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A STUDY OF COUNTS OF BERNOULLI STRINGS
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(Communicated by Edward C. Waymire)

Abstract. A sequence of random variables, each taking values 0 or 1, is called
a Bernoulli sequence. We say that a string of length d occurs in a Bernoulli

sequence if a success is followed by exactly (d − 1) failures before the next
success. The counts of such d-strings are of interest, and in specific independent
Bernoulli sequences are known to correspond to asymptotic d-cycle counts in
random permutations.

In this paper, we give a new framework, in terms of conditional Poisson
processes, which allows for a quick characterization of the joint distribution of
the counts of all d-strings, in a general class of Bernoulli sequences, as certain
mixtures of the product of Poisson measures. In particular, this general class
includes all Bernoulli sequences considered in the literature, as well as a host
of new sequences.

1. Introduction

In this paper, we study the joint distribution of the counts of certain d-strings
of all orders d > 1 arising in a class of Bernoulli sequences. Previous work has used
several different methods, including combinatorial, factorial moment, and Pólya and
Hoppe urn model methods to identify the joint count distribution with respect to
a class of independent Bernoulli sequences. In this context, our main contribution
is to introduce a new framework, using conditional Poisson processes, which allows
for a concise derivation of the joint count distribution as a mixture of the product
of Poisson measures with respect to all Bernoulli sequences considered before, as
well as many others in a general collection, including some dependent Bernoulli
sequences.

A Bernoulli sequence Y = {Yn}n≥1 is a sequence of {0, 1}-valued random vari-
ables. For d ≥ 1, we say that a d-string occurs if a 1 is followed by exactly (d − 1)
0’s before the next 1 in the Bernoulli sequence. Specifically, a d-string occurs at
time n ≥ 1 if Yn,d = 1, where

Yn,d =
{

YnYn+1 for d = 1,
Yn(1 − Yn+1) · · · (1 − Yn+d−1)Yn+d for d ≥ 2,
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that is, if 〈Yn, . . . , Yn+d〉 = 〈1, 0, . . . , 0︸ ︷︷ ︸
d−1

, 1〉.

Let Zd =
∑

n≥1 Yn,d be the count of all d-strings, for d ≥ 1, and Z = 〈Zd : d ≥ 1〉
be the “count vector” of strings. [In general, Z may have divergent components, but
for the Bernoulli sequences considered in this article it is easily shown (by taking
expectations) that all components Zk are finite with probability 1.]

In this notation, the general problem is to understand the distribution of Z and
its connection to the underlying sequence Y. Although, in this generality, one
cannot expect a “closed form” solution (especially with respect to dependent se-
quences), our aim is to understand when sequences Y are associated to Poisson-type
counts Z, as is the case in many applications with respect to random permutations,
record values, Bayesian nonparametrics, and species allocation models through the
Ewens sampling formula, through a flexible embedding scheme.

We will use “ d=” to signify “equals in distribution” and L(X) to denote the law
or distribution of the random variable X. We will also denote Po(λ) as the Poisson
measure on R with intensity λ, and I(B) as the indicator of a set B.

Example 1.1. We follow the exposition in Sethuraman-Sethuraman [13]. Let
Sn = {1, 2, . . . , n}, and consider the Feller algorithm to generate a permutation
π : Sn → Sn uniformly among the n! choices (cf. Feller [5]):

1. Draw an element uniformly from Sn, and call it π(1). If π(1) = 1, a 1-cycle
is completed. If π(1) �= 1, make another drawing uniformly from Sn\{π(1)},
and call it π(π(1)). Continue drawing from Sn\{π(1), π(π(1))}, . . ., naming
them π(π(π(1))), and so on, until a cycle (of some length) is finished.

2. From the elements left in Sn \ {π(1), π(π(1)), . . . , 1} after the first cycle is
completed, follow the process in step 1, with the smallest remaining number
taking the role of “1” to finish a second cycle. Repeat until all elements of
Sn are exhausted.

Let I
(n)
k be the indicator that a cycle is completed at the kth Feller drawing from

Sn. A moment’s thought convinces one that {I(n)
k }n

k=1 are independent Bernoulli
random variables with P (I(n)

k = 1) = 1/(n−k+1) because, at time k, independent
of the past, exactly one choice from the remaining n − k + 1 members left in Sn

completes the cycle. Denote C
(n)
k as the number of k-cycles in π,

C
(n)
k =

{
I
(n)
1 +

∑n−1
i=1 I

(n)
i I

(n)
i+1 for k = 1,∏k−1

l=1 (1 − I
(n)
l )I(n)

k +
∑n−k

i=1 I
(n)
i

∏i+k−1
l=i+1 (1 − I

(n)
l )I(n)

i+k for 2 ≤ k ≤ n.

Now let Y be the independent sequence where P (Yk = 1) = 1/k for k ≥ 1, so
that Yk

d= I
(n)
n−k+1 for 1 ≤ k ≤ n. Then, as Yn, and Yn−k+1

∏n
l=n−k+2(1 − Yl) for

2 ≤ k ≤ n all vanish in probability as n ↑ ∞, we conclude for each k ≥ 1 that
limn→∞ C

(n)
k

d= Zk.
Finally, as is well known, the asymptotic cycle counts {limn C

(n)
k }k≥1 are dis-

tributed as independent Poisson random variables with respective means 1/k for
k ≥ 1 (cf. Kolchin [9]). Hence, Z d=

∏
k≥1 Po(1/k). [Example 2.1, in section 2,

gives a derivation in our Poisson process framework. See also Arratia-Barbour-
Tavaré ([1, 2]) for more discussion of the Ewens sampling formula.]
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Example 1.2. Consider the standard nonparametric problem of estimating the
unknown distribution function F from independent and identically distributed ob-
servations {Xi}i≥1. A Bayesian may place on F a Dirichlet prior with parameters
aµ where a > 0 and µ is a nonatomic probability measure.

Let Y1 = 1, and for n ≥ 2 define Yn = 1 if Xn is a new observation, that is, if
Xn �∈ {X1, . . . , Xn−1}, and Yn = 0 otherwise. Then, it can be shown that Y is an
independent Bernoulli sequence with P (Yn = 1) = a/(a+n−1) for n ≥ 1 and that
(log n)−1

∑n
i=1 Yi → a a.s. The latter result can be interpreted in terms of counts

of strings in this Bernoulli sequence. See Korwar-Hollander [10] for more details,
and also Ghosh-Ramamoorthi [6].

In the literature, to our knowledge, only the count vectors of the following class
of underlying independent Bernoulli sequences have been investigated. Denote the
independent Bernoulli sequence Y where P (Yn = 1) = a/(a+b+n−1) for n ≥ 1 as
Y = Bern(a, b). The case a = 1, b = 0 is Example 1.1 (see also Arratia-Tavaré [3]).
The case a > 0, b = 0 is Example 1.2. For this case, Arratia-Barbour-Tavaré [1]
observe that the associated Z d=

∏
k≥1 Po(a/k) through connections with Ewens

sampling formula. When a = 1, b > 0, Sethuraman-Sethuraman [13], employing
factorial moments, show that, given the value x0 of a Beta(b, 1) random variable,
Z d=

∏
k≥1 Po((1 − xk

0)/k). Such a distribution will be called a “mixture of inde-
pendent Poisson factors.” When a > 0 and b > 0, Holst [7] goes further, using
Pólya and Hoppe urns, and establishes that, given the value x0 of a Beta(b, a) ran-
dom variable, Z d=

∏
k≥1 Po(a(1 − xk

0)/k), again a mixture of independent Poisson
factors.

We note also that several interesting studies of 1-strings, and other strings, pre-
ceded some of the above work, e.g. an unpublished manuscript of Diaconis, Chern-
Hwang-Yeh [4] (which derives approximations via several probability distances),
Móri [11] (which uses generating functions), Joffe-Marchand-Perron-Popadiuk [8]
(which gives a formula for the 1-string count in a general finite independent Bernoulli
sequence in terms of a nonhomogeneous Markov chain and which uses generating
functions), and references therein in these and the above papers.

With this background, our main idea is that it is easier to study Z starting from
an extrinsic “conditional marked Poisson process model” (CMPP) rather than di-
rectly from the Bernoulli sequence. Namely, we prove that when the underlying
Bernoulli sequence Y is generated through a CMPP model, the count vector Z is
distributed as a mixture of independent Poisson factors in terms of model parame-
ters (Theorem 2.2). As remarked earlier, the Poisson process techniques used here
are quite different from previous methods and allow quick derivations. Perhaps in-
terestingly, the sequences Y found in our model include many dependent Bernoulli
sequences (some explicit examples are in section 5). However, the most general
sequence studied until now, the independent sequence Bern(a, b) with a > 0 and
b ≥ 0, can also be realized in our framework (Proposition 3.1), yielding a new proof
of its count vector distribution.

Our conditional marked Poisson process model also yields a new class of inde-
pendent Bernoulli sequences, which we call Bern1(a, b). Denote the independent
Bernoulli sequence Y where P (Y1 = 1) = 1, and P (Yn = 1) = a/(a + b + n− 2) for
n ≥ 2 as Y = Bern1(a, b). The Bern1(a, b) sequence appends a 1 to the Bern(a, b)
sequence and picks up one more d-string contributed by any leading 0’s in Bern(a, b).
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We show that the distribution of the count vector Z for Bern1(a, b) for a > 0, b ≥ 1
is a mixture of independent Poisson factors (Proposition 4.1). This result fails for
0 ≤ b < 1, and in this case even the distribution of Z1, the count of 1-strings in
Bern1(a, b), is not a mixture of Poisson distributions (Proposition 4.5). However,
the distribution of Z in Bern1(a, b) can be expressed through a recurrence relation
for all values of b including 0 ≤ b < 1 (Proposition 4.3).

The plan of the article is to discuss the CMPP model and prove the main theorem
in section 2. In sections 3 and 4, the main theorem is applied to the independent
sequences Bern(a, b) and Bern1(a, b) respectively. Last, in section 5, two explicit
dependent Bernoulli sequences, arising from the CMPP model, are given.

2. CMPP models

The following “Poisson process” derivation of the distribution of Z with respect
to Bern(1, 0) (cf. Example 1.1) motivates subsequent developments.

Example 2.1. Consider the following standard way to generate a Bern(1, 0) se-
quence. Let {βi}i≥1 be independent, identically distributed (iid) Uniform[0, 1] ran-
dom variables, and define Yn = I(βn is a record), n ≥ 1. Rényi’s theorem shows
that {Yn}n≥1 are independent and P (Yn = 1) = 1/n for n ≥ 1, that is, Y =
Bern(1, 0). Let {Xi}i≥1 be the record values among {βi}i≥1. Notice that the point
process N on [0, 1] defined by N(A) =

∑
i≥1 δXi

(A) is a nonhomogeneous Poisson
process on [0, 1] with intensity 1/(1 − x) (cf. Resnick [12]). For each point Xi, we
can associate a Geometric(1−Xi) variable Li (a “mark”) corresponding to the num-
ber of uniform random variables in {βi}i≥1 to the next record. Then, by thinning
decompositions, Zk =

∑
i≥1 I(Li = k) =

∑
i≥1 δXi

([0, 1])I(Li = k) for k ≥ 1 are in-

dependent Poisson variables with respective means
∫ 1

0
(1−x)−1xk−1(1−x)dx = 1/k

for k ≥ 1.

In a sense, the thrust of the following CMPP model and our main result (The-
orem 2.2) below is to reverse the procedure in Example 2.1. By beginning with a
given Poisson process and spacing variables, which themselves determine the count
vector Z, we then see which associated Bernoulli sequence Y arises.

Consider a sequence of random variables (X,L) = {(Xi, Li)}i≥0 on R×N, where
N = {1, 2, . . .}, and the point process N on R is given by N(A)=

∑
i≥1 δXi

(A). Also
let g : R → [0,∞) be a probability density function (pdf), and for each x ∈ R let
r(x, ·), q(x, ·) : N → [0, 1] be probability mass functions, and let λx : R → [0,∞) be
an intensity function.

Then, we say (X,L) is the conditional marked Poisson process M(g, r, λ, q) if
the following hold:

1. X0 has pdf g,
2. conditional on X0 = x0, N is a nonhomogeneous Poisson process with

intensity function λx0(·),
3. P (L0 = k|X) = r(X0, k) for k ≥ 1, and
4. P (Ln = k|X, L0, L1, . . . , Ln−1) = q(Xn, k) for k, n ≥ 1.

Let L∗
0 = L0, and L∗

r = L∗
r−1 +Lr for r ≥ 1. We now define a Bernoulli sequence

Y based on (X,L) as follows: Yn = 1 if n is of the form L∗
r for some r ≥ 0, and

Yn = 0 otherwise. Another way to say this is

(2.1) Yn =
{

0 when n < L∗
0, or L∗

r < n < L∗
r+1 for r ≥ 0,

1 when n = L∗
r for r ≥ 0.
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Then, the count vector Z is given by

(2.2) Zk =
∑
n≥1

I(Ln = k), for k ≥ 1.

We note the zeroth mark L0 is not included in the above summation, since any Yi

with i < L0 is part of an initial segment of zeros of the sequence not preceded by
a 1 and so does not contribute to any d-string, for d ≥ 1.

Theorem 2.2. Suppose
∫

λw(x)q(x, k)dx < ∞ for all w ∈ R and k ≥ 1. Then, the
count vector Z associated with the sequence Y, defined through CMPP (X,L) =
M(g, r, λ, q), is distributed as follows. Given the value X0 = x0,

Z d=
∏
k≥1

Po
(∫

λx0(x)q(x, k)dx

)
.

Remark 2.3. The distribution of Z does not depend on the transition function r,
consistent with the discussion of L0 before the theorem.

Also, for a given k ≥ 1, Zk is infinite with positive probability exactly when
there is a set B such that P (X0 ∈ B) > 0 and

∫
λw(x)q(x, k)dx = ∞ for w ∈ B.

Proof of Theorem 2.2. Recall the count vector representation (2.2). Conditional on
X0 = x0, the point process M on R×N given by M(A×{k}) =

∑
i≥1 δXi

(A)I(Li =
k) is a Poisson process on R×N with intensity function λx0(x)q(x, k) (cf. Proposi-
tion 4.10.1 (b) in Resnick [12]). Hence, it follows that, given X0 = x0, the variables
M(R × {k}) =

∑
n≥1 I(Ln = k) = Zk are independent Poisson variables with

respective means
∫

λx0(x)q(x, k)dx, for k ≥ 1. �

3. The sequence Bern(a, b)

We now derive the count vector distribution for the sequence Bern(a, b) using a
CMPP model. Denote, as usual, for α, β > 0, the Beta function

(3.1) B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

,

and let
1. ḡ(x) = xb−1(1 − x)a−1/B(b, a) on 0 < x < 1, the Beta(b, a) pdf,
2. r̄(x, k) = xk−1(1 − x) for k ≥ 1,
3. λ̄w(x) = [a/(1 − x)]I(w < x < 1), and
4. q̄(x, k) = xk−1(1 − x) for k ≥ 1.

Proposition 3.1. The model (X,L) = M(ḡ, r̄, λ̄, q̄) produces an independent
Bernoulli sequence Y d= Bern(a, b) for a > 0 and b > 0 whose count vector
Z, conditional on the value x0 of a Beta(b, a) random variable is distributed as∏

k≥1 Po(a(1 − xk
0)/k).

Remark 3.2. As a corollary, by taking b ↓ 0, we recover the count vector distribution
for Bern(a, 0) already considered in the literature as simply Z d=

∏
k≥1 Po(a/k).

Note that (X0, L0) → (0, 1) in distribution as b ↓ 0.
The Poisson process in the above CMPP model with intensity λ̄w(·) can be

generated in the following way. First, the point process formed by the record
values from an iid sequence of Beta(1, a) random variables is a Poisson process
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with intensity a/(1 − x), the Beta(1, a) failure rate (cf. Resnick [12], Proposi-
tion 4.11.1 (b)). Next, we thin this process as follows. Let X0

d= Beta(b, a) and
{Xi}i≥1 be the record values from an iid sequence of Beta(1, a) random variables,
subject to Xi > X0 for i ≥ 1. Then, conditional on X0 = x0, the point process
N̄ defined by N̄(A) =

∑
i≥1 δXi

(A) is the desired Poisson process with intensity
function λ̄x0(x) = [a/(1 − x)]I(x0 < x < 1).

Proof of Proposition 3.1. The second part on the count vector distribution follows
from Theorem 2.2, noting for k ≥ 1 that

(3.2)
∫ 1

0

λ̄x0(x)q̄(x, k)dx =
∫ 1

x0

axk−1dx =
a(1 − xk

0)
k

.

For the first part, we observe that the distribution of {Yi}i≥1 given through (2.1)
is uniquely determined by the probabilities of cylinder sets of the form

E(k0, . . . , kn) = (L0 = k0, L1 = k1, . . . , Ln = kn)(3.3)

=
(
Yt = 1 for t ∈ {K0, K1, . . . , Kn}, and Yt = 0 otherwise for 1 ≤ t ≤ Kn

)
where k0, k1, . . . , kn are positive integers and K0 = k0, K1 = K0 + k1, . . . , Kn =
Kn−1 + kn are their partial sums. If the probability of sets of the form E

def
=

E(k0, . . . , kn) is a product of appropriate marginal probabilities, then {Yn, n ≥ 1}
will be the Bernoulli sequence Bern(a, b). We will proceed to establish this.

Let An = {0 < x0 < x1 < · · · < xn < 1}. Using the Beta variables representation
in Remark 3.2, write

P (E) =
∫

An

ḡ(x0)r̄(x0, k0)
n∏

i=1

[
P (Xi ∈ dxi|Xi > xi−1)q̄(xi, ki)

]
dx0.

Since P (Xi ∈ dxi|Xi > xi−1) = a(1−xi)a−1/(1−xi−1)a dxi for 1 ≤ i ≤ n, we have
further that the last line equals

an

B(b, a)

∫
An

xb+k0−2
0

n∏
i=1

xki−1
i (1 − xn)adx0 . . . dxn(3.4)

=
B(b + Kn − 1, a + 1)

B(b, a)
· an∏n−1

s=0 (b + Ks − 1)

and, noting (3.1) and αΓ(α) = Γ(α + 1), that (3.4) becomes

a
∏Kn−2

r=0 (b + r)∏Kn−1
r=0 (a + b + r)

· an∏n−1
s=0 (b + Ks − 1)

=
Kn∏
i=1

b + i − 1
a + b + i − 1

n∏
r=0

a

b + Kr − 1
,

which is exactly
∏Kn

i=1 P (Yi = 0)
∏n

r=0[P (YKr
= 1)/P (YKr

= 0)] with Y specified
as Bern(a, b). �

4. The sequence Bern1(a, b)

We will derive the count vector distribution for the sequence Bern1(a, b), and
show a dichotomy depending on whether b ≥ 1 or b < 1. We first consider the case
where a > 0 and b > 1. Define

1. g∗(x) = xb−2(1−x)a/B(b−1, a+1) on 0 < x < 1, the Beta(b − 1, a + 1) pdf,
2. r∗(x, 1) = 1,
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3. λ∗
w(x) = [a/(1 − x)]I(w < x < 1), and

4. q∗(x, k) = xk−1(1 − x) for k ≥ 1.

Proposition 4.1. The CMPP model (X,L) = M(g∗, r∗, λ∗, q∗) produces an inde-
pendent Bernoulli sequence Y d= Bern1(a, b) for a > 0 and b > 1, and, conditional
on a Beta(b − 1, a + 1) variable X0 = x0, the distribution of its count vector Z is∏

k≥1 Po(a(1 − xk
0)/k).

Remark 4.2. As a corollary, by taking b ↓ 1, we find the count vector distribution
for Bern1(a, 1) to be simply Z d=

∏
k≥1 Po(a/k). (In fact, Bern1(a, 1) coincides with

the sequence Bern(a, 0) mentioned earlier in Remark 3.2.)
Also, we note that the Poisson process in the above CMPP model with intensity

λ∗ can be generated, as in Proposition 3.1, by taking X0
d= Beta(b − 1, a + 1)

and {Xi}i≥1 as the sequence of records from an iid sequence of Beta(1, a) random
variables, subject to the condition X1 > X0.

Proof of Proposition 4.1. We need only establish the distribution of Y, as the last
statement follows from Theorem 2.2 and the computation (3.2). The calculations
are similar to the proof of Proposition 3.1. Let k0 = 1, k1, k2, . . . , kn be positive
integers, and K0 = k0 = 1, K1 = K0 + k1, . . . , Kn = Kn−1 + kn be their partial
sums. Recall the cylinder set defined in (3.3) and let

E1
def
= E(1, k1, . . . , kn) = (L0 = 1, L1 = k1, . . . , Ln = kn),

and set An = {0 < x0 < x1 < · · · < xn < 1}. Write, using the construction in
Remark 4.2, that

P (E1) =
1

B(b − 1, a + 1)

∫
An

[
xb−2

0 (1 − x0)a
]
· 1

×
n∏

i=1

[
a(1 − xi)a−1/(1 − xi−1)a

][
xki−1

i (1 − xi)
]
dx0 . . . dxn

=
an

B(b − 1, a + 1)

∫
An

xb−2
0

n∏
i=1

xki−1
i (1 − xn)adx0 . . . dxn.

Then, with (3.1) and αΓ(α) = Γ(α + 1), the last line equals

B(b + Kn − 2, a + 1)
B(b − 1, a + 1)

· an

(b − 1)
∏n−1

s=1 (b + Ks − 2)

=
∏Kn−2

r=0 (b − 1 + r)∏Kn−2
r=0 (a + b + r)

· an

(b − 1)
∏n−1

s=1 (b + Ks − 2)

=
Kn−1∏
i=1

b + i − 1
a + b + i − 1

n∏
r=1

a

b + Kr − 2
,

which is exactly P (Y1 = 1)
∏Kn

i=2 P (Yi = 0)
∏n

r=1[P (YKr
= 1)/P (YKr

= 0)] with Y
specified as Bern1(a, b). �

We now give the distribution of the count vector under Bern1(a, b) for all a > 0
and b ≥ 0 by conditioning on the location of the second 1 in the sequence Y. Denote
Z(a, b) as the count vector with respect to Bern1(a, b) for a > 0 and b ≥ 0. Let Wn
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be the sequence whose nth coordinate is 1 and all the other coordinates are zero,
for n ≥ 1. Also let

pn =
{ a

a+b for n = 2,
a

a+b+n−2

∏n−3
r=0

b+r
a+b+r for n ≥ 3

be the probability that the second 1 in Bern1(a, b) occurs at time n ≥ 2.

Proposition 4.3. For a > 0 and b ≥ 0, we have

(4.1) L (Z(a, b)) =
∑
n≥2

pn L
(
Z(a, b + n − 1) + Wn−1

)
,

and Z(a, b + n− 1), conditional on the value x0 of a Beta(b + n− 2, a + 1) random
variable, is distributed as

∏
k≥1 Po(a(1 − xk

0)/k), for b > 0 and n ≥ 2.

Remark 4.4. The special case b = 0 is interesting. The sequence Bern1(a, 0) is
the independent sequence where Y1 = Y2 = 1 and P (Yn = 1) = a/(a + n − 2) for
n ≥ 3. That is, starting from time n = 2, the sequence is Bern1(a, 1) = Bern(a, 0).
Hence, by Proposition 3.1 (see Remark 3.2), Z(a, 0) is distributed as Ẑ+W1, where
Ẑ d=

∏
k≥1 Po(a/k) is the count vector for Bern(a, 0). This agrees with (4.1), since

p2 = 1 (when b = 0) and Z(a, 1) = Ẑ.

Proof of Proposition 4.3. The distribution of Z(a, b) follows by conditioning on the
first time that Yn = 1 for n ≥ 2. The distributions of Z(a, b+n−1) are completely
specified by Proposition 4.1 and Remark 4.2, since b + n − 1 ≥ 1 for n ≥ 2. �

From (4.1), it is not clear whether or not the distribution of Z(a, b) is a mixture of
product Poisson factors for 0 ≤ b < 1. We show now that even the first component
Z1(a, b) is not a mixture of Poissons when 0 ≤ b < 1.

Proposition 4.5. The distribution of Z1 ≡ Z1(a, b), the count of 1-strings in the
Bern1(a, b) sequence, is not a mixture of Poissons when 0 ≤ b < 1; that is, there is
no measure µ on [0,∞) such that

(4.2) E
[
exp{tZ1}

]
=

∫
[0,∞)

ev(et−1)dµ(v).

Proof. It is well known that when (4.2) holds, the variable Z1 is over-dispersed,

that is, O(Z1)
def
= Var(Z1) − E(Z1) ≥ 0. The proof now follows by showing that

O(Z1) < 0 in (4.4).
Let Y = Bern1(a, b). Then,

(4.3) Z1 = Y2 + Ẑ1 = Y2 + Y2Y3 + Z+
1 ,

where Ẑ1 =
∑

i≥2 YiYi+1 and Z+
1 =

∑
i≥3 YiYi+1, and the latter is independent

of Y2. Furthermore Ẑ1, Z+
1 are the counts of strings of order 1 from Bern(a, b),

Bern(a, b+1), respectively, and their distributions are known from Proposition 3.1.
Hence, by easy calculations,

E(Ẑ1) =
a2

(a + b)
, E(Z+

1 ) =
a2

(a + b + 1)
, E(Ẑ1

2
) =

a3(a + 1)
(a + b)(a + b + 1)

+
a2

(a + b)
.

From the identities in (4.3), we have

E(Z1) =
a(a + 1)
(a + b)

, E(Z2
1 ) =

a(a + 1)
(a + b)

+
a2(a + 1)(a + 2)
(a + b)(a + b + 1)

.
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This leads to

(4.4) O(Z1) =
a2(a + 1)(b − 1)

(a + b)2(a + b + 1)
,

which is negative for b < 1 and positive for b > 1. �

5. Some dependent Bernoulli sequences

Two examples of dependent Bernoulli sequences, arising in CMPP models with
simple structures, whose count vector distributions are mixtures of independent
Poisson factors are given.

First sequence. For a > 0 and b > 0, denote Pa,b as the probability distri-
bution of the CMPP M(ḡ, r̄, λ̄, q̄) described in Proposition 3.1 which gives rise to
the Bernoulli sequence Bern(a, b). Now let r+(x, k) = kxk−1(1 − x)2 for k ≥ 1.
Consider the associated CMPP model M(ḡ, r+, λ̄, q̄) with ḡ, λ̄, q̄ the same as in
Proposition 3.1. Denote the probability measure under this model as P+ = P+

a,b.
Note that r+(x, k) = k[r̄(x, k) − r̄(x, k + 1)], where r̄(x, k) = xk−1(1 − x). Recall

the cylinder set E
def
= E(k0, . . . , kn) from (3.3), where k0, k1, . . . , kn are positive

integers, and K0, K1, . . . , Kn their partial sums. It is easy to see that

P+(E) = k0

[
Pa,b

(
E(k0, . . . , kn)

)
− Pa,b

(
E(k0 + 1, k1, . . . , kn)

)]
.

From this expression, the distribution of Y can be recovered and shown not to be
that of independent Bernoulli variables. For instance,

P+(Y1 = 1) = Pa,b(Y1 = 1) − Pa,b(Y1 = 0, Y2 = 1) =
a(a + 1)

(a + b)(a + b + 1)
,

P+(Y2 = 1) =
a2(a + 2) + 2ba(a + 1)

(a + b)(a + b + 1)(a + b + 2)
.

Thus

P+(Y1 = 1)P+(Y2 = 1) =
a2(a + 1)(a2 + 2a + 2ba + 2b)
(a + b)2(a + b + 1)2(a + b + 2)

,

which does not match, for a, b > 0,

P+(Y1 = 1, Y2 = 1) =
a2(a + 2)

(a + b)(a + b + 1)(a + b + 2)
.

Finally, by Remark 2.3, we note that the count vectors under Pa,b and P+ have
the same distribution, and by Proposition 3.1 conditional on the value of x0 of a
Beta(b, a) variable, the count vectors are distributed as

∏
k≥1 Po(a(1 − xk

0)/k).

Second sequence. Consider P1,0, the measure for the CMPP model discussed
in Example 2.1 and Remark 3.2, with respect to the Bernoulli sequence Bern(1, 0),
where (X0, L0) ≡ (0, 1), {Xi}i≥1 are the records from an iid Uniform[0, 1] sequence,
and Li are Geometric(1 − Xi) for i ≥ 1.

Let P ′ stand for the measure under the “switched” CMPP model where (X1, L1)
and (X2, L2) are interchanged. The probabilities of Y on cylinder sets (cf. (3.3),
under P ′, are given by

P ′
(
E(1, k1, . . . , kn)

)
= P1,0(L2 = k1, L1 = k2, and Li = ki for 3 ≤ i ≤ n)
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for positive integers k0 = 1, k1, . . . , kn, with K0 = 1, K1 = K0 + k1, . . . , Kn =
Kn−1 + kn as their partial sums. Under both models P1,0 and P ′, as only two
terms (L1, L2) exchange places, the associated count vectors are the same and by
Proposition 3.1, are distributed as

∏
k≥1 Po(1/k).

We now show that {Yi}i≥1 is not an independent sequence under P ′. From the
calculation in (3.4) with (X0, L0) ≡ (0, 1), Y1 ≡ 1 and r̄(x, 1) = 1 (take b ↓ 0), and
a = 1, we can write P ′(Y2 = 1) = P1,0(L2 = 1) =

∑
k≥1 P1,0(L1 = k, L2 = 1) =∑

k≥1

∫
0<x1<x2<1

xk−1
1 (1 − x2)dx1dx2 = 1/4.

Also, P ′(Y2 = 1, Y3 = 1) = P1,0(L1 = 1, L2 = 1) = P1,0(Y2 = 1, Y3 =
1) = 1/6, and P ′(Y2 = 0, Y3 = 1) = P1,0(L2 = 2) =

∑
k≥1

∫
0<x1<x2<1

xk−1
1 ·

x2(1 − x2)dx1dx2 = 5/36, which give P ′(Y3 = 1) = 11/36.
However, P ′(Y2 = 1)P ′(Y3 = 1) = 11/144 �= 1/6 = P ′(Y2 = 1, Y3 = 1).
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