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Abstract In this paper, we develop a family of data clustering algorithms that
combine the strengths of existing spectral approaches to clustering with various desir-
able properties of fuzzy methods. In particular, we show that the developed method
“Fuzzy-RW,” outperforms other frequently used algorithms in data sets with differ-
ent geometries. As applications, we discuss data clustering of biological and face
recognition benchmarks such as the IRIS and YALE face data sets.
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1 Introduction

Clustering data into groups of similarity is well recognized as an important step
in many diverse applications (see, e.g., Snel et al. 2002; Liao et al. 2009; Bezdek
et al. 1997; Chen and Zhang 2004; Shi and Malik 2000; Miyamoto et al. 2008). Well
known clustering methods, dating to the 70’s and 80’s, include the K-means algorithm
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84 S. Liu et al.

(Macqueen 1967) and its generalization, the Fuzzy C-means (FCM) scheme (Bezdek
et al. 1984), and hierarchical tree decompositions of various sorts (Gan et al. 2007).
More recently, spectral techniques have been employed to much success (Belkin and
Niyogi 2003; Coifman and Lafon 2006). However, with the inundation of many types
of data sets into virtually every arena of science, it makes sense to introduce new clus-
tering techniques which emphasize geometric aspects of the data, the lack of which
has been somewhat of a drawback in most previous algorithms.1

In this article, we consider a slate of “random-walk” distances arising in the context
of several weighted graphs formed from the data set, in a comprehensive generalized
FCM framework, which allow to assign “fuzzy” variables to data points which respect
in many ways their geometry. The method we present groups together data which
are in a sense “well-connected”, as in spectral clustering, but also assigns to them
membership values as in usual FCM. In particular, we introduce novelties, such as
motivated “penalty terms” and “locally adaptive” weights, along with the “random-
walk” distances, to cluster the data in different ways by emphasizing various geometric
aspects. Our approach might be used also in other settings, such as with respect to the
K-means algorithm for instance, although here we have concentrated on modifying
the fuzzy variable setting of FCM.

We remark, however, our technique is different than say clustering by spectral
methods, and then applying the usual FCM, as is used in the literature. It is also
different than the FLAME (Fu and Medico 2007) and DIFFUZZY (Cominetti et al.
2010) algorithms which compute ‘core clusters’ and try to assign data points to them.
In terms of results, it also differs from the classical FCM. Also, it is different from
the “hierarchical” random walk data clustering method in Franke and Geyer-Schulz
(2009). (See Sect. 3.3.3 for further discussion.)

We demonstrate the effectiveness and robustness of our method, dubbed “Fuzzy-
Random-Walk (Fuzzy-RW)”, for a choice of parameters, on several standard synthetic
benchmarks and other standard data sets such as the IRIS and the YALE face data sets
(Georghiades et al. 2001). In particular, we show in Sect. 5 that our method outperforms
the usual FCM using the standard Euclidean distance, spectral clustering, and the
FLAME algorithm on the IRIS data set, and also FCM and the spectral method using
eigenfaces (Muller et al. 2004) dimensional reduction on the YALE data set, which
are main points of the paper. We also observe that Fuzzy-RW performs well on the
YALE data set with Laplacianface (He et al. 2005), a different dimensional reduction
procedure.

The particular random walk distance focused upon in the article, among others, is
the “absorption” distance, which is new to the literature (see Sect. 3 for definitions).
We remark, however, a few years ago a “commute-time” random walk distance was
introduced and used in terms of clustering (Yen et al. 2005). In a sense, although our
technique Fuzzy-RW is more general and works much differently than the approach
in Yen et al. (2005), our method builds upon the work in Yen et al. (2005) in terms of
using a random walk distance. Moreover, Fuzzy-RW seems impervious to random seed
initializations in contrast to Yen et al. (2005). (See Sect. 3.3.3 for more discussion.)

1 For further discussion of the emerging role of data geometry in the development of data clustering
algorithms (see, e.g., Chen and Lerman 2009; Haralick and Harpaz 2007; Coifman and Lafon 2006).
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The plan of the paper is the following. First, in Sect. 2, we recall the classical
FCM algorithm, and discuss some of its merits and demerits with respect to some data
sets including a standard “three circle” data set. Then, in Sect. 3, we first introduce
certain weighted graphs and the “random-walk” distances, before detailing our Fuzzy-
RW method. In Sect. 4, we discuss other weight systems which emphasize different
geometric features, both selected by the user and also “locally adapted”. In Sect. 5,
we discuss the performance of our method on the IRIS and YALE face recognition
data sets, and in Sect. 6 we summarize our work and discuss possible extensions.

2 Centroid-based clustering methods

We introduce here some of the basic notions underlying the classical k-means and
fuzzy c-means methods. In what follows, we consider a set of data

D = {x1, x2, . . . , xn} ⊂ R
m .

embedded in a Euclidean space. The output of a data clustering algorithm is a partition:

� = {π1, π2, . . . , πk}, (1)

where k ≤ n and each πi is a nonempty subset of D. � is a partition of D in the sense
that

⋃

i≤k

πi = D and πi ∩ π j = ∅ for all i �= j. (2)

In this context, the elements of � are usually referred to as clusters. In practice, one
is interested in partitions of D that satisfy specific requirements, usually expressed in
terms of a distance function d(·, ·) that is defined on the background Euclidean space.

The classical k-means algorithm is based on reducing the notion of a cluster πi to
that of a cluster representative or centroid c(πi ) according to the relation

c(πi ) = arg miny∈Rm

∑

x∈πi

d(x, y). (3)

In its simplest form, k-means consists of initializing a random partition of D and
subsequently updating iteratively the partition � and the centroids {c(πi )}i≤k through
the following two steps (see, e.g., Kogan 2007):

(a) Given {πi }i≤k , update {c(πi )}i≤k according to (3).
(b) Given {c(πi )}i≤k , update {πi }i≤k according to centroid proximity, i.e., for each

i ≤ k,

πi = {x ∈ D | d(ci , x) ≤ d(c j , x) for each j ≤ k}
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In applications, it is often desirable to relax condition (2) in order to accommodate
for overlapping clusters (Fu and Medico 2007). Moreover, condition (2) can be too
restrictive in the context of filtering data outliers that are not associated with any of
the clusters present in the data set. These restrictions are overcome by fuzzy clustering
approaches that allow the determination of outliers in the data and accommodate
multiple membership of data to different clusters (Gan et al. 2007).

In order to introduce fuzzy clustering algorithms, we reformulate condition (2)
as:

ui j ∈ {0, 1},
k∑

�=1

u�j = 1, and
n∑

�=1

ui� > 0, (4)

for all i ≤ k and j ≤ n, where ui j denotes the membership of datum x j to cluster
πi (i.e., ui j = 1 if x j ∈ πi , and ui j = 0 if x j /∈ πi ). The matrix (ui j )i≤k, j≤n is
usually referred to as the data membership matrix. In fuzzy clustering approaches, ui j

is allowed to range in the interval [0, 1] and condition (4) is replaced by:

ui j ∈ [0, 1],
k∑

�=1

u�j = 1, and
n∑

�=1

ui� > 0, (5)

for all i ≤ k and j ≤ n (Bezdek et al. 1984; Miyamoto et al. 2008). In light of Eq. (5),
the matrix (ui j )i≤k, j≤n is sometimes referred to as a fuzzy partition matrix of D. For
each j ≤ n, {ui j }i≤k defines a probability distribution with ui j denoting the probability
of data point x j being associated with cluster πi . Hence, fuzzy clustering approaches
are characterized by a shift in emphasis from defining clusters and assigning data
points to them to that of a membership probability distribution.

The prototypical example of a fuzzy clustering algorithm is the fuzzy c-means
method (FCM) developed by Bezdek et al. (1984). The FCM algorithm can be formu-
lated as an optimization method for the objective function Jp, given by:

Jp(U, C) =
k∑

i=1

n∑

j=1

u p
i j ‖x j − ci‖2, (6)

where U = (ui j )i≤k, j≤n is a fuzzy partition matrix, i.e. its entries satisfy condi-
tion (5), and C = (ci )i≤k is the matrix of cluster centroids ci ∈ R

m . The real
number p is a “fuzzification” parameter weighting the contribution of the mem-
bership probabilities to Jp (Bezdek et al. 1984). In general, depending on the spe-
cific application and the nature of the data, a number of different choices can
be made on the norm ‖ · ‖. The FCM approach consists of globally minimizing
Jp for some p > 1 over the set of fuzzy partition matrices U and cluster cen-
troids C . The minimization procedure that is usually employed in this context
involves an alternating directions scheme (Gan et al. 2007), which is commonly
referred to as the FCM algorithm. A listing of the FCM algorithm is given in
Appendix.
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Random walk distances in data clustering and applications 87

Fig. 1 a Figure showing a two-dimensional benchmark data set consisting of two linearly separable clusters.
b Output of the FCM method (see, e.g., Eq. (6) in the text and Bezdek et al. 1984) applied to the data in a.
The points colored green and red correspond to clusters for which the FCM-derived membership function
attains values that are higher than threshold 0.9. The points in black are unassigned data points or outliers.
c Figure showing the membership function computed by FCM. The green squares represent cluster centroids.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

This approach, albeit conceptually simple, works remarkably well in identify-
ing clusters, the convex hulls of which do not intersect (Jain 2010; Meila 2006).
A representative example is given in Fig. 1, where the data set under investigation is
successfully clustered through the FCM algorithm using the Euclidean distance. How-
ever, for general data sets, Jp is not convex and, as we demonstrate below (see, e.g.,
Fig. 2), one can readily construct data sets D for which the standard FCM algorithm
fails to detect the global minimum of Jp (Ng et al. 2002).

3 A new fuzzy clustering method

In the next two subsections, we discuss a weighted graph formed from the data set, and
certain distances between data points. Using this framework, in the last subsection,
we then develop our clustering method.
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Fig. 2 a Dataset consisting of three core clusters and a uniform distribution of outliers. This geometric
configuration leads to clusters which are not linearly separable, and it has been employed in the literature
as an example of a data set for which the standard FCM method performs relatively poorly (Jain 2010;
Ng et al. 2002). b Output of the FCM algorithm applied to the data in a. The green squares correspond to
cluster centroids. The points colored green, red, and blue correspond to clusters for which the FCM-derived
membership function attains values that are higher than threshold 0.8. The points in black are unassigned
data with membership value <0.8. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3.1 A random walk on the data

Given the data set D and the number k of clusters to be identified, we define a complete
weighted graph G = (V, E) with V = D. The edges in E are weighted according to
a weight matrix W with entries given by

Wi j = exp

(
−‖xi − x j‖2

σ

)
, (7)

where xi , x j ∈ D, and σ is a parameter which controls the spread in the weights. As
usual, the choice of the norm ‖ · ‖ depends on the type of data considered. In what
follows, ‖ · ‖ denotes the Euclidean norm.

This specific choice of the weight matrix is usually employed in standard, non-
fuzzy spectral clustering approaches (see, e.g., Ng et al. 2002; Belkin and Niyogi
2003), where the optimal choice of parameter σ for a given data set is an active
area of research (Coifman and Lafon 2006). Belkin and Niyogi (2003) in the spectral
clustering context provide an extensive discussion of the advantages of these weights
in the context of data clustering and dimensionality reduction. However, other choices
have also been used in the literature (see, e.g., Coifman and Lafon 2006; Higham et al.
2007); in particular, later in this article, we introduce other weight matrices which will
help detect some geometric features of the data set to be emphasized. Also, graphs
G which are not complete have also been used in the literature (von Luxburg 2007;
Belkin and Niyogi 2003), although in our treatment here, we will always assume G is
the complete graph.
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Random walk distances in data clustering and applications 89

Given a weight matrix W , one can readily construct a random walk on G (Chung
1997) according to the transition matrix:

P = D−1W, (8)

where D is the weighted degree matrix of G defined by

Di j =
⎧
⎨

⎩

n∑
�=1

Wi� if i = j,

0 if i �= j.

It is clear that P is a row stochastic matrix, i.e.,

0 ≤ Pi j ≤ 1 and
n∑

�=1

Pi� = 1,

for all i, j ≤ n.

3.2 The absorption, commute-time and other distances

In the following, we define distance measures2 on D that will eventually enable us to
improve on the FCM machinery.

Consider a discrete time Markov chain (Xn)n≥0 on the complete graph G with
transition matrix P (8). Given xi , x j ∈ D, we are interested in exploiting behaviors of
the “random walk” Xn as it explores the geometry of the graph to construct a measure
of the distance between xi and x j . Define the “hitting time” τ j and “return time” τ R

j
of x j as

τ j = inf{n ≥ 0 | Xn = x j }
τ R

j = inf{n ≥ 1 | Xn = x j }.
These two (random) times are the same if they start from xi �= x j ; however, starting
from x j , τ j = 0, but τ R

j ≥ 1 is the time the random walk hits x j after the first step.

3.2.1 Absorption distance

We first introduce the notion of the “absorption” distance between points xi and x j in
the graph. This distance is built upon the idea that vertices xi and x j are distant if with
large probability the random walk returns to xi before “hitting” x j . One is therefore
interested in computing the probabilities (Pi (τ j < τ R

i ))i, j ,
We now calculate the absorption probability Pi (τ j < τ R

i ), the chance the random
walk, starting at xi , “hits” x j before returning to xi . First note when i = j that

2 As it is usually the case in data clustering applications, the employed distance measures do not have to
necessarily satisfy the properties of a metric (see, e.g., Chen and Zhang 2004).
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Pi (τ j < τ R
i ) = 0, and also when i �= j that Pi ({τ j < τ R

i } ∩ {X1 = xi }) = 0 and
Pi ({τ j < τ R

i } ∩ {X1 = x j }) = Pi j . Then, for i �= j , from a first-step analysis (see,
e.g., Brémaud 1999), write

Pi (τ j < τ R
i ) = Pi j +

∑

k �=i, j

Pik Pk(τ j < τi ), (9)

as an average over possible first-step locations xk . Next, for k �= i, j , by a first-step
analysis again, we observe

Pk(τ j < τi ) = Pk j +
∑

l �=i, j

Pkl Pl(τ j < τi ). (10)

Define now the (n − 2)-dimensional vector V (i, j) = (Pk(τ j < τi ))k �=i, j . Then,
from (10)

V (i, j) = S(i, j) + Qi, j V (i, j)

where Qi, j is (n − 2) × (n − 2) submatrix of P with i, j rows and i, j columns
removed, and S(i, j) is j th column of P with (i, j), ( j, j) entries removed. One can
readily solve

V (i, j) = (I − Qi, j )
−1S(i, j).

Finally, noting (9), we have, for i �= j , that

Pi (τ j < τ R
i ) = Pi j + R(i, j)V (i, j),

where R(i, j) is i th row of P with (i, i), (i, j) entries removed.
In the remainder of the paper, we will use a “scaled” and symmetric form of the

“absorption” expression. That is, we say the “absorption” distance between xi and x j

in D is given by

T (xi , x j ) =
(

1 − 1

2
(Pi (τ j < τ R

i ) + Pj (τi < τ R
j ))

)γ

(11)

where the scaling parameter γ ≥ 0 allows the user to control stratification of the
distances between points in D. One is also free to use another function of the absorption
distance which takes advantage of its character.

3.2.2 Commute-time distance

We give now a version of the “commute-time” distance between points xi and x j based
on the expected time Ei [τ j ] the random walk takes to move between them. Intuitively,
points xi and x j separated by a large commute time may be understood as further
apart then those bridged by a small commute time. In this way, the matrix of commute
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times (Ei [τ j ])i, j can serve as a distance measure between vertices xi , x j ∈ D. Such
a distance was first considered in Yen et al. (2005).

To compute these quantitites, first note, for any x j ∈ D, that E j [τ j ] = 0. Then, by
a first-step analysis argument, Ei [τ j ] for i �= j is given by:

Ei [τ j ] =
∑

�

Ei [τ j , X1 = x�]

= Ei [τ j , X1 = x j ] +
∑

� �= j

Ei [τ j , X1 = x�]

= 1 · Pi j +
∑

� �= j

Pi�(1 + E�[τ j ]). (12)

With respect to vector A = (Ei [τ j ])i �= j , matrix B = (Pi�)i �= j,� �= j obtained by
deleting the i th row and j th column from P , and vector R = (Pi j )i �= j which is the
j th column of P with the ( j, j) entry removed, Eq. (12) can be written as

A = R + B(1 + A),

where 1 = (1, 1, . . . , 1)T ∈ R
n−1. Hence, the vector of commute times A =

(Ei [τ j ])i �= j ∈ R
n−1 is given by:

A = (I − B)−1(R + B1). (13)

In what follows, we refer to the symmetric version of (13) as the “commute time”
distance:

T1(xi , x j ) = 1

2
(Ei [τ j ] + E j [τi ]).

3.2.3 Other distances and discussion

One can of course build many other random-walk distances which might exploit dif-
ferently the data geometry. For instance, let g : R

m → R+ be a function. Define

T2(xi , x j ) = 1

2

(
Ei

[ τ j∑

l=1

g(Xl)

]
+ E j

[
τi∑

l=1

g(Xl)

])
,

with the convention that an empty sum vanishes. When g(x) ≡ 1, T2 reduces to the
commute time distance above, T2 = T1. However, one may choose g �≡ 1 to emphasize
parts of the background space R

m in assigning distance from xi to x j .
One might combine the “absorption” and “commute-time” distances to form

T3(xi , x j ) = 1

2

(
Ei

[
1(τ j < τ R

i )

τ j∑

l=1

g(Xl)

]
+ E j

[
1(τi < τ R

j )

τi∑

l=1

g(Xl)

])
.
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When g(x) ≡ 1, T3 is the average of the expected commute times between points on
those paths not returning to the starting point.

We now compare and contrast the “absorption” and “commute-time” distances.
In the data sets we consider, both distances seem to separate points in the same manner,
albeit with different parameter values. A main difference though from their definitions
is that the commute-time distance gives more weight, in computing the expectation,
to those random walk paths which take longer times, while the absorption distance
does not emphasize such paths and only considers trajectories which do not return to
the starting point.

We also mention, in this context, studies (von Luxburg et al. 2010; Alamgir and
von Luxburg 2011) and references therein which point out that the tendency of the
commute-time distance to weight long temporal paths may yield spurious distance
values. However, the rankings given by the distance seem to be relevant, and von
Luxburg et al. (2010) propose an ‘amplified’ commute-time distance which allows to
discern the ranking structure more effectively.

In terms of implementation, although the commute time distance performs faster
with computational complexity on order O(n3) for one step (to invert the matrix), the
tendency in dense data sets is for the distance values to be quite high, and this forces
sometimes extreme parameter values in the method to recognize ranking of the data. In
this respect, modifications of the commute-time distance, with better properties, have
been considered in von Luxburg et al. (2010) and references therein. On the other
hand, although using the absorption distance in our technique has complexity O(n5)

for one step [to invert O(n2) matrices], there is better spread in the ranked distances,
with respect to the commute-time distance, which allows better parameter selection.
It would be of interest to improve these cost estimates.

However, as the absorption time distance weights paths differently, it may have
a more robust behavior than the commute-time distance. Of course, it would be of
interest to make a more precise study of its properties. Since the absorption distance is
new and unexplored, and to illustrate the possibilities in several data sets with different
geometries, we have concentrated on this distance in the article.

3.3 Improving on FCM

3.3.1 Penalization and the absorption distance

We now introduce a family of fuzzy clustering algorithms that build on the FCM
technology. The proposed methods will be collectively referred to as Fuzzy-RW, given
their approach is to modify FCM by using random walk distances to measure data
similarity.

As demonstrated in the computational experiment of Fig. 2, the performance of the
usual FCM method is drastically reduced when applied to data sets characterized by a
nested geometry (Ng et al. 2002; Cominetti et al. 2010). In this context, one approach
to avoid such problems is to use a distance measure intrinsic to the geometry of the
underlying data, instead of the Euclidean norm. Of course, to specify the ‘intrinsic’
distance requires prior knowledge of the data geometry.
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However, in the absence of prior knowledge of the data set, a random walk on a
graph formed from the data set can be employed to extract geometric information by
randomly exploring the data landscape. This idea can be formalized in various ways,
and the absorption distance, and other distances defined in the previous section serve
this purpose. Hence, a natural modification of the FCM algorithm is to replace the
objective function Jp of Eq. (6) with

Jp(U, C) =
k∑

i=1

n∑

j=1

u p
i j T

2(ci , x j ), (14)

where we recall T is the absorption distance defined in (11).
However, interestingly, the approach of minimizing Jp(U, C) over the set of fuzzy

partition matrices U and cluster centroids C does not lead to a successful identification
of the core clusters in the example of Fig. 2. Indeed one can easily see that, in this
example, the absorption distance is minimized over the circles. Hence, whenever two
cluster centroids are located in the same circle, computations indicate the proposed
method converges to a local, but not global minimum.

This latter phenomenon can be avoided by penalizing Jp with a term favoring large
distances between cluster centroids. Hence, instead of minimizing Jp, the proposed
algorithm minimizes Fp, where Fp is given by:

Fp(U, C) = Jp(U, C) + K
∑

ci �=c j

1

T 2(ci , c j )
, (15)

for some parameter K . Here, the centroids {ci } is a subset of size k of the vertices of
the graph G composed of data points. The minimization then above of (15) consists
of searching over these

(n
k

)
subsets, according to a convergence criterion as mentioned

in Appendix.
The role of K is to balance effects of the penalty term with respect to the Jp term in

(15). With respect to the absorption distance, in practice, it appears K can be chosen
K = O(n) with good success.

The rationale behind this approach is to ensure different centroids capture “appro-
priate” clusters. For instance, in Fig. 2b without the penalty term introduced, the
procedure does not distinguish the three circles as distinct clusters, an outcome which
seems desirable. However, if there are many “outliers”, one of these might be selected
as a centroid in a given run, and form a single-point cluster as in Fig. 3a. In the following
subsection, we introduce a modification which discourages this phenomenon.

3.3.2 Using information on data density

To treat data sets which might have many outliers, and to avoid phenomena like the
one shown in Fig. 3a, where the penalization term in (15) drives a cluster centroid
to an outlier data point, the weight matrix W can be modified to include information
on data density. In particular, we introduce another system of weights that lessens the
similarity of relatively isolated data to the rest of the data set.
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Fig. 3 a Output of minimizing the objective function (15) on the data of Fig. 2a. Here, one of the centroids
is driven to an outlier datum. Parameters are σ = 6 × 10−4, γ = 20, k = 3 and K = n the number of
data points. b Output of Fuzzy-RW using approach described in Sect. 3.3.2, when applied to the same data
set with parameters σ = 6 × 10−4, r = 6 × 10−2, s = 2, γ = 20, k = 3 and K = n the number of data
points. We have used threshold 0.85 in the figures. The color code is as in Fig. 2. The black squares indicate
the locations of the cluster centroids. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

We start by introducing a hierarchy of neighborhoods on D as follows. For every
x j ∈ D and r ∈ R, we define the neighborhood of x j of radius r as

N1(x j , r) = {xi ∈ D : ‖xi − x j‖ ≤ r}.

We will be referring to N1(x j , r) as the first step neighborhood of x j , and we define
recursively the s-th step neighborhood of x j as

Ns(x j , r) = {xi ∈ D : ‖xi − x�‖ ≤ r and x� ∈ Ns−1(x j , r)}.

Finally, we let ns(x j , r) denote the (s, r)-density of x j ∈ D, defined by

ns(x j , r) = number of elements of Ns(x j , r).

We remark, by construction, the neighborhood Ns(s j , r) groups together “fingers” or
elongated aspects of the data set. Given a radius r and an integer step s, we modify the
weight matrix used in computing the random-walk distance, using the same notation
W , by introducing the density term κ(i, j) = ns(xi , r)ns(x j , r) in (7) as follows:

Wi j = exp

(
−‖xi − x j‖2

κ(i, j)σ

)
. (16)

Here, if one of xi , x j is somewhat isolated, then κ(i, j) is smaller than if both data
points belonged to dense neighborhoods, and accordingly the modified weight Wi, j

is biased to a lower value than would occur without the modification. In terms of the
random-walk distance using the modified weight matrix, if one of xi , x j is isolated,
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as it would be more difficult to travel between xi and x j , T (xi , x j ) would also be
larger, and therefore an isolated centroid is less likely to be found in the minimization
of (15).

We note that one could have also put another penalty term to attract centroids into
dense regions instead of modifying the weights as we have done. We see now that this
approach identifies in Fig. 3b, with many outliers, the three circles of data as the core
clusters.

3.3.3 Further comparisons

As alluded to in the introduction, in Yen et al. (2005), a random walk distance based
on the commute time between two points is used, specifically using the K-means
objective function with distance 2T1 instead of T . There, after several (20) runs of
K-means using the commute time distance, clustering which minimizes the objective
function in these runs is chosen. However, there is no guarantee, even after several
runs, when the initial centroids are chosen at random, that the “correct” clustering
is achieved. On the other hand, in Fuzzy-RW, on any single run, no matter how the
centroids are initialized, the penalty terms and the underlying graph weighting scheme,
over subsequent iterations, drive the centroids away from each other so that optimal
clustering is obtained.

Fuzzy-RW also differs from spectral clustering in the following way: In Fuzzy-RW,
membership values are assigned to every data point so that low membership outlier
points can be filtered out, which however in spectral clustering would be seen as
core clusters themselves. Also, we point out Fuzzy-RW is not the same as running a
spectral clustering method and then the classical FCM to assign membership values
as it is performed in the literature (Tziakos et al. 2009). The main difference is that the
penalizations and weighting scheme of the underlying graph introduced in Fuzzy-RW,
in Sects. 3.3.2, 4.1 and 4.2, give more control on how a user might like to cluster data.
In using FCM on data first spectrally clustered, one might run into similar problems
with initializing centroids as discussed above near Eq. (15).

Moreover, Fuzzy-RW, which finds the “centroids” by optimizing an intrinsic objec-
tive function, differs from other fuzzy clustering approaches which first compute ‘core
clusters’ and then try to assign data points to them. Two such examples are the FLAME
(Fu and Medico 2007) and DIFFUZZY (Cominetti et al. 2010) algorithms. More
specifically, FLAME identifies core clusters as relative dense parts of the data set
and subsequently computes membership values through the general assumption that
neighboring data points must have similar cluster memberships, whereas DIFFUZZY
identifies core clusters by constructing a hierarchy of (Euclidean) neighborhood graphs
and solving a discrete optimization problem and then assigns membership values to
the data set by using a diffusion distance similar to the one employed by Coifman
and Lafon (2006). Also, in this respect, Fuzzy-RW differs from other “hierarchical”
random-walk methods in Franke and Geyer-Schulz (2009), where informally a pair
of data points is assigned to a cluster at a certain level depending on when a type of
random-walk, on an underlying graph formed from the data points, moves across the
edge formed from the pair.
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In the next section, we discuss more modifications of the weight structure to capture
fine properties of the data set in some standard examples which might be useful in
further distinguishing cluster geometry.

4 Elaborating on the notion of a cluster

Often one would like to emphasize various geometric features in clustering a data
set. In the next two subsections, we show how to modify the weight structure so that
directions both a priori specified or in some sense “locally adapted” are favored in
computing the random-walk distance and in the clustering.

4.1 Intersecting linear subsets

As indicated in Sect. 3, the weight matrix W is the basic ingredient in the definition
of the random walk (8) that we employ for determining distances and similarities
between data in D. In this section, we indicate another modification of W which
allows Fuzzy-RW to cluster data with specific geometric requirements.

We start with the problem of identifying subsets of the data set on D that are embed-
ded in lower dimensional linear manifolds, or affine spaces, of a specific orientation.3

Variations of this problem are of interest in a number of applications, and different
approaches have been suggested in the literature (Bock 1974, 1987; Späth 1985; Har-
alick and Harpaz 2005; Chen and Lerman 2009). For simplicity in the presentation, we
discuss clustering data embedded in linear manifolds in R

2. Nonetheless, the approach
developed in this section can be readily generalized to higher-dimensional settings.

Let us suppose that we are interested in identifying clusters which are well approxi-
mated by a straight line in the direction of v ∈ R

2. Hence, we are interested in defining
a similarity matrix W that assigns high weight to edges (xi , x j ) with the property that
the vector joining xi and x j is approximately parallel to v. This can be readily achieved
by replacing the Euclidean norm in (16) with the Mahalanobis distance (Abonyi and
Feil 2007). In particular, consider the ellipsoid axes

V = [ a
a+1v 1

a+1v⊥ ]
,

where a ∈ R can be considered a “scale” which emphasizes the axis in direction of v

and v⊥ is orthogonal to v; specifically, if v = (v1, v2)
T , then v⊥ = (−v2, v1)

T . Let
also C = V V T be the covariance matrix of V . Then, the Mahalanobis distance dM in
R

2 is defined as

d2
M (x, y) = (x − y)T C−1(x − y).

3 Data clustering on linear manifolds, or affine spaces was first introduced by Bock (1974). Adopting the
terminology of Haralick and Harpaz (2007), we say that L is a linear manifold in a vector space V if for
some vector subspace S of V and some translation t ∈ V, L = {t + s | s ∈ S}.
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Fig. 4 a Benchmark data set that tests the ability of Fuzzy-RW, with threshold 0.8, to identify the points
aligned with the three parallel lines in a as clusters (see Sect. 4.1). b Cluster assignments of data points
(color code as in Fig. 2). c Membership values to corresponding clusters. The parameter values used are
σ = 4 × 10−3, r = 4 × 10−2, s = 4, a = 1.5, γ = 2, k = 3 and K = n where n is the number of data
points. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Hence, a possible choice for a weight matrix W that gives higher weight to pairs
(xi , x j ) nearly parallel to v is provided by

Wi j = exp

(
−d2

M (xi , x j )

κ(i, j)σ

)
. (17)

Here, Wi j depends on the direction v and the scale parameter a through the distance
dM .

In Fig. 4 the underlying data geometry is composed of intersecting lines, tradi-
tionally a quite difficult figure to cluster. However, with the above weight structure,
favoring a particular direction, the random-walk distance is now less with respect to
pairs of points parallel to v than otherwise.

In particular, we see that the method works fairly well to distinguish the parallel
lines as separate clusters, ignoring the transversal.
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In the next subsection, instead of prescribing a priori the directional bias, we intro-
duce a weight structure which is “adaptive” in that it emphasizes directions according
to local fits.

4.2 PCA and local linear approximations

For a specified radius r and step s, performing a local principal component analysis
(PCA) on the s-th step neighborhood of each data point in D (see Sect. 3.3.2) provides
the means to capture the local geometric structure of D. As we demonstrate below,
incorporating this information in the definition of the weight matrix W leads the Fuzzy-
RW family of algorithms to behave more robustly on data sets that involve clusters of
mixed dimensions.

A prototypical example of data of mixed dimensions is shown on Figs. 5 and 6,
where each cluster involves a two-dimensional globular configuration of data along
with some of the data embedded in a one-dimensional manifold. Data sets which
involve geometric configurations of different intrinsic dimensions appear naturally
in applications, and specialized methods have been developed recently for analyzing
them (Arias-Castro et al. 2010).

Our approach however consists in finding a locally adapted coordinate system
from which a weight matrix can be made. More specifically, for a data point x j ∈ D,
consider its s-step neighborhood Ns(x j , r) as defined in Sect. 3.3.2. By performing
PCA on the centered neighborhood, one computes m principal components {vi }i≤m

and corresponding eigenvalues of the covariance matrix λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0.
These principal components, which depend on x j , locally approximate D in terms

of an affine space A(x j ) with the property that the variance of the local projection of
D onto A(x j ) is maximized. Hence, {vi }i≤m can be thought of as a set of orthogonal
axes from the point of view of data point x j

Fig. 5 Clustering of a data set of ‘mixed dimensions’ using Fuzzy-RW, with threshold 0.8, along with a
“Gaussian-Euclidean” weight kernel (7). Left and right figures are the clustering output and membership
values with respect to color codes as in Fig. 2. Parameter values are set as follows: σ = 5 × 10−4,

γ = 5, k = 2 and K = n/2 where n is the number of data points. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6 Clustering of the data set in Fig. 5 with Fuzzy-RW combined with a locally adaptive weighting
scheme, as described in Sect. 4.2. Left and right figures are the clustering output and membership values
with respect to color codes as in Fig. 2. Parameter values are set as follows: σ = 5 × 10−4, r = 0.017, s =
2, c = 6, γ = 5, k = 2 and K = n. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

As in the previous subsection, we now choose scales a = 〈a1, . . . , am〉, where∑m
i=1 ai = 1, to emphasize the axes, and form a Mahalanobis distance between data

points x and y,

d2
M (x, y) = (x − y)T C−1(x − y) (18)

where C = V V T and V = [a1v1 . . . amvm]. We note here the distance constructed
is not symmetric in its arguments as C = C(x) depends on the point x . Now, using
weight formulation (17) with respect to distance (18), we construct a ‘locally adapted’
weight matrix, which we note again is not symmetric. In effect, W assigns directed
weights across the various edges. With this constructed weight matrix, one forms the
random walk distance (11) which is forced to be symmetric.

We remark, rather than choosing a priori given scales as in Sect. 4.1, the scales could
also be taken as functions of the eigenvalues themselves, and in this way be themselves
“locally adapted.” For instance, when m = 2, one might use ai = ai (λ1, λ2) for i =
1, 2 where a1 = c

c+11
(

λ1
λ2

> c
)

+ λ1
λ1+λ2

1
(

λ1
λ2

≤ c
)

and a2 = 1 − a1, which allows

the scale to be given by truncated proportional eigenvalues in terms of a parameter c.
In Figs. 5 and 6, m = 2 and the scales chosen are such that c = 6.

5 Applications

We now apply our method to two standard data sets. The first benchmark is a biological
data set, the IRIS data set, and the second is the YALE face recognition data set.

5.1 The Iris benchmark data set

In this subsection we evaluate the performance of the Fuzzy-RW method using reg-
ularized objective function (15) and weight matrix (7). We demonstrate that this

123



100 S. Liu et al.

Fig. 7 Figure showing the
Iris benchmark data set

Table 1 Comparison of numbers of true positives (TP) and false positives (FP) for different clustering
methods

FCM Spectral FLAME Fuzzy-RW

Index TP FP TP FP TP FP TP FP

1 50 0 50 0 50 0 50 0
2 47 13 50 15 50 11 47 2
3 37 3 35 0 37 0 48 3

implementation of Fuzzy-RW outperforms two well-known fuzzy clustering algo-
rithms when applied to the Iris data set, shown in Fig. 7. As is well known, the
Iris data set is a benchmark commonly employed in pattern recognition analysis
(Hathaway and Bezdek 2001). It contains three clusters (types of Iris plants: Iris
setosa, Iris versicolour and Iris virginica) of 50 data points each in 4 dimensions
(features): sepal length, sepal width, petal length and petal width.

The results of applying FCM Bezdek et al. (1984), spectral clustering (Coifman and
Lafon 2006) and the bioinformatics-oriented FLAME method (Fu and Medico 2007)
to identifying the three clusters embedded in the Iris data set are shown on Table 1.
Clearly, in the context of this benchmark, Fuzzy-RW, with parameters σ = 0.1,

γ = 1, k = 3, K = n = 150 and points assigned to clusters by maximal membership,
outperforms the other three approaches.

5.2 Data clustering in face recognition

Data clustering methods have traditionally been applied to a variety of image analysis
tasks. Examples include image segmentation (Chen and Zhang 2004; Bezdek et al.
1997; Tziakos et al. 2009), image registration (Tsao and Lauterbur 1998) and shape
recognition (Desolneux et al. 2008; Cao et al. 2007, 2008), among others. Chen and
Zhang (2004) discuss the importance of developing fuzzy clustering methods which
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can handle images given in terms of irregular, ‘non-Euclidean’ structures in the cor-
responding feature space.

In this section, we evaluate the performance of the Fuzzy-RW, using weight matrix
(7), in the context of the face recognition problem (Belhumeur et al. 1997; Georghiades
et al. 2001; Lee et al. 2005), that is the task of matching a given face to a database of
faces (Kimmel and Sapiro 2003). In particular, given a set of face images labeled with
the person’s identity (the training set) and an unlabeled set of face images from the
same group of people, we are interested in identifying each person in the unlabeled
set (Belhumeur et al. 1997). A slight generalization of this, which we will focus on
here, is to allow the second set of face images to contain possibly images of persons
not included in the training set.

There are a number of approaches to the face recognition problem with perhaps the
most straightforward one being that of applying directly a nearest neighbor classifier
(Brunelli and Poggio 1993; Georghiades et al. 2001). However, this approach has been
criticized on the basis of its computational complexity and its performance in the pres-
ence of extreme light variations in the images to be analyzed (Georghiades et al. 2001).
More recent approaches rely on combining dimensionality reduction algorithms,
such as principal component analysis (PCA) or locality preserving projection (LPP)
(He et al. 2005), with a nearest neighbor classifier or a more general clustering algo-
rithm (Lee et al. 2005; Shental et al. 2009).

Below we briefly recall, for the convenience of the reader, the eigenface technology
which determines a basis of ‘eigenfaces’ in which the whole data set of faces can be
represented. Laplacian faces uses a similar method to determine a basis of ‘Lapla-
cianfaces’ (see He et al. 2005 for more details). In a nutshell, eigenfaces determines
a low dimensional representation of the data set by computing principal components
with respect to a training set which maximize the variance of its projection. Lapla-
cianfaces proceeds along similar lines but uses generalized eigenvectors with respect
to a constructed Laplacian matrix which strongly weights nearest-neighbor edges, and
so preserves more of the geometry of the data set. Then, we show, with respect to the
YALE face recognition data set, that Fuzzy-RW performs better than other clustering
methods with respect to eigenfaces dimensional reduction. We also make a compari-
son between clustering using Fuzzy-RW when the reduction is done on the one hand
with eigenfaces and on the other hand with Laplacianfaces.

5.2.1 The eigenface technology

Eigenfaces facilitate the low-dimensional representation of face images. The basic
idea is that given a training set T of face images, principal component analysis is
used to compute the principal directions, or eigenfaces, of T . Each image then can be
approximated by a linear combination of a few eigenfaces (Kimmel and Sapiro 2003;
Muller et al. 2004).

In particular, consider a set of grayscale face images I = {xi }i≤n ∈ R
p×q , where

it is assumed that every xi is pre-processed by applying some image registration
algorithm, and hence each face is aligned within the image. Now, let T ⊂ I be a
training set (Muller et al. 2004) for our classification scheme. Then, the covariance
matrix of T is given by
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C =
∑

xi ∈T
(xi − μT )(xi − μT )T ,

where μT ∈ R
p×q is the mean of all images in the training set.

We are interested in identifying a low-dimensional space S for which the variance
of the projection of T into S is maximized. This is readily done by identifying an
� × pq orthonormal matrix Q that maps R

p×q into a space of dimension � < pq
and such that it maximizes the determinant det(QC QT ). It can be shown that QC QT

is the covariance matrix of the image of T under Q (Belhumeur et al. 1997; Muller
et al. 2004). The rows of Q are the eigenvectors of the covariance matrix C that
correspond to the � largest eigenvalues, and in what follows they will be referred to as
the eigenfaces of T .

5.2.2 The Laplacianfaces approach

As with eigenfaces, given a set of pre-processed face images I = {xi }i≤n ⊂ R
p×q ,

we work with a traning set T ⊂ I to find first a low-dimensional basis. Using prin-
cipal component analysis, as in the eigenface construction, the images in xi ∈ T are
transformed xi → yi . Then, a similarity matrix is defined for nodes xi , x j ∈ T :

Si j = exp

(
−d(yi , y j )

t

)

where d(yi , y j ) is the Euclidean distance when yi and y j are both within a certain
number of Euclidean nearest-neighbors of each other (in our experiment, within 9
neighbors), and d(yi , y j ) = 0 otherwise. Here, t is a parameter to be chosen (and
in our later experiment t = 77). Now, we choose a set of non-trivial eigenvectors
(say, the first 20), which we call the Laplacianfaces, of the following generalized
problem:

M L MT ω = λM DMT ω

where the i th row of M is yi , and the ‘Laplacian’ matrix L = D − S and D is the
diagonal matrix with Dii = ∑

j Si j .

If S is a constant matrix of 1’s, then M L MT is a data covariance matrix analogous
to that in the eigenface construction. The role of S is to weight nearest-neighbor data
points and so preserve in the eigenvector calculation some of the geometry of the
data set. At this point, all images in I are centered with respect to the mean image of
the training set. These are then projected on the Laplacianfaces computed to form a
transformed data set {zi }i≤n which are analyzed by the Fuzzy-RW method.

5.2.3 Fuzzy-RW in the context of face recognition

In this subsection, we discuss results with Fuzzy-RW using weight matrix (7), in the
context of recognizing faces from the YALE data base (Georghiades et al. 2001).
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Fig. 8 The YALE Face Database (Georghiades et al. 2001) contains 165 grayscale images of 15 individuals.
There are 11 images per subject, one per different facial expression or configuration. The figure shows nine
such images for a specific individual. The complete database is available at http://cvc.yale.edu/projects/
yalefaces/yalefaces.html

The YALE data base consists of 165 images of 15 individuals. Each individual has
11 images taken with different facial expressions or under different lighting condi-
tions (see, e.g., Fig. 8). These correspond to the 11 inset bars per each of the 15
tick marks in the horizontal axes in Fig. 9. In our experiment, 5 out of 11 images
per individual were taken to form a training set from which lower dimensional rep-
resentatives of the YALE images are found through eigenfaces or Laplacianfaces
techniques.

Of course, successful clustering of these representatives should distinguish the 15
groups of images corresponding to the 15 individuals. In Fig. 9, clustering results
using FCM, the spectral method, and Fuzzy-RW are shown. Interestingly, Fuzzy-RW
recognizes all 15 groups, and performs better than the other methods in terms of mini-
mizing misassignments. Specifically, spectral clustering achieves a 53.3 % success rate
in correctly assigning face images to individuals in the data base, whereas Fuzzy-RW
with eigenfaces achieves a success rate of 69.7 %, and Fuzzy-RW with Laplacianfaces
correctly assigns 71.5 % of the images to the corresponding individuals. In the con-
text of this experiment, the classical FCM algorithm achieves a success rate of only
7.3 %.
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Fig. 9 Plots compare clustering of the YALE data set with respect to different methods. The horizontal
axes correspond to the 15 individuals in the database, while the vertical axes correspond to the clustering
assignments. Each individual has 11 images taken with different facial expressions, corresponding to the
11 inset bars per index in the horizontal axis. Plots (a–d) give the outputs of the following methods: a FCM
with eigenfaces, b spectral clustering with eigenfaces, c Fuzzy-RW with eigenfaces, and d Fuzzy-RW with
Laplacianfaces. The parameter values used in c are σ = 184, γ = 3, k = 15 where k is the number of
clusters, and K = n where n = 165 is the number of face images. In d, the values areσ = 60, γ = 1, k = 15,
and K = n. Here, n = 165 images are assigned to clusters by maximal membership

6 Conclusion

We have presented a framework and methodology, namely the Fuzzy-RW method,
which allows to cluster data sets difficult for current techniques. Specifically, we
introduce several new weighted graphs formed from the data set, and distances defined
through random walk step distributions on these graphs which respect more the data set
geometry than Euclidean distances. In particular, the “absorption” distance introduced
appears novel in the literature. In a nutshell, Fuzzy-RW modifies the classical FCM
approach through use of motivated penalty terms and different graph weight schemes
which emphasize geometric aspects of the data.

In terms of applications, we have shown on synthetic data sets and real-world data
sets such as the IRIS and YALE face recognition data sets that for a choice of para-
meters our Fuzzy-RW technique outperforms many of the existing methods. Given
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that the concept of “clustering” itself is not well-defined, and up to the user and the
type of problem being considered, we note that our method is flexible, in terms of how
weights are introduced, and can accomodate diverse geometric notions in segregating
data, the main point explored in the article with respect to 5 geometrically different
data sets [convex clusters (Fig. 1); circle-shaped clusters (Figs. 2, 3); intersecting lin-
ear manifolds (Sect. 4.1); Iris data (Sect. 5.1); face recognition data set (Sect. 5.2)].
In turn, we remark a cost for allowing a random-walk distance to explore the data
(cf. Sect. 3.2.3) is in the complexity of the algorithm which is polynomial in n, and
which would be of interest to improve. Parameter estimation is also a concern in large
data sets, as for any clustering method, although one might use a stability or resam-
pling method to identify relevant training values (Levine and Domany 2001; Ben-Hur
et al. 2002). In the examples of the article, parameters were found readily through a
few trials.

In comparison to other methods, as noted in the Sect. 1, although types of weighted
graphs are also used in spectral clustering, our Fuzzy-RW technique is different, not
only in the development, but also in that we assign membership values to data points so
that outliers can be filtered. In some sense, the Fuzzy-RW method takes into account
important features of classical FCM and spectral approaches. Fuzzy-RW is also dif-
ferent than FLAME (Fu and Medico 2007) and DIFFUZZY (Cominetti et al. 2010)
which group data according to ‘core clusters’. Moreover, Fuzzy-RW differs in partic-
ular from the random walk clustering technique in Yen et al. (2005), in that it is not
sensitive to the initialization of the centroids.

Finally, we now ask some questions which could point to possible future direc-
tions with respect to the Fuzzy-RW method. At the heart of our clustering method
is the underlying weighted graph formed from the data points. Might more efficient
results be obtained from a ‘sparsely’ connected graph rather than the complete graph
used here? In this context, known constraints in terms of similarity of some data
points might also be incorporated into the edge weight structure. Also, could the edge
weights and parameters used in the algorithm be ‘learned’ in some robust way? Could
also the number of clusters which is adequate be learned (see, e.g., Cominetti et al.
2010)?
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Appendix

The procedure commonly employed in the literature for minimizing the FCM func-
tional (6) is an alternating directions scheme, originally proposed by Bezdek et al.
(1984). For completeness, we provide a listing of the algorithm below. More details
can be found in Gan et al. (2007) and Bezdek et al. (1984), among others.

The FCM algorithm:
1: initiate the cluster centroids {ci }i≤k .
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2: compute the fuzzy partition matrix:

ui j = ‖x j − ci‖− 2
p−1

∑
�≤k‖x j − c�‖− 2

p−1

, i ≤ k, j ≤ n (19)

3: repeat
4: update the cluster centroids:

ci =
∑n

j=1 u p
i j x j

∑n
j=1 u p

i j

, i ≤ k

5: update {ui j }i≤k, j≤n according to (19).
6: until a convergence criterion is satisfied.
7: return {ui j }i≤k, j≤n, {ci }i≤k

The convergence criterion in line 6 is usually chosen to be of the form ‖U (r) −
U (r−1)‖ < ε for some pre-specified ε > 0 (Gan et al. 2007). Here, U (r) and U (r−1)

denote the values of the fuzzy membership matrix U = (ui j )i≤k, j≤n in the r and r −1
iteration of the loop, respectively.

Now, the k clusters of data points may be decided in terms of thresholding with
respect to the membership matrix, or sometimes data points can be assigned to clusters
based on their maximal membership values.
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