0.

Proof. Let B1 be the constant given by the previous lemma. Set K0 =
B1n+ 1. The absolute value in the statement of the lemma is bounded by

∣∣En;K�c�η0�� −En;K+K0
�c�η0��

∣∣+
∣∣En;K+1�c�η0�� −En;K+K0

�c�η0��
∣∣:

We concentrate on the first expression. The second one is estimated in the
same way.

Since Pn;K ≤ Pn;K+K0
, there exists (cf. [7], Theorem II.2.4) a coupled mea-

sure Pn;K;K0
on the product space Nn×Nn with first marginal equal to Pn;K,

second marginal equal to Pn;K+K0
and concentrated on the configurations

�η; ξ� above the diagonal: Pn;K;K0
��η; ξ�; η ≤ ξ� = 1. With this notation, we

may bound the first expression in the last formula by

En;K;K0
��c�η0� − c�ξ0��� ≤ a1En;K;K0

��η0 − ξ0��:
Since the probability measure Pn;K;K0

is ordered, the last expression is equal
to

a1�En;K+K0
�ξ0� −En;K�η0�� = a1K0n

−1:

The corollary is thus proved because K0 = B1n+ 1. 2

Corollary 4.2. There exists a finite constant B4 such that

En;K�c�η0�� ≤ En;K+B�c�η0�� +B4

for all B ≥ B1n.

Proof. By assumption (LG) and (M), the jump rate c�·� may be decom-
posed as c = c1+ c2, where c1 is a nondecreasing function and c2 is a bounded
function. Take for instance c1�k� = c��k/k0�k0�. Since by Lemma 4.4, Pn;K ≤
Pn;K+B for B ≥ B1n, we have that

En;K�c�η1�� ≤ En;K�c1�η1�� + �c2�∞ ≤ En;K+B�c�η1�� + 2�c2�∞: 2
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We are now ready to prove Proposition 4.3.

Proof of Proposition 4.3. The proof consists of three different parts. We
first consider the case of a large number of sites and bounded density, then
the case of a large number of sites and densities bounded away from 0 and
finally the case of a small number of sites.

Fix some density ρ1 > 0. By Corollary 6.4 there exists n0 > 0 such that

�En;K+1�c�η0�� −En;K�c�η0��� ≤ n−1
{

sup
0≤ρ≤ρ1

�α′�ρ�� + 2E3

√
1+ α�ρ1�

}

for all n ≥ n0 and ρ =K/n ≤ ρ1 because α�·� is an increasing function. Since
by inequality (5.1), α′�ρ� [that is equal to α�ρ�/σ�α�ρ��2] is bounded above by
a1, this estimate proves the proposition for n ≥ n0 and ρ ≤ ρ1.

We turn now to the case ρ ≥ ρ1. From identity (1.4), we have that

En;K�c�η0�� = α�ρ�
Pρ�

∑n
x=1 ηx =K− 1�

Pρ�
∑n
x=1 ηx =K�

:

We may therefore rewrite the difference En;K+1�c�η0�� −En;K�c�η0�� as

α�ρ�
(
�∇Pρ��

∑n
x=1 ηx =K− 1�

)2 −Pρ�
∑n
x=1 ηx =K− 1��1Pρ��

∑n
x=1 ηx =K�

Pρ�
∑n
x=1 ηx =K�Pρ�

∑n
x=1 ηx =K+ 1� :

In this formula ∇ and 1 stand, respectively, for the discrete derivative and
Laplacian and are applied to K, the total number of particles (cf. notation
introduced just before Theorem 6.2). It follows from Theorem 6.2, taking k1 =
3, that there exists n0 and a constant E = E�n0; ρ1� such that this ratio is
bounded by En−1σ�α�ρ��−2 for n ≥ n0 and ρ =K/n ≥ ρ1. This proves that the
difference En;K+1�c�η0��−En;K�c�η0�� is bounded above by C�ρ1�n−1 because
α�ρ�σ�α�ρ��−2 ≤ a1 by inequality (5.2).

It remains to consider the case where the total number of sites is bounded,
but this follows from the estimate stated in Corollary 4.1 provided we take B3
large enough. 2

5. Properties of the zero-range marginal. We prove in this section
some properties of zero-range distributions used in the previous three sections.
For each k ∈ N, denote by γk�α� the kth cumulant of the probability P̄α; the
kth cumulant is a polynomial in the normalized moments mi�α� for 0 ≤ i ≤ k,
where

mi�α� = Ēα��η0 − ρ�α��i�:
We shall abbreviate γ2�α� by σ�α�2.

We start proving that σ�α�2α−1 is bounded above by a finite constant and
below by a positive constant uniformly on R+. By a change of variables and
assumption (LG) we have that

Eρ��c�η0� − α�ρ��2� = α�ρ�Eρ�c�η0 + 1� − c�η0�� ≤ a1α�ρ�;
Eρ��c�η0� − α�ρ���η0 − ρ�� = α�ρ�:

(5.1)
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Therefore, by the Schwarz inequality,

α�ρ� = Eρ��c�η0� − α�ρ���η0 − ρ�� ≤ a1/2
1 σ�α�ρ��α�ρ�1/2

≤ a1σ
2�α�ρ��:

The reverse inequality follows from the one site spectral gap for the birth
and death process on N associated with the grand canonical measure.

Lemma 5.1. Let B′0 be the constant given by Lemma 4.2. Then

σ2�α�ρ��
α�ρ� ≤ 1

2
B′0:

Proof. Apply Lemma 4.2 to the function η1 and notice that the variance
of η1 is σ2�α�ρ�� and that its Dirichlet form is �1/2�α�ρ�. 2

In conclusion, there exist constants C1 and C2 depending only on a1, a2 and
k0 such that

0 < C1 ≤
σ2�α�
α
≤ C2 <∞(5.2)

for all α in R+. Notice that the zero-range processes described in Example 1.1
do not satisfy the upper bound.

The second main goal of this section is to derive some estimates required in
the proof of local central limit theorems that are uniform in density. Denote by
vα�t� the normalized characteristic function associated with the distribution
P̄α:

vα�t� = Ēα�exp�it�η0 − ρ�α��/σ�α���:

In the next section we shall prove uniform Edgeworth expansions under
the following set of assumptions. For each ᾱ > 0 and k̄ in N, let the following
statements hold:

(CL1) There exists a finite constant K0 such that

sup
α≥ᾱ

m2k�α�/σ�α�2k ≤K0 for 1 ≤ k ≤ k̄:

(CL2) For every δ > 0, there exists C�δ� < 1 such that

sup
α≥ᾱ

sup
δ≤�t�≤πσ�α�

�vα�t�� ≤ C�δ�:

(CL3) There exists κ > 0 so that

sup
α≥ᾱ

∫
�t�≤πσ�α�

�vα�t��κ dt ≤ C <∞:
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Notice that these hypotheses are satisfied for all ᾱ > 0 as soon as they
are satisfied by any positive parameter ᾱ0 > 0. It is also a simple task to
verify that both zero-range processes defined in Examples 1.1 and 1.2 satisfy
(CL1)–(CL3).

We now deduce assumptions (CL1)–(CL3) from hypotheses (LG) and (M). We
start with (CL1). Recall that γk�α� denotes the kth cumulant of the occupation
variable with respect to the probability P̄α.

Lemma 5.2. Assume hypotheses (LG) and (M). For all k ≥ 1, there exists a
finite constant C�k� such that

m2k�α� ≤ C�k�σ�α�2k

for all α ≥ 1.

Proof. To keep notation simple, denote ρ�α� simply by ρ. We shall prove
this lemma by induction on k. Notice that by the Schwarz inequality and
Lemma 4.2,

m2k�α� = Ēα���η0 − ρ�k −mk�α� +mk�α��2�
≤ 2B′0D

1
ρ��η0 − ρ�k� + 2C�k�2σ2k�α�:

The Dirichlet form in the first term is equal to

D1
ρ��η0 − ρ�k� = �α/2�Eρ���η0 − ρ�k − �η0 − ρ+ 1�k�2�:

Computing the kth power inside the expectation and applying the Schwarz
inequality and the induction assumption, we obtain that the right-hand side
is bounded above by

C�k�α
k−1∑
j=0

σ2j�α�:

On the one hand, we have by (5.2) that α ≤ C−1
1 σ�α�2 and on the other σ2j�α� ≤

Cσ2�k−1��α� for 0 ≤ j ≤ k − 1 and some finite universal constant C because
α ≥ 1 and σ�α�2 ≥ C1α. 2

We turn now to assumptions (CL2) and (CL3). For ρ ≥ 0, define

pρ�k� =
1

Z�α�ρ��
α�ρ�k

c�1� · · · c�k� for k ∈N:

Most of the time we will omit the index ρ to keep notation simple. We begin
with an estimate which provides a bound on the characteristic functions of
the occupation variable.

Lemma 5.3. Under assumption (LG), for every ρ > 0,

∑
k≥0

�pρ�k+ 1� − pρ�k�� ≤
√
a1√
α�ρ�

:
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Proof. First note that p�k+1�−p�k� is equal to p�k��α�ρ�c�k+1�−1−1�.
In particular the above sum is equal to

Eρ

[∣∣∣∣
α�ρ�

c�η0 + 1� − 1
∣∣∣∣
]
= 1
α�ρ�Eρ

[
c�η0�

∣∣∣∣
α�ρ�
c�η0�

− 1
∣∣∣∣
]
:

By the Schwarz inequality this last expectation is bounded above by
α�ρ�−1Eρ��c�η0� − α�2�1/2. By inequality (5.1), this expression is less than or

equal to a1/2
1 α�ρ�−1/2. 2

Recall that we denoted vα as the normalized characteristic function of the
occupation variable under Pρ�α�. The previous lemma implies a certain decay
of vα�t�, uniform over α.

Lemma 5.4. Assume hypothesis (LG). There exists a constant C0 depending
only on a1, c�1� and C2 such that

�vα�t�� ≤
C0

�t�
for each α > 0 and 0 < �t� ≤ πσ�α�.

Proof. Fix δ < 1 and α > 0. Define ṽα�t� = Ēα�exp�it�η0 − ρ���,
ṽδα�t� =

∑
k≥0

δkeitkp�k� and S�k� =
∑
l≥k
δleitl:

Notice that the absolute value of S�k� is bounded by �1−δ exp�it��−1, uniformly
on k. Summing by parts we write

ṽδα�t� =
∑
k≥0

�S�k� −S�k+ 1��p�k�

= S�0�p�0� +
∑
k≥0

�p�k+ 1� − p�k��S�k+ 1�:

Therefore,

�ṽδα�t�� ≤
1

�1− δeit�

{
p�0� +

∑
k≥0

�p�k+ 1� − p�k��
}
:

Notice that Z�α� ≥ 1+αc�1�−1. In particular, Z�α� ≥ Cα1/2 for some constant
C that depends on c�1� only and

p�0� = 1
Z�α� ≤

C√
α
:

Hence, by the previous lemma, we have for each δ < 1 that

�ṽδα�t�� ≤
1

�1− δeit�
C�a1; c�1��√

α
:
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Since �1− eit� ≥ �π/2��t� for 0 ≤ t ≤ π, allowing δ ↑ 1, we obtain that

�ṽα�t�� ≤
C�a1; c�1��
�t�√α :

To conclude the proof, we need only comment that vα�t� = ṽα�tσ−1� and that
σ2α−1 is bounded above by C2 by (5.2). 2

Assumption (CL3) now follows from the estimate obtained in the previous
lemma and the fact that absolute value of the characteristic function is always
bounded by 1. It remains to deduce hypothesis (CL2). We turn to a series of
lemmas devised to bound the characteristic function vα�t� near the origin. We
start with a general result.

Consider a density function f x R→ R+ on the real line and a cosine wave
function Wx R→ �−1;1� with period l and amplitude 1. Let I = �a; b� be an
interval and assume that the following statements hold:

Assumption (a). There is γ > 0 such that
∫
I f�x�dx ≥ γ.

Assumption (b). There is a finite constant C3 such that supx;y∈I f�x�/f�y�
≤C3.

Assumption (c). The period l satisfies 100l ≤ b− a.

Lemma 5.5. Under Assumptions (a), (b) and (c) there is a strictly positive
constant δ = δ�γ;C3� such that

∫
f�x�W�x�dx ≤ 1− δ:

Proof. Since f is a density, it is enough to show that
∫
I
f�x��1−W�x��dx ≥ δ:

Let E be the closed set defined by E = �xx 1−W�x� ≥ 1/10�. Since there are
at least 98 full periods in I, there exist universal constants 0 < A1;A2 < ∞
such that

A1 <
�E ∩ I�
�Ec ∩ I� < A2:(5.3)

In this formula, for a measurable set B, �B� stands for its Lebesgue measure.
It is now easy to obtain a lower bound for the previous integral. Since W is
bounded above by 1 and 1−W ≥ 1/10 on E, we have that

∫
I
f�1−W�dx ≥

∫
I∩E

f�1−W�dx ≥ 1
10

∫
I∩E

fdx:
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To complete the proof we replace the last integral by
∫
I fdx and take ad-

vantage of Assumption (a). In order to perform this replacement, we rely on
Assumption (b) and on inequalities (5.3). Indeed, by Assumption (b),

∫
I∩E

fdx ≥ C−1
3 f�a��I ∩E�:

By inequality (5.3) and Assumption (b), this last expression is at least

C−1
3 A1f�a��I ∩Ec� ≥ C−2

3 A1

∫
I∩Ec

fdx:

In conclusion,
∫
I∩E

fdx ≥
{
1+C2

3A
−1
1

}−1
∫
I
fdx ≥ γ

{
1+C2

3A
−1
1

}−1
:

This completes the proof with δ = 10−1γ�1+C2
3A
−1
1 �−1. 2

A version of this lemma for discrete probabilities on the integers is valid
provided the amplitude l is not too small, say l > 100. Our intention is to
apply this result to bound the characteristic function vα�t� near the origin.

Lemma 5.6. Under assumptions (LG) and (M), for everyR0 > 0, there exists
α0 ≥ 1 with the following property. For every ε > 0, there exists a strictly
positive constant δ = δ�ε� such that

sup
ε<�t�≤2πR0

�vα�t�� ≤ 1− δ:

for all α > α0.

Before we prove this lemma, we show how to derive (CL2) from (LG) and
(M).

Corollary 5.1. Assumption (CL2) follows from hypotheses (LG) and (M).

Proof. Fix ε > 0. We wish to bound supε<�t�≤πσ �vα�t�� by a constant strictly
smaller than 1. In Lemma 5.4 we bounded �vα�t�� by C0�t�−1 uniformly over
the parameter α. In particular, for �t� ≥ 2C0, �vα�t�� ≤ 1/2 for all α ≥ 1. It
remains to consider the interval �ε;2C0�. Take R0 = π−1C0 in Lemma 5.6. By
this result, there exists α0, independent of ε, and δ = δ�ε� strictly positive so
that

sup
ε<�t�≤2C0

�vα�t�� ≤ 1− δ:

This concludes the proof. 2

We conclude this section by proving Lemma 5.6.
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Proof of Lemma 5.6. Rewrite vα�t� as �vα�t�� exp�iθ�t�� for some real con-
tinuous function θ (that may depend on the parameter α). Then

�vα�t�� =
∑
k

p�k� cos
(
t�k− ρ�α��σ�α�−1 − θ�t�

)
:

Fix t such that ε ≤ �t� ≤ 2πR0 and let W�x� = cos�t�x− ρ�α��σ�α�−1 − θ�t��.
Denote by l = 2πσ �t�−1 the period of W�·�. Since �t� ≤ 2πR0, the period l is
bounded below by σ�α�R−1

0 . In particular, l is bounded below by 100 provided
α0 = α0�R0� is chosen large enough and α > α0. Fix such parameter α.

Let b0 = max�50;2R0� and define the interval I by

I = �ρ�α� − b0l; ρ�α� + b0l�:

Assumption (c) is obviously satisfied. It is now a matter of verifying the first
two assumptions. This is the subject of the following three lemmas. 2

Lemma 5.7. There exists a strictly positive constant γ = γ�R0�, independent
of α, such that

∑
k∈I
p�k� ≥ γ

for all �t� ≤ 2πR0.

Proof. This follows from Chebyshev’s inequality, the fact that �t� is
bounded above by 2πR0, and that 2R0 ≤ b0. This argument gives γ = 3/4. 2

For the next lemma we will linearly interpolate the jump rate c�·� to the
positive real line.

Lemma 5.8. Assume hypotheses (LG) and (M). There exists a constant C4
depending only on a1, a2 and k0 such that

�c�ρ� − α�ρ�� ≤ C4

√
α�ρ�

for all ρ > 0.

Proof. By the Schwarz inequality and assumption (LG),

�α�ρ� − c�ρ�� ≤ Eρ��c�η0� − c�ρ��� ≤ a1Eρ��η0 − ρ�� ≤ a1σ�α�ρ��:

Inequality (5.2) completes the proof. 2

Lemma 5.9. Under assumptions (LG) and (M), there exists a finite constant
C5, depending only on ε, R0, a1, a2 and k0 such that

sup
x;y∈I

p�x�
p�y� < C5:
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Proof. Fix x < y. Since log�1+ u� ≤ u for all u > −1,

log
p�x�
p�y� = log

y−1∏
k=x

p�k�
p�k+ 1� =

y−1∑
k=x

log
(

1+
{

p�k�
p�k+ 1� − 1

})

≤
y−1∑
k=x

∣∣∣∣
p�k�

p�k+ 1� − 1
∣∣∣∣:

From the definition of p�k� = pα�k�, p�k�/p�k + 1� is equal to c�k + 1�α−1.
Therefore, since x and y belong to the interval I and the linearly interpolated
function cx R→ R+ is a1-Lipschitz continuous, this last sum is bounded above
by

b0l∑
i=−b0l

∣∣∣∣
c�ρ+ i�
α

− 1
∣∣∣∣+

a1

α
≤ C4√

α
+ 2a1

b0l∑
i=1

i+ 1
α

:

In the last inequality, we have used the previous lemma to bound the difference
�c�ρ� − α�ρ�� by C4

√
α. Since α ≥ α0 ≥ 1 and �t� ≥ ε, the last sum is bounded

by Cσ2�αε2�−1 + C for some constant C which depends only on R0 and a1.
By inequality (5.2), σ2α−1 is bounded above by some constant C2. Therefore
the last sum is dominated by the expression C5�a1; a2; k0;R0�ε−2. A similar
argument follows for x > y. 2

6. Uniform local central limit theorem. This section is devoted to the
study of local central limit theorems for zero range distributions uniformly in
the parameter α. As a by-product we will also derive a few results important
for the induction step in the proof of Theorem 1.1.

Diaconis and Freedman [2] considered uniform Edgeworth expansions up to
the second order for exponential families under slightly different assumptions,
not verifiable for zero-range marginals corresponding to small values of the
parameter α. More precisely, recall that mk�α� and γk�α� denote, respectively,
the kth moment and the kth cumulant of the distribution Pα and σ�α�2 =
γ2�α�. For α close to 0, a simple computation shows that mk�α� = c�1�−1α +
O�α2� and, therefore, γk�α�/σ�α�k diverges as α approaches 0 for k ≥ 3. In
particular, the Edgeworth expansion with an error uniform in the parameter
α cannot be correct close to the origin. In fact, as we shall see below, these
errors are of order �nσ�α�2�−k.

To state the main theorem of this section we recall several classical defini-
tions. For m ≥ 0, denote by Hm�x� the Hermite polynomial of degree m:

Hm�x� = �−1�m exp
(
x2

2

)
dm

dxm
exp

(−x2

2

)
=m!

�m/2�∑
k=0

�−1�k xm−2k

k!�m− 2k�!2k :

Let q0�x� denote the density of the normalized Gaussian distribution and, for
j ≥ 1, let

qj�x� =
1√
2π

exp
(−x2

2

)∑
Hj+2a�x�

j∏
m=1

1
km!

(
γm+2

�m+ 2�!σm+2

)km
;
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where the summation is carried out over all nonnegative integer solutions of
k1 + 2k2 + · · · + jkj = j and k1 + k2 + · · · + kj = a. We are now ready to state
the main result of this section.

Theorem 6.1. (a) For all α0 > 0 and k0 ∈ N, there exist finite constants
E0 = E0�α0; k0� and A = A�α0; k0� such that

∣∣∣∣
√
nσ2P̄α

[ n∑
i=1

ηi =K
]
−
k0−2∑
j=0

1
nj/2

qj�x�
∣∣∣∣ ≤

E0

�σ2�α�n��k0−1�/2

uniformly over all parameters α ≤ α0 such that σ2�α�n ≥ A. In this formula x
stands for �K− nρ�α��/σ�α�√n.

(b) Assume hypotheses (CL1)–(CL3) with ᾱ = α1 and k̄ = �k1/2� + 1. There
exist a constant E0 = E0�k1; α1� and n0 = n0�k1; α1� such that

sup
α

∣∣∣∣
√
nσ2P̄α

[ n∑
i=1

ηi =K
]
−
k1−2∑
j=0

1
nj/2

qj�x�
∣∣∣∣ ≤

E0

n�k1−1�/2

for all n ≥ n0 where the supremum is taken over all α ≥ α1.

The proof of this theorem is omitted since it follows closely the classical
arguments given for instance in Petrov (Theorem VII.12 of [9]). There is only
the slight problem of controlling the integral I3 in this theorem. In part (a) this
is not difficult since, if ṽα�t� = Ēα�exp�it�X−ρ�α���� denotes the characteristic
function of η0 − ρ�α� under P̄α, we may write

∣∣ṽα�t�
∣∣2 − 1 ≤ P̄α�η0 = 0�P̄α�η0 = 1��cos t− 1�

≤ C�α0�α�cos t− 1�
for some universal constant C�α0� because

P̄α�η0 = 0� = 1+O�α� and P̄α�η0 = 1� = c�1�−1α+O�α2�:
These estimates permit us to bound the integral I3.

On the other hand, for part (b), hypotheses (CL2) and (CL3) are built to
take care of the integral I3.

Denote by ∇ and by 1, respectively, the discrete derivative and Laplacian

�∇f��i� = f�i+ 1� − f�i�; �1f��i� = �f�i+ 1� + f�i− 1� − 2f�i��
for each f x Z→ R. In the next theorem we use the notation

�∇P̄α�
[ n∑
i=1

ηi =K
]
= P̄α

[ n∑
i=1

ηi =K+ 1
]
− P̄α

[ n∑
i=1

ηi =K
]
;

�∇qj��x� = qj
(
K+ 1− nρ�α�

σ�α�√n

)
− qj

(
K− nρ�α�
σ�α�√n

)

and similar notation with 1 replacing ∇.
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Theorem 6.2. Under the assumptions of Theorem 6.1(b), there exist con-
stants E′0 = E′0�k1; α1� and n′0 = n′0�k1; α1� such that

∣∣∣∣
√
nσ2�∇P̄α�

[ n∑
i=1

ηi =K
]
−
k1−2∑
j=0

1
nj/2
�∇qj��x�

∣∣∣∣ ≤
E′0

σ�α�n�k1−1�/2

and
∣∣∣∣
√
nσ2�1P̄α�

[ n∑
i=1

ηi =K
]
−
k1−2∑
j=0

1
nj/2
�1qj��x�

∣∣∣∣ ≤
E′0

σ�α�2n�k1−1�/2

for all n ≥ n′0 and all α ≥ α1. In these formulas the discrete derivatives and
Laplacians are applied to K.

The proof of Theorem 6.2 follows closely that of Theorem 6.1 and is therefore
omitted. Notice that the estimate improves as the parameter α increases since
σ2�α� behaves as α by inequality (5.2).

We conclude this section by stating several corollaries important to the proof
of the spectral gap result, Theorem 1.1.

Corollary 6.1. Fix f x N`→ R for some fixed positive integer `.

(a) There exists a constant E1 = E1�α0� such that
∣∣En;K�f� −Eρ�f�

∣∣

≤ E1`

n

{
1

σ2�α�ρ��Eρ��f− �f�ρ�� +
1

σ�α�ρ��
√
Eρ��f− �f�ρ�2�

}

uniformly over all n and K such that n ≥ 2`, K/n ≤ ρ�α0� and σ2�α�ρ��n ≥
A�α0;3�, where A is given by Theorem 6.1(a). In this formula ρ stands for the
density K/n.

(b) Assume hypotheses (CL1)–(CL3) with k̄ = 5 and ᾱ = α1. There exists a
constant E1 = E1�α1� such that

∣∣En;K�f� −Eρ�f�
∣∣ ≤ E1`

n

√
Eρ��f− �f�ρ�2�

uniformly over all n ≥ max�2`; n0�3; α1�� and K so that K/n ≥ ρ�α1�.
(c) Under the same assumptions of (b), there exist a universal constant E2

and n0 = n0�α1� so that

En;K�f� ≤ E2EK/n� �f� �
for all n ≥ n0�α1� and all K so that K/n ≥ ρ�α1�.

The proof is left to the reader. It is a simple consequence of the Edgeworth
expansion up to the second order.

To keep notation simple, we will denote the variance of a function f with
respect to the probability P̄α as σf�α�2. Completing the Edgeworth expansion
up to the third order we obtain the following corollary.
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Corollary 6.2. Fix f x N` → R for some fixed positive integer `. There
exists a constant E1 = E1�`; α0� such that
∣∣∣∣En;K�f� −Eρ�f� −

1
2n

{
γ3

σ4

〈
f y

∑̀
i=1

�ηi − ρ�
〉

ρ

− 1
σ2

〈
f y
{∑̀
i=1

�ηi − ρ�
}2〉

ρ

}∣∣∣∣

≤ E1σσf

�nσ2�3/2

for all n and K such that n ≥ 2`, K/n ≤ ρ�α0� and σ2�α�ρ��n ≥ A�α0;4�,
where A is given by Theorem 6.1(a). In this formula ρ denotes the density K/n
and �f y g�ρ stands for the covariance of f and g with respect to Pρ.

Allowing ` = 1 and f�η� = c�η0� in Corollary 6.2, we obtain the following
result.

Corollary 6.3. For every ε > 0, there exist n0 > 0 and α0 > 0 such that
∣∣∣∣En;K−1�c�η0�� −En;K�c�η0�� +

1
n
En;K−1�c�η0 + 1� − c�η0��

∣∣∣∣ ≤
ε

n

for all n ≥ n0 and K/n < ρ�α0�.

Proof. Fix some parameter α0 > 0 and ε > 0. For n large enough and K
such that σ2�α�ρ��n ≥ C�α0; ε�, the estimate follows from the previous corol-
lary. On the other hand, σ2�α�ρ��n ≤ C�α0; ε� implies that the total number
of particles K is bounded by some constant C1 = C1�α0; ε�. It is therefore easy
to complete the proof by inspection. 2

With similar arguments we obtain from Corollary 6.1(a) and (b) the follow-
ing result.

Corollary 6.4. There exist a universal constant E3 and n0 > 0 such that

�En;K�c�η0�� −EK/n�c�η0��� ≤
E3

n

√
1+ α�ρ�

for all n ≥ n0.
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