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CENTRAL LIMIT THEOREMS FOR ADDITIVE FUNCTIONALS OF
THE SIMPLE EXCLUSION PROCESS1

By Sunder Sethuraman

University of Minnesota and Iowa State University

Some invariance principles for additive functionals of simple exclusion
with finite-range translation-invariant jump rates p�i� j� = p�j − i� in
dimensions d ≥ 1 are established. A previous investigation concentrated on
the case of p symmetric. The principal tools to take care of nonreversibility,
when p is asymmetric, are invariance principles for associated random
variables and a “local balance” estimate on the asymmetric generator of
the process.

As a by-product, we provide upper and lower bounds on some transition
probabilities for mean-zero asymmetric second-class particles, which are
not Markovian, that show they behave like their symmetric Markovian
counterparts. Also some estimates with respect to second-class particles
with drift are discussed.

In addition, a dichotomy between the occupation time process limits in
d = 1 and d ≥ 2 for symmetric exclusion is shown. In the former, the limit
is fractional Brownian motion with parameter 3/4, and in the latter, the
usual Brownian motion.

1. Introduction and results. Much of the work in the past few years
concerning the dynamical evolution of particle configurations in a simple ex-
clusion system makes strong use of certain symmetry or reversibility assump-
tions. Roughly speaking, when a simple exclusion process is reversible, then a
“duality” relation holds. That is, the process preserves the structure of a basis
of n-point functions under time evolution. Essentially, seemingly complicated
functions may be decomposed into basis components which may be analyzed
with sometimes explicit computations.
However, relatively few theorems are available in the asymmetric case when

this duality fails. As duality is not a general feature of symmetric systems,
techniques of how to avoid duality arguments are of some interest, even with
regard to symmetric systems, such as the zero-range process where there is
no duality. As will become apparent, however, in this article we trade reliance
on “duality” with dependence on the “attractiveness” of the exclusion system
which may also be viewed as a specialized feature.
This paper may be considered a companion paper to [14], [15] and [13]

where, among other things, central limit theorems for additive functionals of
symmetric, mean-zero and d ≥ 3 simple exclusion with finite-range jump prob-
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abilities are considered. Informally, the question investigated is for which f
does t−1/2

∫ t
0 f�η�s��ds converge weakly to a normal distribution N�0� σ2�f��

where η�t� is the configuration at time t? In this article, we examine this ques-
tion with new ideas for finite-range exclusion processes with nonzero drift in
all dimensions d ≥ 1 as well as clarify and extend the work in [15] and [13] for
mean-zero and d ≥ 3 systems. In contrast to the cases considered in [14], [15]
and [13], we note that the Kipnis–Varadhan central limit theorem [5], valid
primarily for reversible Markov chains, does not seem to carry over to systems
with nonzero drift in d = 1�2. The method presented here, valid for all d ≥ 1,
relies on an observation of Kipnis [3] that the simple exclusion system and
other attractive processes with product (or FKG) invariant measures possess
certain association properties which allow modifications of some central limit
theorems of Newman and Wright [8], [10] ([9] is a survey) for sequences of
stationary L2 associated random variables to be applied. In addition, several
technical variance estimates perhaps of independent interest, based on a “lo-
cal balance” estimate on the generator of asymmetric exclusion processes, are
required. This balance estimate should hold for other conservative particle
systems, and so the techniques here would apply to other attractive systems,
for instance, zero-range models with increasing rates.
Loosely speaking, the simple exclusion process follows the motion of a collec-

tion of random walks on the lattice �d such that jumps to already occupied ver-
tices are suppressed. More precisely, let � = �0�1��d be the configuration space
and let η�t� ∈ � be the state of the process at time t. It is convenient to repre-
sent the configuration in terms of occupation variables η�t� = �ηi�t�: i ∈ �d�
where ηi�t� = 0 or 1 according to whether the vertex i ∈ �d is empty or full
at time t. Let �p�i� j�: i� j ∈ �d� be the random walk or single particle transi-
tion rates. Throughout this article we concentrate on the translation-invariant
finite-range case: p�i� j� = p�0� j−i� = p�j−i� and p�x� = 0 for 	x	 > R some
integer R < ∞. In addition, to avoid technicalities, we assume that the sym-
metrization �p�i�+p�−i��/2 is irreducible. In this context, observe that if p is
mean-zero,

∑
i ip�i� = 0, then p is irreducible if and only if its symmetrization

is irreducible. This is not necessarily the case if p has drift,
∑

i ip�i� �= 0.
The evolution of the system η�t� is Markovian. Let �Tt� t ≥ 0� denote the

process semigroup and let L denote the infinitesimal generator. On test func-
tions φ, �Ttφ��η� = Eη
φ�η�t��� and

�Lφ��η� =∑
ηi�1− ηj��φ�ηi�j� −φ�η��p�j− i��(1.1)

where ηi�j is the “exchanged” configuration, �ηi�j�i = ηj, �ηi�j�j = ηi and
�ηi�j�k = ηk for k �= i� j. The transition rate ηi�1 − ηj�p�j − i� for η → ηi�j

represents the exclusion property alluded to above. The construction of the
process on bounded continuous functions, through the Hille–Yosida theorem,
and extension to L2 is detailed in I and IV.4 of [7]. Alternatively, the process
may be constructed through graphical representation [7], page 383, VIII.2.
The exclusion system is conservative in that random-walk particles are

neither destroyed nor created. For such conservative processes, one expects a
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family of invariant measures indexed according to particle density ρ. Let Pρ,
for ρ ∈ 
0�1�, be the infinite Bernoulli product measure over �d with coin-
tossing marginal Pρ�ηi = 1� = 1 −Pρ�ηi − 0� = ρ. It is shown in VIII of [7]
that �Pρ:ρ ∈ 
0�1�� are invariant for the process η�t� and proved in [12] that
the Pρ are also extremal in the convex set of invariant measures.
Let Eρ denote expectation with respect to Pρ. We will denote the process

measure with initial distribution Pρ by Pρ itself.
Throughout the article, we concentrate on a fixed Pρ, for ρ ∈ �0�1�.
Define f:� → � to be a local function if f�η� depends only upon a finite

number of the coordinates �ηi: i ∈ �d�. Also, define the time t variance,

σ2
t �f� = Eρ

[∫ t

0
f�η�s��ds

]2
and define, if it exists, the limiting variance

σ2�f� = lim
t→∞

t−1σ2
t �f��(1.2)

Also, define relations “≈,” “∼” and “O�·�” between sequences a�t� ≥ 0
and b�t� > 0 to signify a�t� ≈ b�t� when both 0 < lim inf t→∞ a�t�/b�t� and
lim supt→∞ a�t�/b�t� < ∞, a�t� ∼ b�t� when limt→∞ a�t�/b�t� exists and
0 < limt→∞ a�t�/b�t� <∞ and a�t� = O�b�t�� when lim supt→∞ a�t�/b�t� <∞.

Theorem 1.1. Consider the simple exclusion process with finite-range,
translation-invariant jump rates p whose symmetrization is irreducible. Fix
the equilibrium Pρ for ρ ∈ �0�1� and let f be a local function.

(i) Let
∑
ip�i� �= 0.

In d ≥ 3, the limit σ2�f� = 2Eρ
f�−L�−1f� exists and σ2�f� <∞ ⇔ Eρ
f� =
0. Also, σ2�f� > 0.

In d ≤ 2, for coordinatewise increasing f, the limit σ2�f� = 2Eρ
f�−L�−1f�
exists. Also, if f is of the form f = f+ − f− where both f+ and f− are lo-
cal coordinatewise increasing and both σ2�f+�� σ2�f−� < ∞ then σ2�f� =
2Eρ
f�−L�−1f� < ∞ exists. In addition, when f is coordinatewise increasing,

we have σ2�f� > 0.
(ii) Let

∑
ip�i� = 0.

The limit 0 < σ2�f� = 2Eρ
f�−L�−1f� <∞ exists when f satisfies

dn

dyn
Ey
f�η��	y=ρ = 0(1.3)

for n = 0�1�2 in d = 1, n = 0�1 in d = 2, and n = 0 in d ≥ 3. Otherwise,
lim supt→∞ t−1σ2

t �f� = 2Eρ
f�−L�−1f� = ∞.

Moreover, when σ2�f� <∞ as in cases (i) and (ii), we have weak convergence
in the Skorohod topology on D
0�∞� to Brownian motion, with respect to the
initial measure Pρ:

lim
α→∞α−1/2

∫ αt

0
f�η�s��ds = B�σ2�f�t��
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Note, in the case p symmetric, the theorem has already been proved in [14].
When p is mean-zero,

∑
i ip�i� = 0, the methods of [15] prove the invariance

principle for “H−1” functions f for which it is known that σ2�f� < ∞. The
contribution here is to identify explicitly this class of functions and to show
that if f is not in this class then σ2�f� = ∞. In addition, we show the positivity
σ2�f� > 0 in this mean-zero case.
When p is with drift,

∑
i ip�i� �= 0, and d ≥ 3, the techniques of [13] prove

the invariance principle. The extension here, in these dimensions, is to state
the positivity σ2�f� > 0, and to provide a different argument which gives
stronger convergence to Brownian motion in the uniform topology.
The main contribution of the article is to address the remaining case, when

p has non-zero drift and d ≤ 2. We prove the invariance principle for a class
of functions f which have finite limiting variance, σ2�f� < ∞. The result is,
however, unfinished in some sense, as the class is not exactly identified.
To this point, note that, by the methods of case (i) for d ≥ 3, it would be

possible to write the case (i) results for d ≤ 2 as simply σ2�f� <∞ ⇔ Eρ
f� =
0, mimicking the statement for d ≥ 3, if one could show that σ2�η0 − ρ� < ∞
in d ≤ 2 and σ2��η0−ρ��η1−ρ�� <∞ in d = 1. Our conjecture, based on some
heuristics (see section 6), is that σ2�η− ρ� < ∞ ⇔ ρ �= 1/2 in d ≤ 2, but that
σ2��η0 − ρ��η1 − ρ�� <∞ for all 0 ≤ ρ ≤ 1 in d = 1. These curious bounds are
open at the moment.
Observe also, in this case, that it may be possible that σ2�f� = 0 for some

non-monotone function f in d ≤ 2. It would be of interest to investigate this
possibility.
Finally, the quadratic form Eρ
f�−L�−1f� is understood in the resolvent

sense and is discussed in section 3. Also, simple equivalents of the conditions
dn/dynEy
f�	y=ρ = 0 are given in subsection 2.2.1.

Now, as a byproduct of the proof, we calculate some divergence rates for
σ2
t �f� in the case

∑
ip�i� = 0:

Proposition 1.1. Let p be a finite-range, translation-invariant, mean-zero
irreducible jump rate. Let also f be a local mean-zero function, Eρ
f� = 0.

(i) In d = 1, when d/dyEy
f�	y=ρ �= 0, σ2
t �f� ≈ t3/2.

(ii) In d = 2, when d/dyEy
f�y=ρ �= 0, σ2
t �f� ≈ t log�t�.

(iii) In d = 1, when d2/dy2Ey
f�y=ρ �= 0, but d/dyEy
f�	y=ρ = 0,

0< lim inf
t→∞

(
t−1

∫ t

0
σ2
s �f�ds

)
/�t log�t�� and lim sup

t→∞
�σ2

t �f��/�t log�t��<∞�

In fact, when p is symmetric, σ2
t �f� ≈ t log�t�.

Note, in case (3) one expects σ2
t �f� ≈ t log�t� for all mean-zero p, not only

for symmetric jump rates. However, we could not obtain a better lower bound.
When σt�f� is superdiffusive, partial results are available. The following

occupation time theorem is proved in [4], for finite-range translation-invariant
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symmetric simple exclusions: let p be jump probabilities with covariance σ2
p.

Then, with respect to initial configurations Pρ, as t ↑ ∞,

1
β�d� t�

∫ t

0
�η0�s� − ρ�ds→N�0� σ2�ρ�d�� and

σ2
t �η0 − ρ� ∼ β2�d� t��

(1.4)

where β�1� t� = t3/4 for d = 1, β�2� t� = √
t log t for d = 2 and β�d� t� = √

t for
d ≥ 3. The coefficient variances are also computed:

σ2�ρ�1� = ρ�1− ρ�
(
8
/(

3
√
2π	σ2

p	
))

if d = 1�

σ2�ρ�2� = ρ�1− ρ�(2/�πdet�σ2
p��
)

if d = 2�

σ2�ρ�d� = ρ�1− ρ�
(
2
∫ ∞

0
P0�0�t�dt

)
if d ≥ 3�

where Pi�j�t� is the transition probablity of d-dimensional random walk cor-
responding to p.
We state a modest generalization of Kipnis’s theorem.

Theorem 1.2. Consider simple exclusion with finite-range, translation-
invariant, irreducible symmetric rates p. Then, with respect to initial configu-
rations Pρ, we have weak convergence in the uniform topology,

lim
α→∞

1
β�d�α�

∫ αt

0
�η0�s� − ρ�ds =

{
B3/4�σ2�ρ�1�t�� when d = 1�

B�σ2�ρ�d�t�� when d ≥ 2�

where B3/4 and B are fractional Brownian motion (with parameter H = 3/4)
and standard Brownian motion, respectively.

These results may be generalized to local mean-zero f which do not satisfy
(1.3): when d = 1 and d/dyEy
f�	y=ρ �= 0, we have α−3/4 ∫ αt

0 fds → B3/4�Ct�.
When d = 2 and d/dyEy
f�	y=ρ �= 0, we have �α log�α��−1/2 ∫ αt0 fds → B�Ct�.
In both cases, C = C�f�, 0 < C < ∞, may be calculated. What remains is
the case d = 1 and dn/dynEy
f�	y=ρ = 0 for n = 1 but not for n = 2. Without
explicit asymptotics of σ2

t �f�, we cannot prove the related invariance principle,
although the central limit theorem holds in this case: �σ2

t �f��−1/2
∫ t
0 fds →

N�0�1�.
Note that similar results for asymmetric mean-zero systems have not been

investigated.
The paper is organized into six sections. In Section 2, we state a central

limit theorem for associated random vectors and discuss certain necessary
properties of simple exclusion used later. In Section 3, we develop notions of
various H1 and H−1 spaces so as to prove some technical variance estimates.
In Section 4, we prove some variance bounds for mean-zero asymmetric sys-
tems. In Section 5, we prove Theorems 1.1 and 1.2. In Section 6, we obtain
some occupation time estimates for second-class particles.



282 S. SETHURAMAN

2. Associated random vectors and preliminaries for simple exclu-
sion. We gather here some results on associated or FKG random vectors and
the simple exclusion process, which will be useful. Specifically, we investigate
the diffusive behavior of associated random systems. For the simple exclusion
process, we discuss certain bases for local functions, the duality property, the
basic coupling, time reversal and some association properties of the model
variables.

2.1. Associated random vectors. In this subsection, we connect some facts
about the diffusion properties of associated (or FKG) random vectors. See [9]
for a survey on associated variables.

Definition 2.1. Consider an m-dimensional L2 process with stationary in-
crements,

�v�t� = �v1�t�� � � � � vm�t��� t ≥ 0��
We say v has weakly positive associated increments if

E
φ�−→v �t+ s� − −→v �s��ψ�−→v �s��� ≥ E
φ�−→v �t���E
ψ�−→v �s���
for all coordinatewise increasing functions φ and ψ. When the inequality is
reversed, −→v is said to have weakly negative associated increments.

For associated processes, we rephrase some useful central limit theorems
of Newman [8] and Newman and Wright [10].

Theorem 2.1. Let −→v �t� = �v1�t�� � � � � vm�t�� be an m-dimensional vector
process in C
0�∞� with stationary and weakly positive associated increments
such that E
vi�t�� = 0 for all i and t. Assume also for all i and j that

lim
t→∞

1
t
E
vi�t�vj�t�� = aij <∞�(2.1)

Then

1√
α
−→v �αt�−→l → B�−→l A−→

l t�(2.2)

weakly in the uniform topology as α → ∞ where A = �aij� is the covariance

matrix,
−→
l ∈ �m and B is standard Brownian motion.

Proof. The proof follows from Theorem 3 of Newman [8] and Corollary
6 of Newman and Wright [10]. These results are stated in discrete time but
extension to continuous time is straightforward. Theorem 3 of [8] applied to
α−1/2−→v �αt� · −→l � α−1/2∑vi�αt�	li	 (“�” is notation from [8]) gives conver-
gence of finite-dimensional distributions in (2.2). Consider the inequality

P

{
sup
0≤s≤1

	−→v �s� · −→l 	 > γ

}
≤

m∑
i=1

P

{
sup
0≤s≤1

	vi�s�	 >
γ

m	li	
}
�
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Corollary 6 of [10] applied to the terms on the right above yields maximal
inequalities sufficient to prove tightness of these finite-dimensional measures
in C
0�∞�. Note that, although a stronger form of associativity is assumed in
Newman’s Theorem 3, a reading of the proof shows only use of weak associativ-
ity. Also, in Corollary 6 of [10], weak associativity implies the demimartingale
property assumed there. ✷

2.2. Some properties of simple exclusion. Several useful definitions and
necessary facts for simple exclusion systems are presented in five parts.

2.2.1. Centered and monotone bases. Let f�η� be a local function. A useful
observation, following from the fact that f takes finitely many values on a
finite set of coordinates, is that f may be rewritten in terms of two different
types of elementary functions.
Define C

ρ
I�η� and MI�η�, for I = �i1� � � � � ik� ⊂ �d composed of distinct

vertices (ij �= il for j �= l) and k ≥ 1 as “centered” and “monotone” k-point
functions, respectively,

C
ρ
I�η� = �ηi1 − ρ��ηi2 − ρ� · · · �ηik − ρ��

M
ρ
I�η� = �ηi1ηi2 · · ·ηik� − ρk�

Including the constant functions, both �1�Cρ
I�η�: 	I	 = k ≥ 1� and �1�MI: 	I	 =

k ≥ 1� form bases under which f may be decomposed.
Let �f�g�ρ = Eρ
fg� define an inner-product on L2�Pρ�. Observe that as

Pρ is product measure, the “centered” basis is an orthogonal basis. The “mono-
tone” basis, however, although not orthogonal, consists of coordinate-wise in-
creasing functions.
Explicitly, for some constants cI and mI,

f�η� = Eρ
f� +
∑

ci�ηi − ρ� +∑
i�=j

ci�j�ηi − ρ��ηj − ρ� +H
ρ
C�η�(2.3)

and

f�η� = Eρ
f� +
∑

mi�ηi − ρ� +∑
i�=j

mi�j�ηiηj − ρ2� +H
ρ
M�η��(2.4)

where Hρ
C and Hρ

M are a finite number of higher order terms.

We now recast the finite variance conditions (1.3) into simple criteria on
the constants cI. Exact computations give for k ≥ 1 that

dn

dyn
Ey
f�η��	y=ρ = 0� n = 0�1� � � � � k⇔ Eρ
f��

∑
i

ci� � � � �
∑

I�	I	=k
cI = 0�
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In particular,

conditions �1�3� ⇔



Eρ
f��

∑
i

ci�
∑
ij

ci�j = 0� if d = 1�

Eρ
f��
∑
i

ci = 0� if d = 2�

Eρ
f� = 0� if d ≥ 3�

(2.5)

This leads to the following lemma.

Lemma 2.1. Let f be a local mean-zero function which violates conditions
(1.3). Then f may be put in the form

f�η� =
(∑

i

ci

)
C
ρ
0 +

(∑
i�j

ci�j

)
C
ρ
�0�1� + f̄ in d = 1 and

f�η� =
(∑

i

ci

)
C
ρ
0 + f̄ in d = 2�

where
∑

i ci and
∑

i�j ci�j cannot both vanish in d = 1,
∑

i ci �= 0 in d = 2 and

f̄ satisfies conditions (1.3).

Proof. As f is local, the decomposition (2.3) is finite. Note also that
Ey
Cρ

I − C
ρ
J� ≡ 0 for 	I	 = 	J	 and also that d/dyEy
Cρ

0� = 1 and
d2/dy2Ey
Cρ

�0�1�� = 2. By adding and subtracting terms of the form C
ρ
i − C

ρ
j

and Cρ
�i�j� −C

ρ
�k�l� in (2.3), the lemma follows from (2.5). ✷

2.2.2. Dual relation for symmetric exclusions. For I�J ⊂ �d such that 	I	 =
	J	 = k, let PSE

I�J�t� denote the transition probability of k-particles, performing
simple exclusion on �d with jump rate p�·�, initially at positions I moving to
positions J in time t. Note that when I = �i� and J = �j� are single sites,
PSE
i�j�t� = Pi�j�t� is no more than the usual random walk transition probability.
The “dual relation” for symmetric simple exclusion processes computes the

action of the symmetric semigroup Tt on the k-point functions C
ρ
I�η�, for

	I	 = k, composed of distinct sites in terms of k-particle transitions (see VIII.1
of [7]),

TtC
ρ
J�η� =

∑
K: 	K	=k

PSE
J�K�t��

In particular, for 	I	 = 	J	 = k,

�Cρ
I�η��TtC

ρ
J�η��ρ = ∑

K: 	K	=k
PSE
J�K�t��Cρ

K�η�0���Cρ
I�η�0���ρ

= �ρ�1− ρ��kPSE
J�I�t��

(2.6)

And, for 	I	 �= 	J	, < C
ρ
I�η��TtC

ρ
J�η� >ρ= 0.

2.2.3. The basic coupling. An essential coupling for the simple exclusion
process is the basic coupling ([7], VIII.2). Given two systems, one starting from
initial configuration η, the other from η′, such that η ≤ η′ coordinatewise, we
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have also that at any later time t ≥ 0 the ordering is preserved, η�t� ≤ η′�t�.
The coupling generator L̄, acting on test functions φ, is as follows:

L̄φ�η�η′� =∑
i�j

ηip�j− i��φ�ηij�� η′ij� −φ�η�η′��(2.7)

+∑
i�j

�η′
i − ηi�p�j− i��φ�η�η′ij� −φ�η�η′���(2.8)

This coupling may be understood in terms of discrepancies. Let ξ = η′ − η
denote the discrepancy configuration. In this context, the process �η�t�� ξ�t��
is composed of “first-class” η-particles and “second-class” ξ-particles. These
labels are suggested by the following properties observed from the generator:
an η-particle does not see the ξ-particles; however, a ξ-particle must exchange
places with an η-particle if an η-particle jumps to its position.
A principal use of the basic coupling in the article is to make the following

comparison. Let f�η� be an increasing function and suppose η�t� and η′�t�
are exclusion systems starting from initial configurations η ≤ η′. Then, by the
basic coupling, we have f�η�t�� ≤ f�η′�t�� for all t ≥ 0.

2.2.4. Time reversal and L∗� The notions of time reversal at time s and
the time-reversed process η∗�·� = η�s− ·� will be useful. We compute that the
time-reversed process η∗�·� is generated by the operator L∗ which acts on test
functions φ as follows:

L∗φ =∑
ηi�1− ηj��φ�ηi�j� −φ�η��p�i− j��

Observe that the operators L and L∗ are adjoints of each other satis-
fying the property, for test functions φ and ψ, that Eρ
φ�η��Lψ�η��� =
Eρ
�L∗φ�η��ψ�η��.
The adjoint system is just another translation-invariant exclusion system,

but with reversed jump rates p�i� j� = p�i − j�. Therefore, the Bernoulli
product measures Pρ are all invariant and extremal with respect to L∗ as
with respect to L. Denote T∗

t and E
∗
η as the semigroup and expectation with

respect to the η∗�·� process.

2.2.5. Exclusion association properties. We now show that certain vari-
ables with respect to simple exclusion are positively associated.

Lemma 2.2. Let f�η�� g�η�:� → � be both coordinatewise increas-
ing or decreasing functions. Then, �f�η�� g�η��ρ ≥ Eρ
f�Eρ
g�. And also,
for all t ≥ 0,

Eρ
f�η�0��g�η�t��� = Eρ
f�η�0��Eη�0�
g�η�t����
= �f�η��Ttg�η��ρ
≥ Eρ
f�Eρ
g��
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Proof. We prove the case when both f and g increase, as the other case is
similar. Observe, as Pρ is a product measure, that Pρ has positive correlations
in the sense of the FKG inequality (see [7], II.2). Write ψ�η� = Eη
g�η�t��� =
�Ttg��η� and note, by the basic coupling, that ψ�η� is an increasing function
of η. The result follows by applying the FKG inequality to f and ψ, and
stationarity of Pρ. ✷

Let f and g be local increasing functions, and let −→v �t� and −→v ∗�t� be the
vectors,

−→v �t� =
(∫ t

0
f�η�r��ds�

∫ t

0
g�η�r��ds

)
�

−→v ∗�t� =
(∫ t

0
f�η∗�r��ds�

∫ t

0
g�η∗�r��ds

)
�

where η∗�·� = η�t− ·� is the reversed process from time t.

Proposition 2.1. With respect to Pρ,
−→v �t� has stationary and weakly pos-

itive associated increments.

Proof. Stationary increments follows as Pρ is an equilibrium measure.
Compute now, following Theorem 2 of [3] for φ and ψ increasing,

Eρ
ψ�−→v �s��φ�−→v �t+ s� − −→v �s���
= Eρ
ψ�−→v �s��Eη�s�
φ�−→v �t����
= Eρ
ψ�−→v ∗�s��Eη∗�0�
φ�−→v �t����

=
∫
E∗
η∗�0�
ψ�−→v ∗�s���Eη∗�0�
φ�−→v �t����dPρ�η∗�0��

by conditioning on η�s� and reversing time from s.
Note, as both f and g increase as functions of η, that the factors,

E∗
η
ψ�−→v ∗�s��� and Eη
φ�−→v �t��, as functions of η, also increase with η∗�0�

by the basic coupling. Therefore, by the previous lemma, the right-hand side
above is bounded below by∫

E∗
η∗�0�
ψ�−→v ∗�s���dPρ�η∗�0�� ·

∫
Eη∗�0�
φ�−→v �t���dPρ�η∗�0���

which, when unraveled by reversing time again, becomes Eρ
ψ�v�s���
Eρ
φ�v�t���. This completes the proof of the proposition. ✷

3. Some variance norm estimates. In this section, we develop notions
of H1 and H−1 spaces and prove several technical estimates. Some comple-
mentary aspects of these spaces are discussed in [6].
First, observe that L is self-adjoint if and only if p is symmetric. In gen-

eral, however, L may be decomposed as L = −S−A where −S = �L+L∗�/2
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and −A = �L−L∗�/2 denote the symmetric and antisymmetric parts, respec-
tively. Note that −S by itself generates symmetric exclusion with jump rates
�p�j−i�+p�i−j��/2 and so is Pρ-reversible. In addition, −S has nonpositive
spectrum and, explicitly for local φ,

�−Sφ��η� = 1
2

∑
i�j

�p�j− i� + p�i− j���φ�ηi�j� −φ�η���

Note, in addition, that the quadratic form < f� �−L�f >ρ is called the
Dirichlet form with respect to −L. Observe that only the symmetric part S
survives in the form and in fact, for local φ, one exactly computes

�φ� �−L�φ�ρ = �φ�Sφ�ρ
= 1

4

∑
i�j

Eρ
�p�j− i� + p�i− j���φ�ηi�j� −φ�η��2��(3.1)

To prepare for the definition of certain resolvent norms, note that the op-
erator �λ − L�−1:L2�Pρ� → L2�Pρ�, �λ − L�−1f�η� = ∫∞

0 e−λtTtf�η�dt, for
λ > 0, is a bounded operator. Also, let 
�λ−L�−1�s denote the symmetric part
of �λ−L�−1 and observe that



�λ−L�−1�s�−1 = �λ−L∗��λ+S�−1�λ−L�
= �λ+S� −A�λ+S�−1A�

For f ∈ L2�Pρ�, the quadratic form < f� �λ − L�−1f >ρ may be written in
terms of the semigroup Tt,

�f� �λ−L�−1f�ρ =
∫ ∞

0
e−λt�f�Ttf�ρ dt�(3.2)

or in variational form over local φ,

�f� �λ−L�−1f�ρ
�f� 
�λ−L�−1�sf�ρ
= supφ�2�f�φ�ρ − �φ� 

�λ−L�−1�s�−1φ�ρ�

= supφ�2�f�φ�ρ − �φ� �λ+S�φ�ρ − �Aφ� �λ+S�−1Aφ�ρ��

(3.3)

Define, if the limit exists, the quantity < f� �−L�−1f >ρ by

�f� �−L�−1f�ρ = lim
λ→0

�f� �λ−L�−1f�ρ�

When −L = S is symmetric, we prove in Lemma 3.3 that the the limit exists
in the possibly infinite sense and may be written in terms of the semigroup
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or in variational form,

�f�S−1f�ρ =
∫ ∞

0
�f�Ttf�ρ dt

= sup
φ

�2�f�φ�ρ − �φ�Sφ�ρ��

However, when −L = S + A is asymmetric, it is not clear the limit exists
without additional assumptions on the asymmetries.
Standard Dirichlet form spaces may be defined for symmetric p when −L =

S: let the Hilbert spaceH1�S� be the completion with respect to the Dirichlet
form �f�Sf�ρ,

H1�S� = completion of �φ local:< φ�Sφ >ρ<∞�

with norm  f 1�S� =
√
�f�Sf�ρ and inner-product by polarization.

LetH−1�S� denote the completed dual Hilbert space with respect toH1�S�,
H−1�S� = completion of �φ local:< φ�S−1φ >ρ<∞��

with norm  f −1�S� =
√
�f�S−1f�ρ.

For each λ > 0, dual Hilbert spaces H1�λ�−L� and H−1�λ�−L� may also
be defined in terms of completions with respect to local functions φ of the
corresponding norms,

 φ 1�λ�L� =
√
��λ−L�φ� �λ+S�−1� �λ−L�φ�ρ

=
√
�φ� �λ+S�φ�ρ + �Aφ� �λ+S�−1Aφ�ρ ,

 φ −1�λ�L� =
√
�φ� �λ−L�−1φ�ρ�

Observe that these norms and spaces make sense for exclusion type operators
−L = S′ + A′′ where −S′ and −A′′ are the symmetric and anti-symmetric
parts of exclusion generators L′ and L′′, respectively. We will use analogous
notation,  ·  1�λ�S′ +A′′� and  ·  −1�λ�S′ +A′′�, to denoteH1�λ�S′ +A′′� and
H−1�λ�S′ +A′′� norms.
Recall now the definition of the limiting variance σ2�f� (1.2) if it exists.

Lemma 3.1. Let f�η� ∈ L2�Pρ� be an increasing nondegenerate function

with mean zero, Eρ
f� = 0. Then both σ2�f� and �f� �−L�−1f�ρ exist. Further,

σ2�f� = lim
t→∞

t−1σ2
t �f�

= 2
∫ ∞

0
�Ttf�f�ρ dt = 2�f� �−L�−1f�ρ > 0�
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Proof. From Lemma 2.2, �f�Tsf�ρ ≥ 0. Note also, as �f�f�ρ > 0, that
�f�Tsf�ρ > 0 for small s. Compute now, by stationarity of Pρ, that

t−1σ2
t �f� = 2

∫ t

0
�1− s/t�Eρ
f�η�0��Tsf�η�0���ds�

Also note, from (3.2) and the definition of < f� �−L�−1f >ρ, that

�f� �−L�−1f�ρ = lim
λ→0

∫ ∞

0
e−λt�f�Ttf�ρ dt�

The lemma now follows from monotone convergence. ✷

Lemma 3.2. Let f = f+ − f− where f+� f− ∈ L2�Pρ� are increas-

ing functions such that σ2�f+�� σ2�f−� < ∞. Then both σ2�f� < ∞ and
�f� �−L�−1f�ρ <∞ exist, and also

σ2�f� = 2
∫ ∞

0
�Ttf�f�ρ dt = 2�f� �−L�−1f�ρ�

Proof. Write t−1σ2
t �f� as

2
∫ t

0
�1− s/t�
�f+�Ttf+�ρ ds− �f+�Ttf−�ρ − �f−�Ttf+�ρ + �f−�Ttf−�ρ�ds�

Observe also that

t−1Eρ

[∫ t

0
f±�η�s��ds ·

∫ t

0
f∓�η�s��ds

]

= 2
∫ t

0
�1− s/t��f±�Tsf∓�ρ ds ≤ t−1σt�f+�σt�f−��

The proof now follows from arguments of the previous lemma and σ2�f±� <∞.
✷

Evidently, proving �f�Tsf�ρ ≥ 0, for a given f is sufficient to show that
σ2�f� = 2�f� �−L�−1f�ρ exists. However, it is not clear that this is true in
general. For symmetric systems, though, this positivity holds for all f.

Lemma 3.3. Let f ∈ L2�Pρ� be a non-degenerate mean-zero function,

Eρ
f� = 0. For symmetric exclusion processes, the limiting variance σ2�f�
exists. In fact, σ2�f� = 2�f�S−1f�ρ > 0 and may be expressed in terms of the
semigroup or in the variational form,

σ2�f� = 2
∫ ∞

0
�f�Ttf�ρ dt

= 2 sup�2�f�φ�ρ − �φ�Sφ�ρ:φ local��
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Proof. To show σ2�f� exists and σ2�f� = 2
∫∞
0 �f�Ttf�ρdt = 2�f�S−1f�ρ

> 0, observe, from reversibility, that Tt is self-adjoint and

�f�Ttf�ρ = �Tt/2f�Tt/2f�ρ > 0�

The arguments of Lemma 3.1 now apply.
To establish the variational formula, we show upper and lower bounds

between

�f�S−1f�ρ and V�f� �= sup�2�f�φ�ρ − �φ�Sφ�ρ:φ local��
For the upper bound, note that

�f� �λ+S�−1f�ρ = sup�2�f�φ�ρ − λ�φ�φ�ρ − �φ�Sφ�ρ:φ local�
≤ sup�2�f�φ�ρ − �φ�Sφ�ρ:φ local��

For the lower bound, let

V�f#φ� �= 2�f�φ�ρ − �φ�Sφ�ρ�
Assume now that V�f� <∞ and fix a local function φε, for ε > 0, such that

V�f#φε� ≥ V�f� − ε. Choose λε > 0 small enough so that for 0 ≤ λ ≤ λε,

2�f�φε�ρ − λ�φε�φε�ρ − �φε�Sφε�ρ ≥ V�f#φε� − ε�

Optimizing over local functionsφ, this implies that< f� �λ+S�−1f >ρ≥ V�f�−
2ε, for arbitrary ε > 0 and we are done.
When V�f� = ∞, a similar optimization proves the result. ✷

We restate a portion of the proved part of Theorem 1.1 in the context of
finite variances.

Lemma 3.4. Consider the finite-range irreducible symmetric exclusion pro-
cess. Let f be a local function. Then,

 f −1�S� <∞ ⇔ σ2
t �f� = O�t�

⇔ equivalent conditions in (2.5) hold.

Proof. The first statement follows from the previous lemma. The last
statement derives from the equivalence (2.5) and the proved part of Theorem
1.1 for symmetric p (Theorem 1.1 of [14]). ✷

A useful domination of the  · −1�λ�−L� norms by those with respect to the
symmetrized systems is given below.

Lemma 3.5. For f ∈ L2�Pρ� and λ > 0,

 f −1�λ�−L� ≤  f −1�λ�S� ≤  f −1�S��
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Proof. Note in (3.3) that the “−�Aφ� �λ+S�−1A�ρ” term can be dropped to
give the first bound. Dropping the “−λ�φ�Sφ�ρ” term gives the second upper
bound, noting the variational formula in Lemma 3.3. ✷

We will say that operators S and S′ have equivalent Dirichlet (quadratic)
forms if there are constants 0 < C1 < C2 such that for all local functions φ,

C1�φ�S′φ�ρ ≤ �φ�Sφ�ρ ≤ C2�φ�S′φ�ρ�
The following results will be useful in making some comparisons.

Lemma 3.6. Let L = −S−A and L′ = −S′−A be generators with the same
anti-symmetric part. If S and S′, with respect to some constants 0 < C1 < C2,
have equivalent Dirichlet forms, then for f ∈ L2�Pρ� and λ > 0 we have


max�C−1
1 �C2��−1 f 2−1�C−1

1 λ�−L′� ≤  f 2−1�λ�−L�
≤ 
min�C1�C

−1
2 ��−1 f 2−1�C−1

2 λ�−L′��

Proof. The bounds follow from manipulations of the variational formula
(3.3). In the sense of quadratic forms, note the inequalities,

C1�C−1
1 λ+S′� ≤ �λ+S� ≤ C2�C−1

2 λ+S′�
and

C−1
2 �C−1

2 λ+S′�−1 ≤ �λ+S�−1 ≤ C−1
1 �C−1

1 λ+S′�−1�
Plugging into (3.3) and observing C−1

2 ≤ C−1
1 , we have that  f 2−1�λ�−L� is

bounded above by

sup
φ

�2�f�φ�ρ −C1�φ� �C−1
1 λ+S′�φ�ρ −C−1

2 �Aφ� �C−1
2 λ+S′�−1Aφ�ρ�

≤ sup
φ

�2�f�φ�ρ −C1�φ� �C−1
2 λ+S′�φ�ρ −C−1

2 �Aφ� �C−1
2 λ+S′�−1Aφ�ρ�

≤ sup
φ

�2�f�φ�ρ −min�C1�C
−1
2 ��φ� �C−1

2 λ+S′�φ�ρ

−min�C1�C
−1
2 ��φ� �C−1

2 λ+S′�φ�ρ��

Taking the supremum now over ψ =
√
min�C1�C

−1
2 �φ gives the upper bound

in the lemma. The lower bound follows similarly. ✷

Let el ∈ �d, for l = 1� � � � � d, denote the unit vectors on the positive axes.

Lemma 3.7. Let −S and −S′ generate symmetric exclusion processes on �d

with finite-range irreducible jump rates p and p′, respectively. Then −S and
−S′ have equivalent Dirichlet forms.
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Proof. Let −S1 denote the generator of nearest-neighbor symmetric ex-
clusion on �d with jump rates p1 satisfying p1�el� = p1�−el� = �2d�−1 for
l = 1� � � � � d and p1�i� = 0 otherwise. It is enough to show that the quadratic
forms of −S and −S′ are each equivalent to those for −S1.
For the upper bound, recall the Dirichlet form computation (3.1). For fixed

i = �i1� � � � � id� and j = �j1� � � � � jd�, let kl = �j1� � � � � jl� il+1� � � � � id� for l =
1� � � � � d and k0 = i. Define the nearest-neighbor rectangular path rl from kl−1

to kl, for l = 1� � � � � d, as follows: let rl�0� = kl−1, and if il ≤ jl, let rl�m� =
rl�m− 1� + el; otherwise, let rl�m� = rl�m− 1� − el, for m = 1� � � � � 	jl − il	.
Observe that the configuration ηi�j, which transposes site values at i and j,

can also be obtained in a two step procedure: First, transpose forward along the
nearest-neighbor pair sequence �rl�0�� rl�1��� � � � � �rl�	jl− il	−1�� rl�	jl− il	��
successively for l = 1�2� � � � � d (this has the effect of moving the value at i to
j). Second, transpose back along the reversed sequence beginning with the
penultimate pair, �rd�	jd − id	 − 1�� rd�	jd − id	 − 2��� � � � � �rd�1�� rd�0��, and
then along �rd−l�	jd−l − id−l	�, rd−l�	jd−l − id−l	 − 1��� � � � � �rd−l�1�� rd−l�0��
for l = 1� � � � � d − 1 (this brings the value at j to i while shifting back
the other values to their original positions). Let D�i� j� = ∑d

l=1 	jl − il	.
Then by transposition invariance of Pρ and Schwartz inequality, we have
that

Eρ

[�φ�ηi�j� −φ�η��2] ≤ 2D�i� j�
d∑
l=1

	jl−il	−1∑
m=0

Eρ

[�φ�ηrl�m�� rl�m+1�� −φ�η��2]�
The upper bound �φ�Sφ�ρ ≤ C2�φ�S1φ�ρ now follows from the fact that p is
finite range.
For the lower bound, note that �φ�S1φ�ρ = �1/d�∑i

∑d
l=1Eρ
�φ�ηi�i+el� −

φ�η��2�. Also note, as p is irreducible, that there exists a finite path rl from
the origin 0 to el, 0 = rl�0�, rl�1�� � � � � rl�nl�, for l = 1� � � � � d, in the support of
p such that a p-random walker may jump from 0 to rl�1�, then to rl�1�+rl�2�,
and so on to rl�1�+· · ·+rl�nl� = el. Denote jl�k� = rl�0�+· · ·+rl�k� to simplify
notation, and bound

Eρ
�φ�ηi�i+el� −φ�η��2� ≤ nl

nl−1∑
m=0

Eρ
�φ�ηi+j
l�m��i+jl�m+1�� −φ�η��2��

The bound �φ�S1φ�ρ ≤ C−1
1 �φ�Sφ�ρ follows once again as p is finite range.

✷

Resolvent equations also yield some bounds on the variance σ2�f�. Let f ∈
L2�Pρ� be a mean-zero function, and write, for λ > 0,

λuLλ�f�η� −LuLλ�f�η� = f�η� where uLλ�f�η� = �λ−L�−1f�η��(3.4)
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Multiplying through by uλ = uLλ�f and taking Pρ-expectation, we obtain

λ�uλ�uλ�ρ +  uλ 21�S� = �f�uλ�ρ�(3.5)

Lemma 3.8. Suppose  f −1�S� <∞. Then both λ�uλ uλ�ρ ≤  f 2−1�S� and

 uλ 21�S� ≤  f 2−1�S�.

Proof. Note that by the Schwarz inequality, �f�uλ�ρ ≤  f −1�S�
 uλ 1�S�. Therefore from (3.5),  uλ 21�S� ≤  f −1�S� uλ −1�S� and so
 uλ −1�S� ≤  f −1�S�. The inequality on λ < uλ�uλ >ρ now also follows
from (3.5). ✷

Lemma 3.9. Let t > 0 and f ∈ L2�Pρ� be a mean-zero function. Then

σ2
t �f� = t�f�ut−1�ρ +O��ut−1� ut−1�ρ� and

t−1σ2
t �f� ≤ 10�f�ut−1�ρ�

Also, for f such that  f −1�S� <∞, we have t−1σ2
t �f� ≤ 10 f −1�S��

Proof. Calculate∫ t

0
f�η�s��ds = Mλ�t� + �uλ�η�0�� − uλ�η�t��� + λ

∫ t

0
uλ�η�s��ds

= Mλ�t� + I2 + I3�

whereMλ�t� is the martingale,Mλ�t� = uλ�η�t��−uλ�η�0��−
∫ t
0 Luλ�η�s��ds�

with quadratic variation, by stationarity, 2Eρ

[ ∫ t
0 uλ�−L�uλ ds

] = 2t uλ 21�S��
Bound the second and third terms as follows:

Eρ
I22� ≤ 2�uλ�uλ�ρ and Eρ
I23� ≤ λ2t2�uλ�uλ�ρ�
To prove the first and second claims of the lemma, choose λ = t−1 and plug
into (3.5). The last claim now follows from the previous lemma. ✷

4. Variance bounds: mean-zero p. We collect together some variance
estimates which, in particular, will be used to prove the variance bounds with
respect to mean-zero p in Theorem 1.1.
We begin with two facts proved in [15].

Lemma 4.1. Let f ∈ L2�Pρ� be a nondegenerate function such that
 f −1�S� <∞. Then, with respect to simple exclusion with finite-range, mean-
zero, irreducible p, we have that the limits σ2�f� and �f� �−L�−1f�ρ exist and

σ2�f� = 2�f� �−L�−1f�ρ <∞.

This lemma is proved in Section 4 of [15].
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Lemma 4.2. Let φ and ψ be local functions. For simple exclusion processes
with finite-range, mean-zero, irreducible p, there is a constantC = C�d�p� ρ� ≥
1 so that a sector condition holds:

�φ� �−L�ψ�ρ ≤ C�φ�Sφ�1/2ρ �ψ�Sψ�1/2ρ �(4.1)

The proof is Theorem 5.1 of [15].
Note that when L is symmetric, C may be taken to be C = 1. A corollary

of the last lemma is the following.

Lemma 4.3. Let L = −S −A correspond to finite-range, mean-zero, irre-
ducible p. With respect to local functions φ, λ ≥ 0, and C as in (4.1),

�Aφ� �λ+S�−1Aφ�ρ ≤ �C+ 1�2�φ� �λ+S�φ�ρ�

Proof. Write −L = S+A and observe from Lemma 4.2 and the Schwarz
inequality, for test functions φ and ψ, that

	�Aφ�ψ�ρ	 ≤ 	�φ�Sψ�ρ	 +C
√
�φ�Sφ�ρ�ψ�Sψ�ρ

≤ �C+ 1�
√
�φ�Sφ�ρ�ψ�Sψ�ρ�

Note that this inequality carries over, by approximation, to functions φ and
ψ in H1�S�. Fix now a local φ and note that Ey
Aφ� ≡ 0 for all y so that,
by (2.5) and Lemma 3.4, Aφ ∈ H−1�S�. Consequently, ψ = �λ + S�−1Aφ ∈
H1�λ�S� ⊂H1�S�. Applying the inequality to φ and ψ, we obtain

�Aφ� �λ+S�−1Aφ�ρ ≤ �C+ 1�
√
�φ�Sφ�ρ

√
�Aφ� �λ+S�−2SAφ�ρ

≤ �C+ 1�
√
�φ� �λ+S�φ�ρ

√
�Aφ� �λ+S�−1Aφ�ρ�

To finish, we divide through by the last factor. ✷

The next lemma shows that the H−1�λ�−L� and H−1�λ�S� norms, for
mean-zero p, are equivalent. This will imply nondegeneracy of σ2�f� for f ∈
H−1�S�.

Lemma 4.4. Let L = −S −A correspond to finite-range, mean-zero, irre-
ducible p and let f ∈ L2�Pρ�. There exists 0 < C ≤ 1 such that for λ > 0,

C�f� �λ+S�−1f�ρ ≤ �f� �λ−L�−1f�ρ ≤ �f� �λ+S�−1f�ρ�

In particular, the forms �f� �−L�−1�ρ and �f�S−1f�ρ are equivalent. As a con-

sequence, when  f −1�S� <∞ <∞, σ2�f� > 0.
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Proof. The upper bound was established in Lemma 3.5. The lower bound
follows by an application of Lemma 4.3 to the bound below the third term in
(3.3). The form equivalence follows by taking λ ↓ 0 and Lemma 4.1. Hence,
the last statement follows from Lemmas 4.1 and 3.3. ✷

The following Tauberian result will be used to obtain lower bounds. Some
of the intuition in the argument is owed to Lemma 2.4 in [1].

Lemma 4.5. Let U�t� be a nonnegative function and let V�t� = ∫ t
0 U�s�ds.

Suppose for all small λ > 0, some α ∈ 
0�1� and 0 < C1�C2 < ∞, that
V�t� ≤ C1t

α+1 (respectively, greater than or equal to −C1t log t) and also that∫∞
0 e−λtU�t�dt ≥ C2λ

−α−1 (respectively, greater than or equal to −C2λ
−1 log λ�.

Then, for some 0 < C3 <∞ and all large t, we have that

V�t� ≥ C3t
α+1 �respectively, greater than or equal to C3t log t��

Proof. We prove the assertion for the case V�t� ≤ C1t
α+1 and

∫∞
0 e−λt

U�t�dt ≥ C2λ
−α−1 as the other case is similar. If the claim is not true,

then lim inf V�t�t−�α+1� = 0, so that for each fixed ε > 0, a subsequence
�tn�, tn ↑ ∞, exists where V�tn�t−�α+1�

n ≤ ε. Now let K be so large that
�C1/α + 1� ∫∞

K e−ssα+1 ds ≤ C2/2, and note from the assumptions on U, that
V�t� increases and ∫∞

0 e−λtV�t�dt ≥ C2λ
−α−2� As a consequence of these re-

marks, we have

C2λ
−α−2 ≤

∫ tn

0
e−λtV�t�dt+

∫ ∞

tn

e−λtV�t�dt

≤ εtα+2n +C1

∫ ∞

tn

e−λttα+1 dt

= εtα+2n +C1λ
−α−2

∫ ∞

λtn

e−ssα+1 ds�

Multiplying by λα+2, we obtain that C2 ≤ ε�λtn�α+2+�C1/α+1� ∫∞
λtn

e−ssα+1 ds.
With λ =Kt−1n , the last estimate reduces to C2/2 ≤ ε�K+ 1�α+2 which yields
a contradiction for ε small enough. ✷

Let uf�t� = �f�Ttf�ρ, Uf�t� = ∫ t
0 uf�s�ds, and Vf�t� = ∫ t

0 Uf�s�ds. To
apply the last lemma, we identify the variance σ2

t �f� in terms of the kernel
uf�t�.

Lemma 4.6. For f ∈ L2�Pρ�, σ2
t �f� = 2Vf�t��

Proof. Observe that σ2
t �f� = 2

∫ t
0�t− s��f�Tsf�ρ ds. The lemma now fol-

lows from integration by parts. ✷
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Lemma 4.7. Let L generate an exclusion process with finite-range, mean-
zero, irreducible p. Then there exists C = C�p�·�� > 0 such that for 0 < λ < 1,

Cλ−1/2 ≤ �f� �λ−L�−1f�ρ ≤ Cλ−1/2 for f = C
ρ
0 in d = 1 and

−C log λ ≤ �f� �λ−L�−1f�ρ ≤ −C−1 log λ for f = C
ρ
0 in d = 2 and

f = C
ρ
�0�1� in d = 1�

Proof. Recall that we proved in Lemma 4.4, for f ∈ L2 and some constant
0 < C ≤ 1, that

C�f� �λ+S�−1f�ρ ≤ �f� �λ−L�−1f�ρ ≤ �f� �λ+S�−1f�ρ�
Let now −S1 and T1

t denote the generator and semigroup, for the d = 1
nearest-neighbor symmetric system with p�1� = p�−1� = 1/2, and observe,
from irreducibility assumptions on p and Lemma 3.7, that S and S1 have
equivalent Dirichlet forms. Consequently, from Lemma 3.6, we have that there
exists 0 < C�D�E <∞ such that

C�f� �Dλ+S1�−1f�ρ ≤ �f� �λ+S�−1f�ρ ≤ C−1�f� �Eλ+S1�−1f�ρ�
We now show appropriate bounds on �f� �λ−S1�−1f�ρ to complete the proof.

With u1f�t� = �f�T1
t � f�ρ and U1

f�t� = ∫ t
0 u

1
f�s�ds, rewrite �f� �λ + S1�−1f�ρ,

from (3.2) and integration by parts, as

�f� �λ+S1�−1f�ρ =
∫ ∞

0
e−λtu1f�t�dt

= λ
∫ ∞

0
e−λtU1

f�t�dt�

Now note, for the one-point function f = C
ρ
0 that u

1
f�t� = ρ�1 − ρ�P0�0�t� ∼

t−d/2 from duality (2.6) and local limit estimates. For the two-point function
f = C

ρ
�0�1� in d = 1, note first that u1f�t� = ρ2�1 − ρ�2PSE

�01���01��t� from duality
(2.6) and second that it is proved in Section 3 of [14] that U1

f�t� ≈ log�t�.
Compute therefore that �Cρ

0� �λ + S1�−1Cρ
0�ρ ≈ λ−1/2 in d = 1 and − log�λ� in

d = 2 as λ→ 0. Also deduce that �Cρ
�0�1�� �λ+S1�−1Cρ

�0�1��ρ ≈ − log�λ� in d = 1
as λ→ 0. This completes the proof. ✷

We calculate now divergence rates of σ2
t �Cρ

0� in d = 1�2 and σ2
t �Cρ

�0�1��
in d = 1.

Lemma 4.8. Let L generate simple exclusion with finite-range, mean-zero,
irreducible rates p. Then there exists a constant C = C�ρ�d�p�·�� > 0 such
that for large t,

Ct3/2 ≤ σ2
t �Cρ

0� ≤ C−1t3/2 in d = 1 and

Ct log�t� ≤ σ2
t �Cρ

0� ≤ C−1t log�t� in d = 2�
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Also,

Ct log�t� ≤ t−1
∫ t

0
σ2
s �Cρ

�0�1�� and σ2
t �Cρ

�0�1�� ≤ C−1t log�t� in d = 1�

In fact, when p is symmetric, in d = 1,

Ct log�t� ≤ σ2
t �f� ≤ C−1t log�t��

Proof. The upper bounds follow from Lemma 3.9 and Lemma 4.7.
The lower bounds are proved in two parts, first for Cρ

0 and second for C
ρ
�0�1�.

It will be helpful to recall, for f ∈ L2, that �f� �λ−L�−1f�ρ equals
∫ ∞

0
e−λtuf�t�dt = λ

∫ ∞

0
e−λtUf�t�dt

= λ2
∫ ∞

0
e−λtVf�t�dt�

Also recall from Lemma 4.6 that Vf�t� = σ2
t �f�/2.

For the case f = C
ρ
0, observe that uf�t� ≥ 0 from Lemma 2.2, and therefore

Uf�t� ≥ 0. Hence, the lower bounds for σ2
t �Cρ

0� in d = 1�2 follow from Lemma
4.5 with U�t� = Uf�t�, Lemma 4.7 and the above observations combined with
the proven upper bounds.
For the case f = C

ρ
�0�1� in d = 1, let Wf�t� = ∫ t

0 Vf�s�ds and note
from the observations above and the proved upper bound that Vf�t� ≥ 0
and Wf�t� ≤ 2C−1t2 log�t� for large t. Then the lower bound Ct log�t� ≤
t−1Wf�t� = �2t�−1 ∫ t0 σ2

s �f�ds follows from Lemma 4.5 with U�t� = Vf�t� and
Lemma 4.7.
Finally, to prove the lower bound Ct log�t� ≤ σ2

t �Cρ
�0�1�� in d = 1 when p

is symmetric, we use a different technique. Note that the lower bound would
follow from the first statement of Lemmas 3.9 and 4.7 provided we show that

�u−S
t−1�f� u

−S
t−1�f�ρ = O�t��(4.2)

To this end, observe in the symmetric case, that L = −S and Tt = T∗
t . Write

�u−S
λ�f� u

−S
λ�f�ρ =

∫ ∞

0

∫ ∞

0
exp�−λ�r+ s���Trf�Tsf�ρ dsdr

=
∫ ∞

0

∫ ∞

0
exp�−λ�r+ s���Tr+sf� f�ρ dsdr

=
∫ ∞

0
exp�λ2s− λ− 1��−λs�Vf�s�ds�

The estimate (4.2) now follows from Lemma 4.6 and the proved upper bound
with λ = t−1. ✷
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5. Proofs of the main theorems. The main idea of the proofs of Theo-
rems 1.1 and 1.2 is to divide the work into a “variance part and a “weak con-
vergence” part. The variance work, relies on the bases representations (2.3)
and (2.4) and on negative norm bounds of Sections 3 and 4. The weak con-
vergence, typically however, follows from Theorem 2.1 for associated random
vectors or extant proofs, under the assumption of the variance estimates.

Proof of Theorem 1.1(i). Let f�η� be a local function such that the mean
does not vanish, Eρ
f� �= 0. One computes that σ2

t �f� ≥ �Eρ
f�t�2 and �f� �λ−
L�−1f�ρ ≥ λ−1�Eρ
f��2, by substituting φ�η� = λ−1Eρ
f� into (3.3), so that
the theorem in this case follows. From now on, let f�η� be a local mean-zero
function, Eρ
f� = 0.
We show now that σ2

t �f� = O�t� in d ≥ 3. Observe that if σ2
t �Cρ

I� = O�t� for
all I ⊂ �d such that 	I	 = k and k ≥ 1, then the estimate on σ2

t �f� follows from
the finite centered basis expansion for f (2.3) and the Schwarz inequality. But,
the desired bounds follow from Lemmas 3.9 and 3.4.
We now prove that σ2�f� = 2�f� �−L�−1f�ρ < ∞ exists and is finite. By

applying the monotone basis decomposition (2.4) to f, denote f+�η� and
−f−�η� as the sums of components of f corresponding to positive and nega-
tive coefficients, respectively. Note that both f+ and f− are local increasing
mean-zero functions where f = f+ − f− and lim sup t−1σ2

t �f+� < ∞ and
lim sup t−1σ2

t �f−� < ∞. In addition, also note from Lemma 3.1 that both
σ2�f+� = 2�f+� �−L�−1f+�ρ < ∞ and σ2�f−� = 2�f−� �−L�−1f−�ρ < ∞ exist.
The identification and finiteness of σ2�f� now follows from Lemma 3.2.
At this point, observe that the statement for d ≤ 2 also follows from the

last paragraph.
Finally, when f increases, note that σ2�f� > 0 from Lemma 3.1. Also, in

d ≥ 3, note that, for local mean-zero f, σ2�f� > 0 follows from the methods of
Lemma 4.4 (to prove positivity for mean-zero systems) which use, instead of
(4.1), sector type conditions proved in Sections 5 and 6 of [13].
We now show the invariance principle in the theorem. Define −→v �t� =

�v1�t�� v2�t�� where

v1�t� =
∫ t

0
f+�η�s��ds and v2�t� =

∫ t

0
f−�η�s��ds�

Note, as f− and f+ are bounded functions, that −→v �t� ∈ C
0�∞�. Also, ob-
serve that

∫ t
0 f�η�s��ds = v1�t� − v2�t� and, from Proposition 2.1, that −→v �t�

has stationary and weakly positive associated increments with respect to Pρ.
Therefore, by Theorem 2.1, given that the covariance condition (2.1) for −→v �t�
holds, the invariance principle follows.
To prove the covariance condition for −→v �t�, note that we have already es-

tablished

lim
t→∞

t−1Eρ
v1�t�2� = σ2�f+� <∞ and lim
t→∞

t−1Eρ
v2�t�2� = σ2�f−� <∞�
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Note in addition, from monotone convergence, that

lim
t→∞

t−1Eρ
v1�t�v2�t�� = lim
t→∞

∫ t

0
2�1− s/t�Eρ
f+�η�0��f−�η�s���ds

exists as Eρ
f+�η�0��f−�η�s��� ≥ 0 from Lemma 2.2. Finiteness of lim t−1

Eρ
v1�t�v2�t�� follows from the Schwarz inequality.
This completes the proof of (i) in Theorem 1.1. ✷

Proof of of Theorem 1.1(ii) and Proposition 1.1. Let f be a local func-
tion. The case when Eρ
f� �= 0 is handled as in the proof of part (i). So, in the
following, we assume f is mean-zero, Eρ
f� = 0.
We first prove the variance estimates. Note, for those functions satisfying

conditions (1.3), that 0 < σ2�f� = 2�f� �−L�−1�ρ < ∞ exists and is finite and
positive from Lemmas 4.1, 4.4 and 3.4. Observe also, from Lemma 2.1, that
all local mean-zero functions f which violate (1.3) may be put in the form

f�η� = αC
ρ
0�η� + βC

ρ
�0�1��η� + f̄ for d = 1

and

f = αC
ρ
0�η� + f̄ for d = 2�

where both α and β cannot vanish in d = 1, α �= 0 in d = 2 and f̄ satisfies
conditions (1.3) so that σ2�f̄� <∞ from Lemmas 4.1 and 3.4.
Note, from Lemma 4.8, that σ2

t �Cρ
0� ≈ t3/2 and t log�t� in d = 1 and 2,

respectively, and 0 < lim inf �t−1 ∫ t0 σ2
s �Cρ

�0�1��ds�/�t log�t�� and σ2
t �Cρ

�0�1�� =
O�t log�t�� in d = 1. Also note, in the case p symmetric, the stronger bound
0 < lim inf �σ2

t �Cρ
�0�1���/�t log�t��. The bounds in Proposition 1.1 now follow

straightforwardly.
Now observe, for f which violates (1.3), that �f� �−L�−1f�ρ = ∞ from Lem-

mas 4.4 and 3.4. Therefore, we deduce from the above remarks, for these
functions, that

lim sup
t→∞

t−1σ2
t �f� = 2�f� �−L�−1f�ρ = ∞�

We now prove the invariance principle in (2), Theorem 1.1. Note that the
invariance principle is proved in Section 4 of [15] for those functions f ∈
H−1�S�, with variance σ2�f� = 2�f� �−L�−1f�ρ. Therefore, as σ2�f� < ∞
when f satisfies �1�3� ⇔ f ∈ H−1�S� (Lemma 3.4), we obtain the invariance
principle in the theorem.
This completes the proof of (2), Theorem 1.1 and Proposition 1.1. ✷

Proof of Theorem 1.2. Note first that the central limit theorem, for
fixed t, limα→∞ β�d�α�−1/2 ∫ αt0 C

ρ
0�η�s��ds = N�0� σ2�ρ�d�t�� is Kipnis’s

theorem [4].
Convergence of finite-dimensional distributions follows also from the ap-

proach used in [4]. In fact, for the case d = 2, straightforward successive
conditioning of the martingale representation in Section 3.2 of [4] gives this
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convergence. However, for the case d = 1, the martingale representation
in Section 3.3 of [4] is used to prove the finite-dimensional convergence to
B3/4�σ2�ρ�1�t�.
What remains is to show tightness of the finite-dimensional distributions in

the uniform topology. Note that, in equilibrium Pρ, additive functionals with
respect to f�η� = η0 − ρ, as f increases, possess stationary and weakly posi-
tive associated increments from Proposition 2.1 and therefore satisfy the demi-
martingale assumption of Corollary 6 of [10]. Tightness of these additive func-
tionals now follows by applying the maximal inequality in Corollary 6 of [10],
noting that σ2

t �Cρ
0� ∼ β�d� t�. ✷

6. Application to second-class particles. Let η′ be a configuration
drawn from Pρ�·	η0 = 0� and let η be such that

�η�j =
{
1� if k = 0�

η′
k� if k �= 0�

That is, η is the configuration which places a particle at the origin.
The basic coupling ensures that we may couple two copies of the exclusion

process starting from configurations η and η′ so that at a later time t, the
states η�t� and η′�t� also differ exactly at one coordinate. Let R�t� be the
position of this discrepancy or second-class particle at time t. The position
R�·� is not generally Markovian with respect to its own history and in fact
has been connected with movement of “shocks” in the η′ system [11]. The
larger joint process �R�t�� η�t��, however, is Markovian with joint generator,

L̄f�r�η� = ∑
i�j �=r

ηi�1− ηj��f�r�ηi�j� − f�r�η��p�i� j�

+∑
j

�p�r− j�ηj + p�j− r��1− ηj���f�j�ηr�j� − f�r�η���

From this expression, we see when p is symmetric, R�t� is a random walk.
For all other p however, R depends on the environment. Observe now, under
equilibrium Pρ, that R should displace by k on average with “homogenized”
jump rate �1−ρ�p�k�+ρp�−k�. Note, in particular, if ρ = 1/2, then R should
behave as a symmetric random walk. See [2] in this regard.
Consider now the following calculations:

lim
t→∞

Eρ

{
1√
t

∫ t

0
�η0�s� − ρ�ds

}2
= 2

∫ ∞

0
Eρ
η0�s�η0�0�� − �Eρ
η0��2 ds�

The integrand is further analyzed,

Eρ
η0�s�η0�0�� − �Eρ
η0��2
= ρ�1− ρ��Eρ
η0�s� = 1	η0�0� = 1� −Eρ
η0�s� = 1	η0�0� = 0��
= ρ�1− ρ�P̄ρ�R�s� = 0��
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where P̄ρ is the coupled measure. Hence, the variance of the occupation time
at the origin is 2ρ�1 − ρ� times the expected occupation time at the origin of
the second-class particle.
We say that R�t� is Pρ-transient or Pρ-recurrent if, respectively,∫ ∞

0
P̄ρ�R�s� = 0�ds <∞ or = ∞�

A consequence of the variance bounds in Proposition 1.1 applied to f�η� =
η0 − ρ is the following.

Corollary 6.1. Let p be a finite-range jump rate whose symmetrization is
irreducible. ThenR�t� isPρ-recurrent in dimensions d = 1�2when

∑
ip�i� = 0.

However, in d ≥ 3, R�t� is Pρ-transient.

It is natural now to speculate, given the homegenization discussion above,
that in d = 1�2 when

∑
ip�i� �= 0 that R�t� is Pρ-transient if and only if

ρ �= 1/2. This motivates the conjecture after Theorem 1.1.
Finally, some information on the recurrence strength of R�t�, when p is

mean-zero in d = 1�2, is as follows.

Corollary 6.2. Let p be a finite-range mean-zero irreducible jump rate.
There exist constants 0 < C = C�d� ρ�p� <∞ such for all t large,

C
√
t ≤

∫ t

0
P̄ρ�R�s� = 0�ds ≤ C−1√t in d = 1

and

C log t ≤
∫ t

0
P̄ρ�R�s� = 0�ds ≤ C−1 log t in d = 2�
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