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Abstract. We connect the empirical or ‘occupation’ laws of certain discrete

space time-inhomogeneous Markov chains, related to simulated annealing, to
a novel class of ‘stick-breaking’ processes, a ‘nonexchangeable’ generalization

of the Dirichlet process used in nonparametric Bayesian statistics. To make

this unexpected correspondence, we examine an intermediate ‘clumped’ struc-
ture in both the time-inhomogeneous Markov chains and the stick-breaking

processes, perhaps of its own interest, which records the sequence of different

states visited and the scaled proportions of time spent on them. By matching
the associated intermediate structures, we identify the limits of the empirical

measures of the time-inhomogeneous Markov chains as types of stick-breaking

processes.

1. Introduction

We consider the connections among discrete space time-inhomogeneous Markov
chains related to simulated annealing, ‘clumped’ residual allocation models (RAMs),
and a novel, general class of ‘nonexchangeable’ stick-breaking processes, which in-
cludes the Dirichlet process in a case. In particular, with respect to these time-
inhomogeneous chains, we identify the empirical occupation law limits with stick-
breaking processes in this class. The method to derive the correspondence involves
a notion of intermediate structure found via a type of ‘clumping’ procedure, perhaps
of its own interest.

On the one hand, the time-inhomogeneous Markov chains that we consider are
stylized models of simulated annealing and Gibbs samplers; see [5], [12], [17], [19].
[50]. On the other hand, RAMs, Dirichlet processes, and stick-breaking processes
have wide application in population genetics, ecology, combinatorial stochastic pro-
cesses, and Bayesian nonparametric statistics; see books and surveys [9], [10], [20],
[21], [29], [45] and references therein. A main purpose of the paper is to develop
what seems to be an unexpected connection between these apriori different subjects.

In the next three subsections, we discuss first some of the relevant background on
the time-inhomogeneous Markov chains considered, next RAMs, and stick-breaking
processes, and last an informal summary of our main results on the empirical or ‘oc-
cupation’ laws of the Markov chains and stick-breaking processes via their ‘clumped’
intermediate structures.

1.1. Time-inhomogeneous Markov chains studied. We concentrate in this
article on discrete spaces X ⊆ N, that is those composed of either a finite or a
countably infinite number of elements. Let G be a generator kernel on X , that
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is Gi,j ≥ 0 for i 6= j ∈ X , and Gi,i = −
∑
j 6=iGi,j . Suppose the entries of G are

suitably bounded so that the kernel

Kn = I +
G

n
(1.1)

is a stochastic kernel for all n large enough, and set Kn = I otherwise. Suppose
also that each Kn is irreducible and positive recurrent for sufficiently large n.

We will be interested in the time-inhomogeneous Markov chain {Mn}n≥1 on X
associated to kernels {Kn}n≥1. In such chains, every point in X represents a valley
from which the chain rarely but almost surely exits to enter another point valley.
In this way, a certain ‘landscape’ is explored and the chains can be considered as
simplified models of simulated annealing.

Interestingly, for finite X , it was noted in [19] and [50] that the empirical dis-
tributions of these chains converge weakly, but not a.s. or in probability, as would
be the case for a homogeneous Markov chain. Moreover, for generators G without
zero entries, this weak convergence limit,

νG(·) d
= lim
n→∞

1

n

n∑
j=1

δMj (·), (1.2)

was identified in [12] by computing its moments. When |X | = 2, one may see
that νG is a Dirichlet distribution with parameters (G(2, 1), G(1, 2)). However,
curiously, when G is of the form G = θ(Q − I) for θ > 0 and Q is a stochastic
‘constant’ matrix with equal rows µ, it was also shown in [12] that νG has Dirichlet
distribution with parameters {θµ(i)}ki=1 by matching the moments.

In this context, a main goal is to understand more constructively, by considering
an intermediate ‘clumped’ structure of the chain, the limit (1.2), and its general-
ization to countably infinite state space. Importantly, the construction allows to
represent the limit as a ‘stick-breaking’ process. These processes are novel, and in
particular non-Dirichlet, unless G is of form G = θ(Q− I) where Q is a ‘constant’
stochastic kernel (cf. Theorem 2.15). Given that the ‘stick-breaking’ apparatus is
seminal in Bayesian statistics, the general representation provided here may be of
potential use in applications.

We remark that the form of the scaling factor n−1 in the definition of Kn is not
rigid–it can be say bn where nbn → 1 (cf. Remark 2.14). However, if the factor
were of the form n−γ for γ 6= 1, other phenomena occur: For instance, for finite
X , if γ > 1, the associated time-inhomogeneous Markov chain would fixate a.s.
and, when 0 < γ < 1, the empirical distributions would converge to a constant
probability vector in probability (cf. [5], [12]).

Generalizations of the time-inhomogeneous Markov chains have been consid-
ered, such as coin-turning chains on two states [17], and freezing Markov chains on
finitely many states [5]. In particular, among other results in [5], through stochastic
approximation techniques, the limit law (1.2) was characterized as the stationary
distribution of a certain continuous-time piecewise-deterministic Markov process;
see also related results in [27] in the context of mRNA model applications. From
a different view, related chains have been studied in terms of ‘metastability’ in the
time-inhomogeneous context in [8], [38] and references therein, and also in the set-
ting of arrays of stationary Markov chains (cf. [6], [33], [40]). However, the detailed
connections of {Mn}n≥1 and νG to ‘stick breaking’, the main focus of this article
described more in Subsection 1.3, appears new.
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We now turn to a discussion of RAMs and stick-breaking processes.

1.2. GEM, Dirichlet, and stick-breaking measures. Consider the infinite-
dimensional simplex ∆∞ of all discrete (probability) distributions on N = {1, 2, . . .}.
A residual allocation model is a distribution on ∆∞, introduced in the 1940’s [26]
as a means to address problems of apportionment: Let {Xn}n≥1 be independent
[0, 1]-valued random variables, called ‘residual fractions’. Consider the associated
process 〈Pn : n ≥ 1〉 ∈ [0, 1]N, given by P1 = X1 and

Pn =

1−
n−1∑
j=1

Pj

Xn = (1−X1) · · · (1−Xn−1)Xn for n ≥ 2;

see Lemma 3.1 for the induction leading to the last equality. If
∑
n≥1 Pn

a.s.
= 1, the

distribution 〈Pn : n ≥ 1〉 ∈ ∆∞ is the associated RAM. In general, 〈Pn : n ≥ 1〉
need not sum to 1 for a given realization. We note a simple condition equivalent

to
∑
n≥1 Pn

a.s.
= 1 is that

∏∞
j=1(1−Xj)

a.s.
= 0, the case for nontrivial, independent,

identically distributed (iid) fractions (cf. Lemma 3.1).
The RAM when the fractions {Xn}n≥1 are iid Beta(1, θ) random variables is

the well-known Griffiths-Engen-McCloskey (GEM) model with parameter θ. There
are many characterizations and studies of the GEM sequence and its variants in
recent years. For instance, the GEM model is the unique RAM with iid fractions
that is invariant in law under size-biased permutation. Also, the GEM sequence
is the unique invariant measure of ‘split and merge’ dynamics. In addition, there
are important connections with Poisson-Dirichlet models. See for instance, among
others, [1], [2], [11], [16], [22], [30], [31], [32], [37], [41], [43], [44], [46], and references
therein.

Moreover, the GEM sequence is a fundamental building block of Dirichlet pro-
cesses, which often serve as a measure on priors in Bayesian nonparametric statistics
[20], [21]. With respect to a measurable space (Y ,B), consider the space of prob-
ability measures PY endowed with σ-field generated by the sets {P : P (A) < r}
for A ∈ B and r > 0. We say that D is a random probability sample from the
Dirichlet process, with ‘parameters’ θ > 0 and probability measure µ on Y , if
for any finite partition {Ai}mi=1 the vector 〈D(A1), . . . , D(Am)〉 has the Dirichlet
distribution with parameters 〈θµ(Ai) : 1 ≤ i ≤ m〉.

The ‘stick-breaking’ representation of the Dirichlet process with parameters
(θ, µ), in terms of a GEM(θ) sequence 〈Pi : i ≥ 1〉, and an independent sequence of
iid random variables {Wi}i≥1 with common distribution µ, is given by

D(·; θ, µ) =

∞∑
i=1

PiδWi
(·). (1.3)

There is a large literature on Dirichlet processes stemming from the seminal works
[4], [18]. See [44], [49] with respect to the ‘stick-breaking’ construction, and books
[20], [21], [39], [45] for more on their history, other representations including that
with respect to the ‘Chinese restaurant process’, and their use in practice.

We note, when Y = {1, . . . k} is a finite space, µ = 〈µ(1), . . . , µ(k)〉 and Ai =
{i} for 1 ≤ i ≤ k, the property that 〈D(A1), . . . , D(Ak)〉 is given by a Dirichlet
distribution was first stated in a population genetics context in [14]; see also [28].
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In this article, we focus on a class of generalized stick-breaking processes on
X ⊆ N. Let 〈Pi : i ≥ 1〉 be a GEM(θ) sequence and let {Ti}i≥1 be an indepen-
dent stationary Markov chain with irreducible transition kernel Q and stationary
distribution µ on X . The random measures, in stick-breaking form,

ν(·; θ, µ,Q) =

∞∑
i=1

PiδTi
(·), (1.4)

are natural, and what seems to be novel generalizations of the stick-breaking rep-
resentation of the Dirichlet process, here with respect to stationary Markovian
samples {Ti}i≥1 instead of the iid ones in (1.3). We also note that other general-
izations of Dirichlet processes have been considered, among them, Polya tree [35],
Pitman-Yor [44], [47], and Beta processes [7].

In particular, we will show that ν satisfies a ‘self-similarity’ equation (cf. The-
orem 2.19), uniquely characterizing its distribution. This equation is reminiscent
of the regenerative structure present in the stick-breaking representation of the
Dirichlet process [49], in integral constructions of the Dirichlet processs [34], [48],
and in other related settings [24], [23].

We note however that ν is not ‘permutation exchangeable’ when the Markov
chain {Ti}i≥1 is not an iid sequence in the sense that the GEM sequence 〈Pi : i ≥
1〉 may not be replaced by an arbitrary finite permutation without changing the
measure (cf. Theorem 2.21). In contrast, when {Ti}i≥1 is iid and ν is the Dirichlet
process, such an exchangeability property holds. For example, the Poisson-Dirichlet
order statistics 〈P̂i : i ≥ 1〉 of 〈Pi : i ≥ 1〉 may be used instead without changing
the Dirichlet process (cf. [44]).

Given this ‘nonexchangeability’, tools and representations, standard with re-
spect to the exchangeable Dirichlet process, such as Poisson-Dirichlet statistics and
Gamma subordinators, do not seem readily applicable. We will mostly rely on the
nuts-and-bolts definition of the GEM measure, the structure of the Markov chain
{Ti}i≥1, and the ‘clumping’ procedure to analyze ν.

1.3. Clumping in time-inhomogeneous Markov chains and stick-breaking
processes. Returning to the time-inhomogeneous Markov chain M = {Mn}n≥1

with kernels {Kn}n≥1 (1.1), starting from initial distribution π, consider the ran-
dom empirical occupation measure on X ,

νn(·) =
1

n

n∑
j=1

δMi(·).

One might feel there is some resemblance between νn and ν in (1.4) as both
express sums of point masses with weights adding to 1. To make this more precise,
we implement a ‘reverse’ clumping procedure to gather local occupations of the
same state, or clumped occupations, of the empirical measure of M up to time n.

In a Markov chain with kernels {Kn}n≥1, later clumps of the chain on a state
are typically larger than earlier clumps. To keep the clump sizes from tending to
zero after normalization, we consider the clumps in reverse chronological order,
starting from time n, so that the clumped occupations may converge nontrivially
in distribution.

Formally, let 1 = V1 < V2 < · · · be the successive times when the Markov chain
changes state, and let Nn = min{i : Vi > n}. Going backwards from time n, let
τn,1 be the length n + 1 − VNn−1 of the last visit to state Yn,1 = MVNn−1

, τn,2 be
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the length VNn−1 − VNn−2 of the visit to state Yn,2 = MVNn−2
, and τn,k be the

length VNn−(k−1) − VNn−k of the visit to Yn,k = MVNn−k
for 1 < k < Nn. Let also

τn,k = 0 and Yn,k = M1 for k ≥ Nn. In addition, define Pn,k = τn,k/n for k ≥ 1.
The figure below depicts, in a realization, the clumping boundaries Vj marked in

forward times, and the lengths of local occupations τn,j = nPn,j given backwards
in time starting from time n.

...

...

1 VNn−3 VNn−2 VNn−1 n

τn,1τn,2τn,3

Then, νn is written as

νn(·) =

Nn−1∑
j=1

Pn,jδYn,j (·) =

∞∑
j=1

Pn,jδYn,j (·).

We now identify an intermediate structure in the time-inhomogeneous Markov
chain. We show (cf. Theorem 2.10) that as n → ∞, Yn = {Yn,j}j≥1 converges to
a stationary homogeneous Markov chain Z = {Zj}j≥1 whose transition probability
of moving from i to a different state j is µjGj,i/[µi(−Gi,i)], in terms of G and
µ, where µ is the stationary eigenvector of G. Also, conditionally on the values
{Yn,j}j≥1, the distributions of Pn = 〈Pn,j : j ≥ 1〉 converge as n → ∞ to a
‘disordered’ GEM R = 〈Rj : j ≥ 1〉, a RAM with independent fractions distributed
as {Beta(1,−GZi,Zi

)}i≥1. In particular, the joint law of 〈Pn,j : j ≥ 1〉 and {Yn,j}j≥1

converges as n → ∞ to a joint distribution, characterized in terms of G′ where
G′i,j =

µj

µi
Gj,i for i, j ∈X , and dubbed the MCcGEM(G′) distribution with respect

to µ.
Importantly, however, to match the limit of νn to ν in (1.4), we will need to

‘clump’ ν and consider its clumped intermediate structure and correspondence to
the intermediate structure MCcGEM distribution arising above from the time-
inhomogeneous Markov chain.

To this end, analogous to the switching times with respect to M, suppose
{Vi}i≥1 are the times when the stationary Markov chain T = {Ti}i≥1 changes
its state with the convention V1 = 1. With respect to P = 〈Pi : i ≥ 1〉, consider

PVi =
∑Vi+1−1
j=Vi

Pj for i ≥ 1. We show that (cf. Theorems 2.4 and 2.7) the law

of Y = {Yi = TVi
}i≥1 can be computed as another Markov chain on X with a

transition kernel found in terms of Q, where the transition probability of moving
from i to a different state j is Qi,j/(1 − Qi,i). Also, conditional on the locations
{Yi}i≥1, the sequence PV = 〈PVi : i ≥ 1〉 is a RAM whose associated fractions
are {Beta

(
1, θ(1 − QYi,Yi)

)
}i≥1, another ‘disordered’ GEM. Indeed, the joint law(

〈PVi : i ≥ 1〉, {Yi}i≥1

)
is a MCcGEM

(
θ(Q− I)

)
distribution with respect to µ.

In terms of this clumped structure with respect to ν, we may write that

ν(·) =

∞∑
i=1

PVi δYi(·). (1.5)

We are now in position to identify the intermediate structure and limit of the
empirical measures νn of the time-inhomogeneous Markov chain in terms of the
clumped structure of a stick-breaking measure ν. In particular, when G′ = θ(Q−I),
these intermediate structures match.
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We state in Theorem 2.12 that νn converges to a matched random measure ν
either in ‘stick-breaking’ or ‘clumped’ forms (1.4), (1.5), and vice versa, in Corollary
2.13, starting from the stick-breaking process ν, we identify it as the limit of the
empirical measure of a matched time-inhomogeneous Markov chain.

We show in Theorem 2.15 that ν is not a Dirichlet process unless G′ = θ(Q− I)
and Q is a constant stochastic matrix with identical rows µ. In this case, the
matched Markov chain {Ti}i≥1 is actually composed of iid random variables with
distribution µ, and hence the limit ν is seen as a Dirichlet process (cf. remark
after (1.2)). See Subsection 2.3 for further remarks, and what appears to be new
representations of the Dirichlet process.

In the figure below, the main ideas, relationships and identifications between
the empirical measure of the time-inhomogeneous Markov chain, the stick-breaking
process, and their clumped intermediate structures, are summarized.

∑∞
j=1

1
nδMj

=
∑∞
j=1 Pn,jδYn,j

M
rev. cl.−−−−→ (Pn,Yn)

↓ d

d−→
∑∞
j=1RjδZj

(R,Z)
d
=

d
=

∑∞
j=1 P

V
j δYj

=
∑∞
j=1 PjδTj

(PV,Y)
cl.←− (P,T)

Finally, we mention that extensions of our results to a class of reducible gener-
ators G is possible, with more notation and some modifications of the proofs, are
available in the extended arXiv version [13].

Organization of the paper. The main results, Theorems 2.4, 2.7, 2.10, 2.12, 2.13,
2.15, 2.19, and 2.21 are stated in Section 2. Proofs are then given in Section 3.

2. Statement of results

We now formalize notation and state our main results, and related remarks
about them, in several subsections. It will be convenient to develop notions from
the bottom to the top with respect to schema figure at the end of Section 1.

We will use the convention that empty sums equal 0, and empty products are 1.
Also, 1/0 =∞, 0/0 = 0, and 00 = 1. The notation vt signifies that the vector v is
in row form.

2.1. RAMs, GEMs and MCcGEM laws. A residual allocation model (RAM)
is a way of defining a random probability measure on N by iteratively assigning a
random portion of the unassigned probability remaining to the next integer.

Definition 2.1 (Residual Allocation Model - RAM). Let X = {Xj}j≥1 be a col-
lection of independent [0, 1]-valued random variables. Define

P1 = X1 and Pj = Xj

(
1−

j−1∑
i=1

Pi

)
for j ≥ 2. (2.1)

Then, if P = 〈Pj : j ≥ 1〉 is a.s. a probability measure on N, that is if
∑∞
j=1 Pj

a.s.
=

1, we say P is a RAM. If X consists of iid fractions, and the associated P is a
RAM, we say P is a self-similar RAM.
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Consider now the following identity, verified in Lemma 3.1: For an arbitrary
sequence of numbers {aj}j≥1 and k ≥ 1,

k∏
j=1

(1− aj) +

k∑
j=1

aj

j−1∏
i=1

(1− ai) = 1. (2.2)

Then, the sequence in (2.1) satisfies Pj = Xj

∏j−1
i=1 (1−Xi) for j ≥ 1 (cf. Proposition

3.2). Accordingly, we have the useful observation that P is a RAM exactly when∏
j≥1(1−Xj)

a.s.
= 0.

A specific and well-known example of a RAM is the Griffiths-Engen-McCloskey
(GEM) sequence.

Definition 2.2 (GEM). Fix θ > 0. Let X = {Xj}j≥1 be a sequence of iid variables
with common distribution Beta(1, θ). Then, the self-similar RAM P, constructed
from X, is said to be a GEM(θ) distribution.

Also, consider a sequence {θj}j≥1 of positive numbers, and let X be a sequence of
independent random variables where Xj ∼ Beta(1, θj) for j ≥ 1. When the measure
P, found in terms of X, is a RAM, we will say it is a disordered GEM sequence
with parameters {θj}j≥1.

Now, in a RAM P, one can clump adjacent probabilities with respect to an
increasing sequence u, marking boundaries of clumps, to form a new probability
measure Pu on N.

Definition 2.3 (Clumped measure). Let u = {uj}j≥1 be an increasing sequence
in N with u1 = 1 and let P be a RAM. We clump P according to u to construct a
new probability measure Pu = 〈Puj : j ≥ 1〉 on N where, for j ≥ 1,

Puj =

uj+1−1∑
i=uj

Pi

A natural question is when Pu is also a RAM. Although it is not difficult to see
that Pu is always a RAM when u is deterministic, the situation is more involved
when a random sequence is used for the clumping.

Specifically, we will be interested in a random clumping sequence V constructed
from a stationary, irreducible Markov chain T = {Ti}i≥1 on the discrete space
X ⊆ N. The sequence V keeps track of the times when T switches values between
repeated values in T.

For example, if T = (1, 1, 2, 2, 2, 2, 4, 1, 1, 5, . . .) is observed, we define V =
(1, 3, 7, 8, 10, . . .). More formally, let V1 = 1 and, for j ≥ 1, set

Vj+1 = inf {v > Vj : Tv 6= Tv−1} (2.3)

Since T is irreducible, V is almost surely well-defined, consisting of an increasing
sequence of integers.

Define now Y = {Yj}j≥1 by Yj = TVj
for j ≥ 1. We think of Y as the sequence

of values taken by T without repetition.
In what follows, we will say that a sequence z is a ‘possible’ sequence for a

Markov chain Z on X if the event {Zi = zi : 1 ≤ i ≤ n} has positive probability
for each n ≥ 1.

Theorem 2.4 (Clumped RAMs). Let P be a RAM. Fix an increasing sequence
u = {uj}j≥1 in N with u1 = 1. Then,
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(1) Pu is a RAM with respect to fractions Xu = {Xu
j }j≥1 where

Xu
j =

uj+1−1∑
i=uj

Xi

i−1∏
l=uj

(1−Xl) = 1−
uj+1−1∏
i=uj

(1−Xi)

Let now T = {Tj}j≥1 be an irreducible, positive-recurrent Markov chain, in-
dependent of P and with homogeneous transition kernel Q and stationary initial
distribution µ.

(2) Then, the sequence Y = {TVj
}j≥1 is a Markov chain with homogeneous

transition kernel K given by

K(z, w) =
Qz,w

1−Qz,z
1(z 6= w),

with initial distribution µ.

Let t be a possible sequence in X with respect to T. Let y be a possible sequence
in X with respect to Y. Define V with respect to T as in (2.3).

(3) Then, PV
∣∣T = t is a RAM.

(4) Also, if P is self-similar, then PV
∣∣Y = y is a RAM.

We remark that the specifications of the fractions and their distributions in items
(4) are given in the proof of Theorem 2.4. These specifications, in the case when P
is a GEM(θ) sequence, are part of Theorem 2.7.

Also, in item (4) above, we note that the self-similarity of P is important to
deduce that PV|Y is a RAM; see for instance Example 2.9.

We now consider the clumping procedures with respect to a GEM distribution
P. It will be convenient to define the notion of a generator kernel or matrix, these
terms used interchangeably.

Definition 2.5 (Generator kernel). Let G = {Gi,j : i, j ∈ X } be a square matrix
on X . We say that G is a generator kernel if it satisfies Gi,j ≥ 0 for i 6= j
and Gi,i = −

∑
j 6=iGi,j. In addition, we will assume a boundedness condition,

supi |Gi,i| <∞.

Every matrix of the form G = θ(Q−I), where θ > 0 and Q is a stochastic kernel
on X , is a generator matrix. Moreover, we claim that every generator matrix can
be (non-uniquely) decomposed in this fashion: The final condition in Definition
2.5 ensures that all entries are bounded, supl,k |Gl,k| ≤ supi |Gi,i| < ∞, so that a
normalizing θ and Q = I +G/θ can be found.

We will say that G is irreducible, positive-recurrent when an associated Q is
an irreducible, positive-recurrent kernel on X . We also say G has a stationary
distribution µ when µ is a left-eigenvector of G with eigenvalue 0, or equivalently
when µ is a stationary distribution of an associated Q. We note, in an irreducible
generator G, the diagonal entries Gw,w 6= 0, that is there cannot be zero rows in
G, and also any stationary distribution µ is unique, with positive entries, µi > 0
for i ∈X .

We now formally define the notion of a Markov Chain conditional GEM (MC-
cGEM) joint distribution on the space [0, 1]N × X N, endowed with the product
topology and product σ-field formed in terms of the Borel σ-fields on [0, 1] and X .
This topology is discussed more in Subsection 3.4.
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Definition 2.6 (MCcGEM distribution). With respect to an irreducible generator
matrix G, let Z be a homogeneous Markov chain with initial distribution µ and
transition kernel KG on X given by

KG(w, z) =
Gw,z
−Gw,w

1(z 6= w) (2.4)

Consider variables X = {Xj}j≥1, on the same probability space as Z, such that
Xj

∣∣Z = z ∼ Beta(1,−Gzj ,zj ) and {Xj

∣∣Z = z}j≥1 are independent. Define R where

Rj = Xj

∏j−1
i=1 (1−Xi) for j ≥ 1, and observe that R

∣∣Z = z is a disordered GEM
with parameters {−Gzj ,zj}j≥1 (see below).

We say that the pair (R,Z) has MCcGEM(G) distribution with respect to µ.

To see that R
∣∣Z = z is a disordered GEM, we need only observe that R

∣∣Z = z

is a probability distribution on N. Here,
∏
n≥1(1 −Xn)

∣∣(Z = z
)

= 0 a.s. exactly

when
∑
n≥1Xn

∣∣Z = z diverges a.s. As the tail σ-field is trivial, the opposite is

the summability
∑
n≥1Xn

∣∣(Z = z
)
< ∞ a.s. By Kolmogorov’s 3-series theorem,

and that X|Z = z is composed of Beta random variables on [0, 1] with means
{(1−Gzj ,zj )−1}j≥1 and variances dominated by the means, almost sure summability

holds exactly when
∑
j≥1 |G−1

zj ,zj | <∞. For a generator matrix G, this is never the

case as the terms {|Gx,x|}x∈X are uniformly bounded above.
We now describe a relation between GEM distributions and MCcGEM laws

through clumping with respect to a homogeneous Markov chain.

Theorem 2.7 (GEM to MCcGEM). Let θ > 0 and P be GEM(θ) distribution.
Let also T = {Tj}j≥1 be an independent, irreducible homogeneous Markov chain
with kernel Q and initial distribution µ. Recall the associated switch times V, the
clumped distribution PV, and the Markov chain Y near (2.3).

Then, Y is a homogeneous Markov chain with kernel

Kθ(Q−I)(w, z) =
Qw,z

1−Qw,w
1(w 6= z),

and initial distribution µ. Also, PV|Y = y is a disordered GEM with parameters
{θ(1 − Qyj ,yj )}j≥1. Hence, (PV,Y) has MCcGEM(θ(Q − I)) distribution with
respect to µ.

Some cases of interest are developed in the following examples.

Example 2.8. Suppose P ∼ GEM(θ) and that T is a stationary homogeneous
Markov chain with stochastic kernel Q where Q has constant diagonal entries,
Qi,i = q for i ∈ X . By Theorem 2.7, PV

∣∣Y is a disordered GEM sequence with

parameters {θ(1−QYi,Yi
)}i≥1. However, since QYi,Yi

≡ q, we conclude PV
∣∣Y = PV

does not depend on Y and is actually a GEM(θ(1− q)) sequence. In this case, the
pair (PV,Y) consists of independent sequences.

Example 2.9. We now consider a RAM P constructed from independent fractions
Xj ∼ Beta(1/2, 1+j/2) for j ≥ 1. Such a RAM is a member of the well-known
2-parameter GEM(α, θ) family, here with P ∼ GEM(1/2,1). Let T be a sequence
of iid Bernoulli(1/2) variables. Thought of as a Markov chain on the 2-state space
X = {1, 2}, every entry of the stochastic kernel Q of T equals 1/2. Here, the
increments {Vi+1 − Vi : i ≥ 1} do not depend on Y, and hence PV

∣∣Y = PV.
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We now observe that PV is not a RAM with respect to natural fractions XV: If
it were a RAM, consider the fractions XV (cf. given in part (1) of Theorem 2.4 by
substituting V for u). One may compute the covariance Cov[1 − XV

1 , 1 − XV
2 ] ≈

−.005391, and so the fractions XV
1 and XV

2 are not independent, and PV cannot
be an associated RAM. See the extended arXiv version [13] for more details.

2.2. Clumping in Markov chains. The notion of clumping can be applied to
random probability measures on N which are not RAMs. In particular, to capture
the empirical occupation law limit of a Markov chain, we study its local occupations,
or clumps of the sequence indexed in time, as it explores the space X . As noted
in the introduction, we will look at these local occupations in reverse order.

Let M = {Mj}j≥1 be a Markov chain on the discrete space X , which changes
states infinitely often a.s. Recall the definition of the switching times V (cf. (2.3)).
Let Nn = min{i : Vi > n} index the first switch after time n, and note that Nn ↑ ∞
a.s. For 1 < k < Nn ≤ i and j ≥ 1, define

τn,1 = n+ 1− VNn−1, τn,k = VNn−(k−1) − VNn−k, and τn,i = 0.

Also, set

Yn,1 = Mn = MVNn−1
, Yn,k = MVNn−k

, and Yn,i = M1, (2.5)

and Pn,j = τn,j/n. Consider the sequences Pn = 〈Pn,j : j ≥ 1〉 and Yn =
{Yn,j}j≥1.

As a concrete example, consider an observation

M = (1, 1, 1, 6, 6, 1, 3, 3, 3, 5, . . .).

Then for n = 4, the local occupations are summarized by eventually constant se-
quences P4 = (1/4, 3/4, 0, 0, 0, 0, . . .) and Y4 = (6, 1, 1, 1, 1, 1, . . .). Similarly, when
n = 7, we have P7 = (1/7, 1/7, 2/7, 3/7, 0, 0, 0, . . .) and Y7 = (3, 1, 6, 1, 1, 1, 1, . . .).
For a more general depiction, please refer to the figure in Section 1.3.

Hence, for l ∈X , we have generally that

νn(l) :=
1

n

n∑
j=1

δMj
(l) =

∞∑
j=1

Pn,jδYn,j
(l).

In the middle of the display, we see the average Markov chain M occupation of state
l in the first n steps. On the right-hand side, the sum is over local occupations,
or clumps, of states seen in the chain M through n steps. The notion suggested
by this relation is that we may study the limit average occupation law of M by
investigating the limit of the pair (Pn,Yn) describing local occupations.

We now focus on a class of time-inhomogeneous Markov chains for which the
limits of (Pn,Yn) have succinct representation. Specifically, we consider inhomo-
geneous Markov chains M with transition kernels of the form I +G/n, where G is
an irreducible positive-recurrent generator matrix. A finite space X case where G
was taken to have no zero entries at all was studied in [12]. See also [5], [17] for
related developments.

In these chains, states change infinitely often a.s. and the clump lengths Vk−Vk−1

are typically growing with k, unlike for homogeneous Markov chains. In particular,
rather than an ergodic theorem, it was shown in [12] (cf. (1.2)) that the occupation
laws converge weakly to a nontrivial distribution. Here, we consider a countable
space generalization and formulate a characterization of these occupation limits
through the reversed clumping device described above.
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In the following statement, we say that a matrix is non-negative if all its entries
are non-negative. Additionally, weak convergences here are in the sense of finite-
dimensional distributions, the natural sense associated to the product space [0, 1]N×
X N endowed with the product topology.

Theorem 2.10 (Time-inhomogenous MC to MCcGEM). Let G be an irreducible
positive-recurrent generator matrix on X with stationary distribution µ. Let θ > 0
and c ∈ N be such that both c, θ > inf{r > 0 : I+r−1G is non-negative}, and define
Q = I +G/θ.

Define kernels {Kn}n≥1 by

Kn = I +
G

n
1(n > c), (2.6)

and let M be the inhomogeneous Markov chain with initial distribution π and tran-
sition kernels {Kn}n≥1. Define (Pn,Yn) as above with respect to M, and also
define the irreducible generator matrix G′ by

G′ij =
µj
µi
Gji. (2.7)

Then, Yn converges weakly to the homogeneous Markov chain Z with kernel

KG′(w, z) =
µzGz,w
−µwGw,w

1(w 6= z) =
µzQz,w

µw(1−Qw,w)
1(w 6= z),

and initial distribution µ. Also, we have that the conditional law of Pn

∣∣Yn con-
verges weakly to the conditional law of R|Z, where R|Z is a disordered GEM se-
quence with parameters {−GZj ,Zj

= −G′Zj ,Zj
}j≥1. Therefore, the associated pairs

(Pn,Yn) converge weakly to (R,Z) having MCcGEM(G′) distribution with respect
to µ.

Example 2.11. In the context of Example 2.8, suppose G has constant diagonal
entries g. Then, the local occupations of the inhomogeneous Markov chain Pn

would converge to a GEM(−g) distribution, not just conditionally in terms of a
MCcGEM distribution.

We now characterize the limit occupation law of M in a ‘stick-breaking’ form
with respect to either a MCcGEM distribution, or a paired GEM distribution and
homogeneous Markov chain. In the following, weak convergence of νn is with respect
to the product topology on ∆X , the space of probability measures on X (cf.
Subsection 3.4.1).

Theorem 2.12 (Occupation laws to MCcGEM and stick-breaking measures). Con-
sider the setting and assumptions of Theorem 2.10. Observe that µ is a stationary
distribution of Q′ = I + G′/θ, and let T be the homogeneous Markov chain with
kernel Q′ and stationary, initial distribution µ. Let P be a GEM(θ) sequence inde-
pendent of T.

Then, νn =
〈

1
n

∑n
j=1 δMj

(l) : l ∈X
〉

d−→ ν, where

ν
d
=

〈 ∞∑
j=1

RjδZj
(l) : l ∈X

〉
d
=

〈 ∞∑
j=1

PjδTj
(l) : l ∈X

〉
. (2.8)

Reversing the procedure, starting from the stick-breaking process
∑
j≥1 PjδTj

,
we may identify it as the limit of the occupation measure of a matched time-
inhomogeneous Markov chain, an immediate corollary of Theorem 2.12.
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Corollary 2.13 (Stick-breaking measures to Occupation laws). Let θ > 0 and P be

a GEM(θ) sequence. Let also Q̃ be an irreducible stochastic matrix with stationary
distribution µ. Suppose T is an independent homogeneous Markov chain with kernel
Q̃ starting from stationary initial distribution µ.

Then, 〈 ∞∑
j=1

PjδTj
(l) : l ∈X

〉
d
= ν,

where ν
d
= limn→∞ νn is the occupation law defined with respect to an inhomoge-

neous Markov chain M, as in the setting of Theorem 2.10, with respect to generator
matrix G̃′, where G̃ = θ(Q̃− I) and G̃′ij =

(
µj/µi

)
G̃ji for i, j ∈X .

Remark 2.14. We comment that the logarithmic divergence of the partial sums of
the scaling factor n−1 in the definition of Kn is important for the results Theorems
2.10 and 2.12 , although as their proofs show, the form of the factor may be relaxed
to bn where nbn → 1.

2.3. Dirichlet and non-Dirichlet process limits. In a particular case of The-
orem 2.12, we observe that we may recover Dirichlet processes. Suppose µi > 0 for
all i ∈ X . When Q has constant rows equal to µt, the Markov chain T has tran-
sition kernel Q′ = Q, and therefore T is an iid sequence with common distribution
µ. Then, ν =

∑
j≥1 PjδTj

, formed from a GEM(θ) sequence P and an indepen-
dent sequence of iid random variables T, is the ‘stick-breaking’ representation of
a Dirichlet process with parameters θ and measure µ on the discrete space X (cf.
[44], [49]).

However, since the distribution of ν is determined by G, there is a degree of
freedom in specifying G via a pair (θ,Q). Write G in two forms: (1) G = θ(Q −
I) where θ > 0 and Q is stochastic with constant rows µt, and also (2) G =

θ̃(Q̃ − I) where θ̃ > 0, θ 6= θ̃, and Q̃ is stochastic. Then again, Q̃ = Q̃′ and via

Theorem 2.12, we recover a different stick-breaking representation,
∑∞
j=1 P

θ̃
j δT Q̃

j

,

of the Dirichlet process with parameters θ and µ, in terms of GEM(θ̃) sequence Pθ̃

and an independent homogeneous Markov chain TQ̃ with T Q̃1 ∼ µ and kernel Q̃.

Here, Q̃ = θ
θ̃
Q + (1 − θ

θ̃
)I is the weighted average of Q and I. Since Q̃ no

longer has constant rows, TQ̃ no longer consists of iid variables. The chain TQ̃

is, in a sense, a more or less ‘sticky’ version of an iid ∼ µ sequence depending on
the weight of I in the weighted average relation for Q̃. We remark these different
representations of the Dirichlet process appear new.

Finally, we state that the above formulation of G is the only case when ν is a
Dirichlet process; in particular, we observe for generic G that ν is not a Dirichlet
process!

Theorem 2.15 (Non-Dirichlet processes). Consider the setting of Theorem 2.12.
The measure ν is a Dirichlet process exactly when G is of form G = α(Q − I) for
an α > 0 and Q is a ‘constant’ stochastic kernel whose rows all equal µt.

2.4. Self-similarity of the occupation laws. At this point, it is natural to ask
for other ways to understand the laws in Theorem 2.12. Consider the general
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random measure

ν
d
=

〈 ∞∑
j=1

PjδTj
(l) : l ∈X

〉
, (2.9)

where P is a self-similar RAM composed of fractions X, and T is an independent
homogeneous, irreducible, positive-recurrent Markov chain with transition kernel
Q and initial stationary distribution µ. We remark that ν reduces to the measure
in Theorem 2.12 when P ∼ GEM(θ). We first discuss an example.

Example 2.16. As we have noted earlier, if P ∼ GEM(θ) and T is an independent
sequence of iid variables with distribution µ, the measure ν is the ‘stick-breaking’
representation of the Dirichlet process with parameters θ and measure µ on X .
Following [49], a self-similarity relation can be deduced:

ν
d
= X1δT1 + (1−X1)ν̃,

where ν̃
d
= ν is another random measure, and X1 ∼ Beta(1, θ), T1 ∼ µ and ν̃

are independent. From such an equation, the Dirichlet process characterization of
ν with parameters θ and measure µ on X follows from classical considerations.
Moreover, this relation is central in calculation of a posterior distribution, given
say X1, when ν is thought of as a law on priors. See also the recent work [34] and
[48] on related integral characterizations.

We now define a more general notion of self-similarity. This notion is well known
(cf. [25] among other references). With respect to a measurable space (A ,BA ),
let PA be the space of probability measures on (A ,BA ). Let FA be the smallest

σ-field generated by sets of the form
{
{χ : χ(A) < r} : A ∈ BA , r ∈ [0, 1]

}
.

Definition 2.17 (Self-similar random measure). We say that the law of a random
distribution χ on (PA ,FA ) is self-similar with respect to (η,X) if it satisfies

χ(·) d
= Xη(·) + (1−X)χ̃(·), (2.10)

where X is a [0, 1]-valued random variable, η is a random distribution on PA , and
χ̃ is random measure with the same distribution as χ and independent of (η,X),
defined on the space [0, 1]× PA × PA .

The key is that such self-similarity may uniquely identify a distribution. The
following is part of Lemma 3.3 in [49]; see also [25] for more involved statements.
For the convenience of the reader, a proof is given in Subsection 3.5.

Lemma 2.18. There exists a unique in law self-similar random measure χ on
(PA ,FA ) with respect to (η,X) when P(X = 0) < 1.

We now state that ν, defined in (2.9), is self-similar in a certain way. Let
X = {Xj}j≥1 be the iid fractions from which P is constructed. For each (positive-
recurrent) state i of Q, let Ti be a Markov chain with transition kernel Q and
initial value T i1 = i, independent of X and (ν, T1). Define the finite cycle length
and associated clumped residual fraction,

W i := inf{j > 1 : T ij = i} and Xi :=

W i−1∑
j=1

Xj

j−1∏
l=1

(1−Xl).
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Set

ηi :=
(
Xi
)−1

W i−1∑
j=1

[
Xj

j−1∏
l=1

(1−Xl)

]
δT i

j
and

νi := ν
∣∣T1 = i.

Theorem 2.19 (Type of self-similarity). The law of (ν, T1) uniquely satisfies the
following: Marginally, T1 ∼ µ and, for each state i of Q,

νi
d
= Xiηi + (1−Xi)ν̃i, (2.11)

where ν̃i is random measure with the same law as νi, such that ν̃i and (ηi, Xi) are
independent.

2.5. On ‘nonexchangeability’. Let π : N → N be a permutation of N, that is π
is 1 : 1 and onto. We say the π is a finite permutation when all but a finitely many
values in N are fixed points. Let also P = 〈Pi : i ≥ 1〉 be a GEM distribution with
parameter θ. Suppose that T = {Ti}i≥1 is a positive-recurrent, irreducible Markov
chain, starting from stationary distribution µ.

Definition 2.20 (Permutation exchangeability). We say that the representation
of the stick-breaking measure ν(·) =

∑
i≥1 PiδTi

(·) given by (P,T) is permutation
exchangeable when, for each finite permutation π, we have that

ν(·) d
=
∑
i≥1

Pπ(i)δTi(·).

Theorem 2.21 (Type of nonexchangeability). The representation of ν given by
(P,T) is permutation exchangeable if and only if T is a sequence of iid random
variables, in which case ν is a Dirichlet process on N with parameters (µ, θ).

We remark that the Dirichlet process, in view of the discussion in Subsection
2.3, has both permutation exchangeable and permutation non-exchangeable repre-
sentions!

3. Proofs

After some preliminaries, we prove in the succeeding subsections Theorems 2.4,
2.7, 2.10, 2.12, 2.13, 2.19, and then 2.15 and 2.21. We first note a standard algebraic
identity, leading to useful formulas for RAMs. Recall our conventions specified at
the beginning of section 2.

Lemma 3.1. For any sequence of numbers aj and integer k ≥ 1, we have

k∏
j=1

(1− aj) +

k∑
j=1

aj

j−1∏
i=1

(1− ai) = 1. (3.1)

Proof. We proceed by an induction. Equation (3.1) is trivially true for k = 1:
(1− a1) + a1 = 1. If it is true for k − 1, then the left-hand side of (3.1) equals

k−1∏
j=1

(1− aj)− ak
k−1∏
j=1

(1− aj) +

k−1∑
j=1

aj

j−1∏
i=1

(1− ai) + ak

k−1∏
j=1

(1− aj)

=

k−1∏
j=1

(1− aj) +

k−1∑
j=1

aj

j−1∏
i=1

(1− ai) = 1.
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�

Proposition 3.2. Consider a distribution P = 〈Pj : j ≥ 1〉 on N and factors
X = {Xj}j≥1 with

Xj =

{
Pj

(
1−

∑j−1
i=1 Pi

)−1

when
∑j−1
i=1 Pi < 1

1 otherwise.

Then, Pj = Xj

∏j−1
i=1 (1−Xi) for j ≥ 1.

In particular, if P is a RAM constructed from X = {Xj}j≥1, for 1 ≤ k ≤ r, we
have

r∑
j=1

Pj = 1−
r∏
j=1

(1−Xj), and

r∑
j=k

Pj =

k−1∏
j=1

(1−Xj)

1−
r∏
j=k

(1−Xj)

 . (3.2)

Proof. Part (I) follows from (3.1) by an induction: Trivially, P1 = X1. Suppose

Pk = Xk

∏k−1
i=1 (1 − Xi) for k ≤ j and so, by (3.1), we have

∏j
k=1(1 − Xk) =

1−
∑j
k=1 Pk. Then, Pj+1 = Xj+1

(
1−

∑j
k=1 Pk

)
= Xj+1

∏j
k=1(1−Xk).

For Part (II), the lines in (3.2) follow from Part (I) and (3.1). �

3.1. Proof of Theorem 2.4: Clumped RAMs. Let P be a RAM, and let
X = {Xj}j≥1 be the independent proportions from which P is constructed. From

Proposition 3.2, for j ≥ 1, we have Pj = Xj

∏j−1
i=1 (1−Xi).

Let u = {uj}j≥1 be an increasing sequence in N with u1 = 1. Define new
proportions Xu = {Xu

j }j≥1 from X, using Proposition 3.2 again: For j ≥ 1,

Xu
j =

uj+1−1∑
i=uj

Xi

i−1∏
l=uj

(1−Xl) = 1−
uj+1−1∏
i=uj

(1−Xi) (3.3)

Recall that Puj =
∑uj+1−1
i=uj

Pi for j ≥ 1 and Pu = {Puj }j≥1.

We now proceed to the proofs of Parts (1)-(4).

3.1.1. Proof of Part (1). We now verify that Pu is a RAM with respect to fractions
Xu: For 1 ≤ j, noting (3.3), write

Puj =

uj+1−1∑
i=uj

Pi =

uj+1−1∑
i=uj

Xi

i−1∏
l=1

(1−Xl)

=

uj+1−1∑
i=uj

Xi

i−1∏
l=uj

(1−Xl)

 uj−1∏
l=1

(1−Xl)

= Xu
j

uj−1∏
l=1

(1−Xl)

= Xu
j

[
u2−1∏
l=u1

(1−Xl)

]
· · ·

 uj−1∏
l=uj−1

(1−Xl)

 = Xu
j

j−1∏
i=1

(1−Xu
i ).

Since X = {Xj}j≥1 is composed of independent variables, so is Xu = {Xu
j }j≥1.

Hence, as
∑
j≥1 P

u
j =

∑
j≥1 Pj

a.s.
= 1, by definition, Pu is a RAM constructed from

independent proportions Xu. �
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3.1.2. Proof of Part (2). Let y = {yi}i≥1 be a possible sequence for Y in X . For
1 ≤ n, the event that Yi = yi for 1 ≤ i ≤ n means the chain T starts in y1, staying
there until time V2, when it switches to y2, remaining there until time V3, and so
on up to time Vn when it moves into yn. Write for 1 ≤ n that

P (Yi = yi : 1 ≤ i ≤ n)

=

∞∑
l1=1

· · ·
∞∑

ln−1=1

P (Yi = yi : 1 ≤ i ≤ n; Vi+1 − Vi = li : 1 ≤ i ≤ n− 1)

=

∞∑
l1=1

· · ·
∞∑

ln−1=1

P(T1 = y1)

n−1∏
i=1

Qli−1
yiyi Qyiyi+1

= P(T1 = y1)

n−1∏
i=1

Qyiyi+1

1−Qyiyi
= P(T1 = y1)

n−1∏
i=1

K(yi, yi+1). (3.4)

We conclude therefore that Y is a Markov chain with kernel K. �

3.1.3. Proof of Part (3). Recall the definition of the increasing random sequence
V with V1 = 1 (cf. (2.3)), and PV. For each realization, V is a function of the
Markov sequence T. Therefore, conditional on T given the possible trajectory t
with respect to T, it follows immediately from the proved Part (1) that PV

∣∣T = t
is a RAM. �

3.1.4. Proof of Part (4). If P is a RAM, we have
∑
i≥1 P

V
i =

∑
i≥1 Pi = 1 a.s.

Hence, we need only show the associated fractions XV are conditionally indepen-
dent to deduce that PV

∣∣Y = y is a RAM.
Let y be a possible sequence with respect to Y. For 1 ≤ m ≤ n, consider the

fixed times Vi+1 − Vi = li ∈ N for 1 ≤ i ≤ m. Noting (3.4), and summing over
Vi+1 − Vi = li for m+ 1 ≤ i ≤ n, we have

P (Yi = yi : 1 ≤ i ≤ n+ 1, and Vi+1 − Vi = li : 1 ≤ i ≤ m)

= P (T1 = y1)

[
m∏
i=1

Qli−1
yi,yiQyi,yi+1

] ∞∑
lm+1=1

· · ·
∞∑
ln=1

n∏
i=m+1

Qli−1
yi,yiQyi,yi+1

= P (T1 = y1)

[
m∏
i=1

Qli−1
yi,yiQyi,yi+1

]
n∏

i=m+1

∞∑
li=1

Qli−1
yi,yiQyi,yi+1

= P (T1 = y1)

[
n∏
i=1

Qyi,yi+1

1−Qyi,yi

]
m∏
i=1

Qli−1
yi,yi(1−Qyi,yi)

= P (Yi = yi : 1 ≤ i ≤ n+ 1)

m∏
i=1

Qli−1
yi,yi(1−Qyi,yi). (3.5)

Recall (3.3), and consider the variables XV = {XV
j }j≥1 where

XV
j =

Vj+1−1∑
i=Vj

Xi

i−1∏
l=Vj

(1−Xl) = 1−
Vj+1−1∏
i=Vj

(1−Xi) (3.6)

When X is composed of iid variables, that is P is a self-similar RAM, we will argue
now that the fractions XV

∣∣Y = y form a conditionally independent sequence, and

therefore PV
∣∣Y = y is RAM.
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Let r ≥ n ≥ 1, and 〈αi : 1 ≤ i ≤ n〉 ∈ (0, 1)n. Write

P

(
1−XV

j ≤ αj : 1 ≤ j ≤ n
∣∣∣∣Yj = yj : 1 ≤ j ≤ r + 1

)
=

∞∑
l1=1

· · ·
∞∑
ln=1

P
(

1−XV
j ≤ αj : 1 ≤ j ≤ n

∣∣∣∣
{Vi+1 − Vi = li, 1 ≤ i ≤ n} ∩ {Yi = yi : 1 ≤ i ≤ r + 1}

)
×P

(
Vi+1 − Vi = li, 1 ≤ i ≤ n

∣∣∣∣Yj = yj : 1 ≤ j ≤ r + 1

)
. (3.7)

Relative to {lj}nj=1, define the sequence u = {uj}n+1
j=1 where u1 = 1 and uj =

1 +
∑j−1
k=1 lk for 2 ≤ j ≤ n + 1, which marks the first n times when T changes

states. In particular, on the event
{
Vi+1 − Vi = li, 1 ≤ i ≤ n

}
, we have Vj = uj

for 1 ≤ j ≤ n + 1. Given this event, from (3.3), the fractions {XV
j }nj=1 satisfy

1−XV
j =

∏uj+1−1
k=uj

(1−Xk) for 1 ≤ j ≤ n and are independent, no longer depending

on Y. The last display (3.7), noting (3.5), equals

∞∑
l1=1

· · ·
∞∑
ln=1

P

uj+1−1∏
k=uj

(1−Xk) ≤ αj : 1 ≤ j ≤ n

 n∏
j=1

Qlj−1
yjyj (1−Qyjyj )


=

∞∑
l1=1

· · ·
∞∑
ln=1

n∏
j=1

P

uj+1−1∏
k=uj

(1−Xk) ≤ αj

Qlj−1
yjyj (1−Qyjyj )

=

∞∑
l1=1

· · ·
∞∑
ln=1

n∏
j=1

P

 lj∏
k=1

(1−Xk) ≤ αj

Qlj−1
yjyj (1−Qyjyj )

=

n∏
j=1

∞∑
lj=1

P

 lj∏
k=1

(1−Xk) ≤ αj

Qlj−1
yjyj (1−Qyjyj ), (3.8)

in factored form. Therefore, the fractions XV are conditionally independent as
desired and PV

∣∣Y = y is a RAM. �

3.2. Proof of Theorem 2.7: GEM to MCcGEM. Let P = 〈Pi : i ≥ 1〉
be a GEM(θ) sequence with respect to corresponding iid Beta(1, θ) proportions
X = {Xj}j≥1. Also, let T be an independent Markov chain on X , starting from
stationary distribution µ, with homogeneous, irreducible kernel Q.

In Part (2) of Theorem 2.4, we showed that the associated sequence Y is a
Markov chain with transition kernel K on X such that

K(z, w) =
Qz,w

1−Qz,z
1(z 6= w)

By inspection, the kernel K = KG, in the definition of the MCcGEM distribution
(2.4), where G = θ(Q− I).

Recall now the switch times V with respect to the chain T (cf. (2.3)). In Part (4)
of Theorem 2.4, as P is a self-similar RAM, we proved that PV, conditional on Y,
is a RAM. In particular, we showed that the associated fractions XV = {XV

j }j≥1,
given Y, are independent variables. Hence, to identify the joint distribution of
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(PV,Y), we need only find the conditional distribution of each fraction XV
j

∣∣Y, for
j ≥ 1.

To this end, let y be a possible sequence for Y. Recall from (3.6) that XV
j =

1−
∏Vj+1−1
k=Vj

(1−Xk). Write, for j < n and m ≥ 1,

E

[
(1−XV

j )m
∣∣∣∣Yi = yi : 1 ≤ i ≤ n

]

=E

[
E

[
Vj+1−1∏
k=Vj

(1−Xk)m
∣∣∣∣Yi = yi, Vi+1 − Vi : 1 ≤ i ≤ n

]∣∣∣∣Yi = yi : 1 ≤ i ≤ n

]
.

Note now, if Z is a Beta(1, α) random variable, then E [(1−Z)m] = α
α+m . Then,

by the independence of X and T, noting from (3.5) that P(Vj+1−Vj = `|Yi = yi :
1 ≤ i ≤ n) = Q`−1

yi,yi(1−Qyi,yi), the above display equals

E

[(
θ

θ +m

)Vj+1−Vj
∣∣∣∣Yi = yi : 1 ≤ i ≤ n

]

=

∞∑
l=1

(
θ

θ +m

)l
Ql−1
yj ,yj (1−Qyj ,yj ) =

θ(1−Qyj ,yj )

θ(1−Qyj ,yj ) +m
.

Thus, for all j ≥ 1, we see that XV
j

∣∣∣∣Y = y is a Beta(1, θ(1 − Qyj ,yj )) random

variable. Hence PV
∣∣Y = y is a disordered GEM with parameters θ(1 −Qyj ,yj ) =

−Gyj ,yj for j ≥ 1. Therefore, we conclude that (PV,Y) has a MCcGEM(θ(Q− I))
distribution with respect to µ. �

3.3. Proof of Theorem 2.10: Time inhomogeneous MC to MCcGEM. We
first specify certain asymptotics which will be helpful, before going to the main
body of the proof in Subsection 3.3.1.

Lemma 3.3. For γ > 0 and integers 1 ≤ m ≤ n, let

fnm(γ) =

n∏
j=m+1

(
1− γ

j

)
.

Then, for 0 < a < b and integers c ≥ 0, we have

lim
n→∞

fnc (γ)nγ =
Γ(c+ 1)

Γ(c+ 1− γ)
and lim

n→∞
f
bbnc
banc(γ)

(
b

a

)γ
= 1.

Proof. Write

fnl (γ) =

n∏
j=l+1

(
1− γ

j

)
=

∏n
j=l(j − γ)∏n

j=l j
=

Γ(n+ 1− γ)Γ(l + 1)

Γ(n+ 1)Γ(l + 1− γ)
.

By Stirling’s approximation, for u, v ∈ R, we have Γ(n+u)
Γ(n+v)n

v−u → 1 as n → ∞,

from which the desired asymptotics follow immediately. �

Proposition 3.4. Let r ≥ 1 be an integer. Let also {ai}rj=1, {bi}ri=1, and {γi}ri=1

be collections of positive numbers such that aj < bj for 1 ≤ j ≤ r. Then,

lim
s0→∞

db1s0e−1∑
s1=da1s0e

· · ·
dbrsr−1e−1∑
sr=darsr−1e

 r∏
j=1

sj
−1fbbjsj−1c−1

sj (γj)
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=

r∏
j=1

γ−1
j

(
1−

(aj
bj

)γj)
.

Proof. The argument follows by inputting the asymptotics in Lemma 3.3. We show
only the case r = 1, as the extension to r > 1 is straightforward.

Again, by Stirling’s approximation, limn→∞
Γ(n+u)
Γ(n+v)n

v−u = 1 for each u, v ∈ R.

Then, for ε > 0 and all large n, we have

(1− ε)nu−v ≤ Γ(n+ u)

Γ(n+ v)
≤ (1 + ε)nu−v.

Hence, for ε, a, b, γ > 0 with a < b, and sufficiently large n, we estimate

(1− ε)2

bbnc−1∑
s=banc

bbnc−γsγ−1

≤
bbnc−1∑
s=banc

Γ(bbnc − γ)Γ(s)

Γ(bbnc)Γ(s+ 1− γ)
=

bbnc−1∑
s=banc

s−1fbbnc−1
s (γ)

≤ (1 + ε)2

bbnc−1∑
s=banc

bbnc−γsγ−1. (3.9)

Now, by the monotonicity of sγ−1, we have for n > 2/a that
∑bbnc−1
s=banc s

γ−1 is

between the integrals
∫ bbnc−1

banc−1
sγ−1ds and

∫ bbnc
banc s

γ−1ds. We may compute

lim
n→∞

bbnc−γ
∫ bbnc−1

banc−1

sγ−1ds

= lim
n→∞

bbnc−γ
∫ bbnc
banc

sγ−1ds =
1

γ

(
1−

(a
b

)γ)
.

Then, inserting into (3.9), the proposition follows for r = 1. �

We now show a form of ‘weak ergodicity’ for the Markov chain M.

Lemma 3.5. For an irreducible positive-recurrent generator matrix G, let θ > 0,
and c ≥ 1 be an integer, such that c, θ > inf{r > 0 : I + r−1G is non-negative}.
Suppose µ is a stationary distribution of Q, and let π be a stochastic vector. Recall
that Kn = I + G

n 1(n > c) for n ≥ 1 (cf. (2.6)).

Then, as n → ∞, both (a) (µn)t := πt
∏n
i=1Ki → µt, and (b)

(
µn
)t
Q → µt,

hold entry-wise.

Proof. We separate into four steps. Recall that since G is irreducible, positive-
recurrent that Q is irreducible, positive-recurrent.

Step 1. Fix an integer m ≥ max(c, θ) and write the stochastic matrix,
n∏

j=m+1

Kj =

n∏
j=m+1

[(
1− θ

j

)
I +

θ

j
Q

]

=

 n∏
j=m+1

(
1− θ

j

)I +

n−m∑
i=1

Qi
∑

m<j1<···<ji≤n

i∏
l=1

θ

jl − θ

 ,
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as a polynomial in Q with positive coefficients.
Step 2. We now show that any fixed degree coefficient of the polynomial vanishes

as n → ∞. For each i, denote the nth coefficient of Qi by [Qi]n. By Lemma 3.3,
[Q0]n = fnm(θ) → 0 as n → ∞. Also, as fnm(θ) ∼ n−θ by Lemma 3.3, we have for
i ≥ 1 that

[Qi]n =

 n∏
j=m+1

(
1− θ

j

) ∑
m<j1<...<ji≤n

i∏
l=1

θ

jl − θ

= θifnm(θ)

n−i+1∑
j1=m+1

1

j1 − θ

n−i+2∑
j2=j1+1

1

j2 − θ
· · ·

n∑
ji=ji−1+1

1

ji − θ

≤θifnm(θ)

[
ln

(
n− θ

m+ 1− θ

)
+

1

m+ 1− θ

]i
≤ C(θ,m)n−θ

[
ln

(
n− θ

m+ 1− θ

)]i
n→∞−−−−→ 0.

Step 3. For each x ∈ X , let ex denote the vector in RX with a 1 in the entry
corresponding to state x and 0’s elsewhere. Since Q is a stochastic kernel, observe
for each x ∈X and n ≥ m that

1 =
∑
z∈X

etx

 n∏
j=m+1

Kj

 ez =

n−m∑
i=0

[Qi]n
∑
z∈X

etxQ
iez =

n−m∑
i=0

[Qi]n.

Also, as µ is a stationary eigenvector of Q, note that µ is also a stationary
eigenvector of {Kn}n≥1.

Recall that µm = πt
∏m
i=1Ki. We have that Q is irreducible, positive-recurrent,

and since θ > inf{r > 0 : I+r−1G is non-negative} we note Q(a, a) > 0 for a ∈X ,

and so Q is aperiodic also. Then, we have the convergence (µm − µ)
t
Qn → 0.

With these observations, for each x ∈X and positive integers n and R < n−m,
we may bound

|µnl − µl| =

∣∣∣∣∣∣(µm − µ)t

 n∏
j=m+1

Kj

 el
∣∣∣∣∣∣

=
∣∣∣ n−m∑
i=0

[Qi]n(µm − µ)tQiel

∣∣∣
≤

R∑
i=0

[Qi]n +
∣∣∣ n−m∑
i=R+1

[Qi]n(µm − µ)tQiel

∣∣∣
≤

R∑
i=0

[Qi]n + max
r>R

∣∣(µm − µ)tQrel
∣∣ .

As n → ∞, the last display converges to maxr>R
∣∣ (µm − µ)

T
Qrel

∣∣, by the calcu-
lation in Step 2, and in turn vanishes as R→∞. Hence, the limit (a) follows.
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Step 4. Finally, by Fatou’s lemma, the proved first limit (a), and that µ is a
stationary vector of Q, we have for each j ∈X that

lim inf
n→∞

(
µn
)t
Qej = lim inf

n→∞

∑
i∈X

µni Qi,j ≥
∑
i∈X

µiQi,j = µj . (3.10)

Now, suppose for a particular k ∈ X that lim supn→∞
(
µn
)t
Qek = L > µk.

Then, as
(
µn
)t
Q is a stochastic vector, we would have for each n ≥ 1 that

1 = lim sup
n→∞

∑
l∈X

(
µn
)t
Qel ≥ L+ lim inf

n→∞

∑
l 6=k

(
µn
)t
Qel.

But, as µ is a stochastic vector and noting (3.10), we have by Fatou’s lemma again
that the last display is larger than L+

∑
l 6=k µl > 1, a contradiction, and the second

limit (b) holds. �

3.3.1. Completion of the proof of Theorem 2.10. We will argue in steps.
Step 1. Recall the definition of kernel G′ (cf. (2.7)). We now argue that G′

is a generator matrix: As µ is a stationary vector of Q and G = θ(Q − I), we
have µtG = 0 is the zero vector. Since G is a generator matrix, we have G′i,j =

(µj/µi)Gj,i ≥ 0 for i 6= j, and
∑
j G
′
i,j = 1

µi

∑
j µjGj,i = 0. Moreover,

sup
i
|G′i,i| = sup

i
|Gi,i| < ∞.

Step 2. Recall the Markov chain M, with transition kernels {Kn = I + G
n 1(n >

c)}n≥1 (cf. (2.6)), starting from π. Recall the associated variable Nn and sequence
Pn.

Now, for i ≥ Nn > j ≥ 1 define

Xn,j = Pn,j/

(
1−

j−1∑
i=1

Pn,i

)
and Xn,i = 1. (3.11)

The variables Xn = {Xn,i}i≥1 are the associated fractions to the distribution Pn

on N and, by Proposition 3.2, for j ≥ 1,

Pn,j = Xn,j

j−1∏
i=1

(1−Xn,i) and 1−
j−1∑
i=1

Pn,i =

j−1∏
i=1

(1−Xn,i) . (3.12)

For j ≥ 0, also define

Sj = n

(
1−

j∑
i=1

Pn,i

)
= n

j∏
i=1

(1−Xn,i) . (3.13)

In terms of the switching times V, and the first time Nn that the chain M switches
after time n, we have S0 = n, Sj = VNn−j − 1 for 1 ≤ j ≤ Nn − 1, and Sj = 0
for j ≥ Nn. Recall also that τn,j = nPn,j for j ≥ 1. In words, {Sj} are the times
before time n at which the chain switches states when considered in reverse order,
and {τn,j} are the lengths of the associated sojourns in the figure below.

...

...

1 S3 S2 S1 S0 = n

τn,1τn,2τn,3
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Step 3. Recall the sequence Yn given in (2.5), where Yn,j = MVNn−j
for 1 ≤ j ≤

Nn − 1 and Yn,i = M1 for i ≥ Nn. We now aim to compute the finite dimensional
distributions of (Pn,Yn) or equivalently of (Xn,Yn). To this end, fix the integer

r ≥ 1, and consider numbers {βj}rj=1 ∈ (0, 1)r such that sj := n
∏j
i=1(1− βi) ∈ N,

for 1 ≤ j ≤ r, are all integers. Set also s0 = n and recall S0 = n.
Note from (3.12) and (3.13) that

Xn,j = βj for 1 ≤ j ≤ r ⇐⇒ Sj = sj = n

j∏
i=1

(1− βi) for 1 ≤ j ≤ r

⇐⇒ τn,j = nPn,j = sj−1 − sj for 1 ≤ j ≤ r.
Then, with respect to a possible sequence y, we have

P (Xn,j = βj , Yn,j = yj : 1 ≤ j ≤ r) (3.14)

=P (τn,j = sj−1 − sj , Yn,j = yj : 1 ≤ j ≤ r)

=
∑

yr+1∈X :

yr+1 6=yr

P(Msr = yr+1)

r∏
j=1

P
(
Msj−1

= · · · = Msj+1 = yj
∣∣Msj = yj+1

)
.

Note the computation for c ≤ l < n and z 6= y,

P(Mn = · · · = Ml+1 = y|Ml = z)

=
Gz,y
l

n−1∏
j=l+1

(
1 +

Gy,y
j

)
=
Gz,y
l
fn−1
l (−Gy,y) .

Recall also that µsy = P (Ms = y). Since G = θ(Q− I), we observe∑
y∈X :

y 6=z

µsyGy,z = θ
∑
y∈X :

y 6=z

µsy (Q− I)y,z

= θ
∑
y∈X :

y 6=z

µsyQy,z = θ
[(
µs
)t
Qez − µszQz,z

]
.

Then, (3.14) equals∑
yr+1∈X :

yr+1 6=yr

µsryr+1

r∏
j=1

Gyj+1,yj

sj
fsj−1−1
sj

(
−Gyj ,yj

)

=
[
(µsr )tQeyr − µsryrQyr,yr

] θ
sr
fsr−1−1
sr (−Gyr,yr ) (3.15)

×
r−1∏
j=1

Gyj+1,yj

sj
fsj−1−1
sj

(
−Gyj ,yj

)
Step 4. We now sum the display (3.15) over all appropriate values of {sj}rj=1

such that 0 < Xn,j ≤ βj for 1 ≤ j ≤ r < Nn, where we recall Nn is the time the
chain switches after time n. Then, we have from (3.13) that

1 ≤ τn,j = nPn,j = Sj−1 − Sj = Xn,jSj−1. (3.16)

Moreover, also from (3.13), we have sr ≥ n
∏r
j=1(1 − βj) diverges to infinity as

n→∞.
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Recall s0 = n and limn→∞Nn =∞ a.s. Then, with equation (3.16) in hand,

P (0 < Xn,j ≤ βj , Yn,j = yj : 1 ≤ j ≤ r)
= P (1 ≤ τn,j = Sj−1 − Sj ≤ Sj−1βj , Yn,j = yj : 1 ≤ j ≤ r)
= P (Sj−1(1− βj) ≤ Sj ≤ Sj−1 − 1, Yn,j = yj : 1 ≤ j ≤ r)

=

s0−1∑
s1=ds0(1−β1)e

· · ·
sr−1−1∑

sr=dsr−1(1−βr)e

[
(µsr )tQeyr − µsryrQyr,yr

]
× θ

sr
fsr−1−1
sr (−Gyr,yr )

r−1∏
j=1

Gyj+1,yj

sj
fsj−1−1
sj

(
−Gyj ,yj

)
.

Step 5. From (3.13), the sum index sr ≥ n
∏r
j=1(1 − βj) diverges to infinity as

n→∞. Also, by Lemma 3.5, we have lims→∞ µsy = µy and lims→∞
(
µs
)t
Qey = µy

for each y ∈X . Therefore, as n→∞, we have

θ
[(
µsr
)t
Qeyr − µsryrQyr,yr

]
→ θµyr (1−Qyr,yr ) = µyr

(
−Gyr,yr

)
.

Note that −Gi,i > 0 for each i ∈X since by assumption G is irreducible and so
has no zero rows. Thus, by Proposition 3.4, we have

lim
n→∞

P (0 < Xn,j ≤ βj , Yn,j = yj : 1 ≤ j ≤ r)

=µyr (−Gyr,yr )

r−1∏
j=1

Gyj+1,yj

× lim
n→∞

s0−1∑
s1=ds0(1−β1)e

· · ·
sr−1−1∑

sr=dsr−1(1−βr)e

r∏
j=1

sj
−1fsj−1−1

sj

(
−Gyj ,yj

)

=µyr (−Gyr,yr )

r−1∏
j=1

Gyj+1,yj

 r∏
j=1

(
−Gyj ,yj

)−1
(

1− (1− βj)−Gyj,yj

)
=µy1

r−1∏
j=1

µyj+1

µyj

Gyj+1,yj

−Gyj ,yj

 r∏
j=1

(
1− (1− βj)−Gyj,yj

)
=µy1

r−1∏
j=1

G′yj ,yj+1

−G′yj ,yj

 r∏
j=1

(
1− (1− βj)

−G′yj,yj
) ,

decomposed as a product of i) the transition probability of the chain Z, with kernel
KG′ (cf. (2.4)) and initial distribution µ, running through states {yj}rj=1, and
ii) the distribution functions of independent Beta(1,−G′yj ,yj ) random variables for

1 ≤ j ≤ r. Hence, the finite dimensional distributional convergence of (Pn,Yn) as
n→∞ is established. �

3.4. Proof of Theorem 2.12: Occupation laws to MCcGEM and stick-
breaking measures. In the setting of Theorems 2.10 and 2.12, consider the pairs
{(Pn,Yn)}n≥1, (R,Z), and (P,T). These objects belong to [0, 1]N×X N. We now
discuss the topology on this space and its relatives, before going to the proof of
(2.8) in Subsection 3.4.2.



24 ZACH DIETZ, WILLIAM LIPPITT, SUNDER SETHURAMAN

3.4.1. Topology. We endow the space [0, 1]N with a standard product metric ρ1 and
σ-field, generated in terms of this metric, which yields the usual product σ-field
built from the Borel σ-fields on copies of [0, 1]: For p, p′ ∈ [0, 1]N,

ρ1(p, p′) =

∞∑
n=1

2−n|pj − p′j |.

Consider now the metric ρ on [0, 1]N ×X N defined as follows:
For (p, y), (p′, y′) ∈ [0, 1]N ×X N,

ρ((p, y), (p′, y′)) =

∞∑
n=1

2−n
[
|pj − p′j |+ |yj − y′j |

]
.

The corresponding σ-field on [0, 1]N ×X N, generated by ρ, is the usual product
σ-field formed from the Borel σ-fields on copies of [0, 1] and X . Importantly, weak
convergence of probability measures on [0, 1]N×X N translates to finite dimensional
convergence of these laws. Moreover, ([0, 1]N × X N, ρ) is a complete, separable
metric space.

Recall that ∆∞ is the collection of all probabilities on N:

∆∞ =

p ∈ [0, 1]N :

∞∑
j=1

pj = 1

 .

Since

∆∞ =

∞⋂
n=1

∞⋂
M=1

∞⋃
m=M

p ∈ [0, 1]N : 1− 1

n
≤

m∑
j=1

pj ≤ 1 +
1

n

 ,

∆∞ ×X N is a measurable set in [0, 1]N ×X N. We may endow ∆∞ ×X N with
the restriction of the metric ρ and the σ-field generated from the associated metric
topology.

For a fixed point (p′, y′) ∈ ∆∞ ×X N, the projection map f : [0, 1]N ×X N →
∆∞ ×X N, given by

f(p, y) =

{
(p, y) : (p, y) ∈ ∆∞ ×X N

(p′, y′) : (p, y) /∈ ∆∞ ×X N ,

is measurable, and also continuous on the subset ∆∞ × X N. Now, denote the
collection of probabilities on X ,

∆X =

{
p ∈ [0, 1]X :

∑
l∈X

pl = 1

}
,

and endow it with the metric ρ2(p, p′) =
∑
x∈X 2−x|px − p′x|, and the associated

Borel σ-field. Define g : ∆∞ ×X N → ∆X by

g((p, y)) =

〈 ∞∑
j=1

pj1l(yj) : l ∈X

〉
.

Then, g is a continuous and therefore measurable function on ∆∞×X N: Indeed, if
{(pn, yn)}n≥1 and (p, y) belong to ∆X×X N, and the finite dimensional convergence
(pn, yn)→ (p, y) holds, for each l ∈X , we have

∑
j≥A p

n
j 1l(y

n
j ) ≤

∑
j≥A p

n
j = 1−
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j<A p

n
j
n→∞−→ 1−

∑
j<A pj . The claim now follows since (1)

∑
j<A p

n
j 1l(y

n
j )

n→∞−−−−→∑
j<A pj1l(yj)

A→∞−−−−→ g((p, y)), and (2)
∑
j≥A pj

A→∞−−−−→ 1.

3.4.2. Proof of (2.8). First, we verify that {(Pn,Yn)}n≥1, (R,Z) and (P,T) be-
long almost surely to ∆∞×X N . Clearly, {(Pn,Yn)}n≥1 surely lives in ∆∞×X N

by construction. Also, (R,Z) and (P,T) lie almost surely in ∆∞ ×X N since, by
Theorem 2.10 and the assumptions of Theorem 2.12, we have that R and P are

RAMs, and so
∑∞
j=1Rj

d
=
∑∞
j=1 Pj

a.s.
= 1.

Now, from the finite dimensional or in other words weak convergence of (Pn,Yn)
to (R,Z) in Theorem 2.10, we have νn = g

(
(Pn,Yn)

)
= g ◦ f

(
(Pn,Yn)

)
converges

weakly to ν = g ◦ f
(
(R,Z)

)
by the continuous mapping theorem, and so the left

equality in (2.8) holds.
On the other hand, with respect to (P,T), define PV and Y as in the setting of

Theorem 2.7. Recall that T is a Markov chain with kernel Q′ = I+G′/θ and initial
stationary distribution µ. Then, by Theorem 2.7, noting that G′ = θ(Q′ − I), we

have that (PV,Y) has a MCcGEM(G′) distribution. Hence, (PV,Y)
d
= (R,Z).

Since almost surely, by ‘unclumping’,

g ◦ f
(
(PV,Y)

)
= g ◦ f

(
(P,T)

)
=

〈∑
j≥1

Pj1l(Tj) : l ∈X

〉
,

we have g ◦ f
(
(R,Z)

) d
= g ◦ f

(
(P,T)

)
, and the right equality of (2.8) holds. �

3.5. Proof of Theorem 2.19: Type of self-similarity. We first give a proof of
Lemma 2.18, before going to the main argument in Subsection 3.5.2

3.5.1. Proof of Lemma 2.18. Let {(ηj , Xj)}j≥1 be i.i.d. copies of (η,X), indepen-
dent of (η,X), all on a common probability space.

Existence: Let χ(·) =
∑∞
j=1 ηj(·)Xj

∏j−1
i=1 (1 − Xi). Since P(X = 0) < 1, we

have
∏
j≥1(1 −Xj) = 0 a.s., and so

〈
Xj

∏j−1
i=1 (1 −Xi) : j ≥ 1

〉
is a RAM. Hence,

χ is a random probability measure on A as χ(A ) =
∑∞
j=1Xj

∏j−1
i=1 (1−Xi)

a.s.
= 1.

Moreover, (2.10) holds straightfowardly:

χ = X1η1 + (1−X1)

 ∞∑
j=2

ηj(·)Xj

j−1∏
i=2

(1−Xi)

 d
= X1η1 + (1−X1)χ̃,

where χ̃ has the same law as χ and is independent of (X1, η1).
Uniqueness: Suppose χa and χb both satisfy the self-similarity equation (2.10).

On a probability space, where {(ηj , Xj)}j≥1, χa and χb are independent, define a
sequence of measures: χa1 = χa, χb1 = χb and, for j ≥ 1,

χaj+1 = Xjηj + (1−Xj)χ
a
j and χbj+1 = Xjηj + (1−Xj)χ

b
j .

By construction, {χaj }j≥1 and {χbj}j≥1 are two sequences of identically distributed

random measures distributed as χa and χb respectively.
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We note again that
∏
j≥1(1−Xj) = 0 a.s. as P(X = 0) < 1. Then, in terms of

the variational norm ‖ · ‖,∥∥χaj+1 − χbj+1

∥∥ = |1−Xj |
∥∥χaj − χbj∥∥

=

[
j∏
i=1

|1−Xi|

]∥∥χa1 − χb1∥∥ ≤ j∏
i=1

|1−Xi| ,

which vanishes a.s. as j →∞. Hence, χa
d
= χb. �

3.5.2. Completion of the proof of Theorem 2.19. Recall our conventions at the be-
ginning of Section 2 and that X = {Xj}j≥1 is a collection of iid variables, and T
is the homogeneous, irreducible Markov chain with kernel Q and initial stationary
distribution µ. Let P = 〈Pj : j ≥ 1〉 be the RAM constructed from X. For each
state i of Q, let Ti = T

∣∣T1 = i be the Markov chain with transition kernel Q and

initial value T i1 = i. Since i is recurrent, the time W i = inf{l > 1 : T il = i} is a.s.
finite. Recall

Xi =

W i−1∑
l=1

Xl

l−1∏
n=1

(1−Xn) =

W i−1∑
l=1

Pl = 1−
W i−1∏
l=1

(1−Xl). (3.17)

Recall also ηi =
(
Xi
)−1∑W i−1

l=1

[
Xl

∏l−1
n=1(1−Xn)

]
δT i

l
.

We now rewrite the measure νi = ν
∣∣T1 = i as follows:

νi =
∑
l≥1

PlδT i
l

=

W i−1∑
l=1

PlδT i
l

+
∑
l≥W i

PlδT i
l

= Xiηi +
(
1−Xi

) ∑
l≥W i

Pl
1−Xi

δT i
l
. (3.18)

Then, by (3.17) and Proposition 3.2 for j ≥ 1 we have

Pj−1+W i

1−Xi
=
Xj−1+W i

∏j−1+W i−1
l=1 (1−Xl)∏W i−1

l=1 (1−Xl)

= Xj−1+W i

j−1+W i−1∏
l=W i

(1−Xl) = Xj−1+W i

j−1∏
l=1

(1−Xl−1+W i).

Hence, as X is composed of iid variables, independent of Ti and therefore W i, we
see that 〈

Pj−1+W i

1−Xi
= Xj−1+W i

j−1∏
l=1

(1−Xl−1+W i) : j ≥ 1

〉

d
=

〈
Xj

j−1∏
l=1

(1−Xl) : j ≥ 1

〉
= P.

Clearly, as the chain starts over again at location i, {T il }l≥W i
d
= Ti.

Moreover, by conditioning on the value of W i and noting that X and Ti are

independent, the sequences
〈Pj−1+Wi

1−Xi : j ≥ 1
〉

and {T il }l≥W i are independent.

Similarly, we see that the sum
∑
l≥W i

Pl

1−Xi δT i
l
, which depends only on variables
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{Xk}k≥W i and {T ik}k≥W i indexed beyond the first cycle, is independent of the pair

(Xi, ηi). In particular, the sum ν̃i :=
∑
l≥W i

Pl

1−Xi δT i
l

d
= νi.

Hence, from these observations, (3.18) represents the sought after self-similarity
equation (2.11).

Finally, a distribution νi satisfying (2.11) is unique by Lemma 2.18 since Xi
1 ∈

(0, 1] a.s. Also, by assumption, T1 ∼ µ where µi > 0 for each i ∈ X and each i is
recurrent. Therefore, as T1 necessarily is a recurrent state, the distribution of the
pair (ν, T1) is also unique. �

3.6. Proof of Theorem 2.15: Non-Dirichlet processes. One way is immediate
by the initial remarks in Subsection 2.3: When G = α(Q− I) for an α > 0 and Q
is a ‘constant’ kernel with rows equal to µt, then ν is a Dirichlet (α, µ) process.

We now show this is a necessary condition. Recall that G′x,y =
(
µy/µx

)
Gj,i, and

so G′ = D−1GtD where D is a diagonal kernel with diagonal entries {µi} and Gt

is the transpose of G. From the stick-breaking representation of ν =
∑
i≥1 PiδTi

,

we may compute first and second moments of ν(A) for A ⊂X . Indeed, recall that

Pi = Xi

∏i−1
`=1(1 − X`) where {Xi} are iid Beta(1, θ) r.v.’s, and T is an indepen-

dent Markov chain with transition kernel Q′ = I + G′/θ starting from stationary
distribution µ.

Then, E[ν(A)] = µ(A). Also, after a computation in terms of a Beta(1, θ) r.v.
X where E[X] = (1 + θ)−1, E[(1−X)] = θ(1 + θ)−1, E[X2] = 2(1 + θ)−1(2 + θ)−1,
E[(1 − X)2] = θ(2 + θ)−1, and E[X(1 − X)] = θ(1 + θ)−1(2 + θ)−1, and noting
µ(A) =

∑
x,y∈A µxIx,y and E[δTi

(A)δTjj(A)] =
∑
x,y∈A µx(Q′)j−ix,y , we have

E
[
ν(A)2

]
=
∑
i≥1

E[P 2
i ]µ(A) + 2

∑
i≥1

∑
j>i

E[PiPj ]E[δTi
(A)δTj

(A)]

=
∑
i≥1

E[(1−X)2]i−1E[X2]µ(A)

+ 2
∑
i≥1

∑
j>i

E[(1−X)2]i−1E[X(1−X)]E[(1−X)]j−i−1E[X]E[δTi(A)δTj (A)]

=
∑
x,y∈A

µx(I −G′)−1
x,y

where (I−G′)−1 is interpreted as (1+θ)−1
(
I− θ

1+θQ
′)−1

= (1+θ)−1
∑
`≥0

(
θ

1+θQ
′)`.

By choosing A = {x} and A = {x, y} for x 6= y, we conclude with some algebra
that

E[ν(x)2] = µx(I −G′)−1
x,x

E[ν(x)ν(y)] =
1

2
µx(I −G′)−1

x,y +
1

2
µy(I −G′)−1

y,x

=
µx
2

{
(I −G′)−1

x,y + (I −G)−1
x,y

}
.

We remark that these moment formulas match those in the finite dimensional set-
ting in [12].

Now, if ν is a Dirichlet process with parameters (κx)x∈X and α =
∑
x∈X κx,

that is with parameters α and base measure α−1κ·, by matching means, we must
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have, for x 6= y that µx = α−1κx and by matching moments of order two,

µx(I −G′)−1
x,x =

κx(κx + 1)

α(α+ 1)
µx
2

{
(I −G′)−1

x,y + (I −G)−1
x,y

}
=

κxκy
α(α+ 1)

.

Let S be the stochastic kernel with constant rows µt. Then, we have

1

2
(I −G′)−1 +

1

2
(I −G)−1 =

1

α+ 1
(I + αS). (3.19)

Consider now complex Hilbert space H = L2(X , µ) and the closed subspace
K = {g ∈ H :

∑
x∈X g(x)µx = 0} thought of also as a Hilbert space, with

Hermitian inner-product 〈f, g〉 =
∑
f̄(x)g(x)µ(x) where f̄ is the complex conju-

gate. A kernel M on X is seen as on operator on these Hilbert spaces, where
(Mf)(x) =

∑
y∈X Mx,yf(y).

Note that Gf ∈ K , since µtG = 0t, and Sf = 〈1, f〉1, where 0 and 1 are
constant functions taking values 0 and 1 respectively. Then, we observe that SG =
GS = SG′ = G′S all vanish.

Hence, multiplying (3.19) through by I −G and I −G′, we have

α(I − S) = GG′ +
α− 1

2
(G′ +G). (3.20)

Since G is a generator (−Gx,x =
∑
y 6=xGx,y and Gx,y ≥ 0 for x 6= y), one obtains

that α = (1− µx −Gx,x)−1
[
G2
x,x −Gx,x +

∑
y 6=xGx,yGy,x

µy

µx

]
> −Gx,x for x ∈X .

Hence, we may write G = α(U−I), where U is a stochastic kernel. Moreover, since
µ is a stationary distribution of U , its norm on H is bounded by 1: For f ∈ H ,

‖Uf‖2 =
∑
x

∣∣∑
y Ux,yf(y)

∣∣2µx ≤∑x,y µxUx,y|f(y)|2 = ‖f‖2.

From (3.20), one obtains

S = (α+ 1)

(
U + U ′

2

)
− αUU ′, (3.21)

where U ′ is the adjoint of U : U ′x,y = (µy/µx)Uy,x for x, y ∈ X . One also sees
readily from (3.21) that UU ′ = U ′U .

Hence, U is a bounded, normal operator. Moreover, on K , since S vanishes on
K , we have

UU ′ =
α+ 1

α

(
U ′ + U

2

)
.

Then, 0 ≤ ‖Ug‖2 = 〈Ug, Ug〉 = [(α+ 1)/α]〈g, [(U ′+U)/2]g〉 = [(α+ 1)/α]|〈g, Ug〉|
for g ∈ K , and

sup
g∈K
‖g‖=1

〈Ug,Ug〉 =
α+ 1

α
sup
g∈K
‖g‖=1

|〈g, Ug〉|.

The left-hand side equals ‖U‖2K , the square of the norm of the restriction of U
to K . However, since U is normal, the right-side is equal to [(α + 1)/α]‖U‖K
(cf. [3], Proposition 3.2.25 in [42]). Therefore, if ‖U‖K 6= 0, it must be equal to
(α+ 1)/α > 1, which is impossible since ‖U‖K ≤ ‖U‖ ≤ 1.

We conclude then that U restricted to K vanishes. Every function in H can
be uniquely written as a sum of a constant function and a function in K, namely
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f = 〈1, f〉1 +
(
f − 〈1, f〉

)
1
)
. Noting U1 = 1, we conclude that U is the projection

onto constant functions. That is, U = S and G = α(S − I) as desired. �

3.7. Proof of Theorem 2.21: Type of nonexchangeability. One way follows
immediately: That is, when T is an iid sequence, necessarily with common distri-
bution µ, the measure ν is a Dirichlet (µ, θ) process from its known stick-breaking
representation and hence its representation is permutation exchangeable (cf. Sub-
section 2.3).

Suppose now that the representation of ν is permutation exchangeable. We will
derive several identities which will be helpful. Let πk be the permutation where
πk(1) = k, πk(k) = 1 and πk(i) = i for i 6= 1, k. Let also ν(k) be the measure∑
i≥1 Pπk(i)δTi

. For any subset A ⊆ X , we must have E[ν(A)2] = E[ν(k)(A)2] by

exchangeability. Then, by abbreviating δTi(A) = δTi , we can write

0 = E
[(
ν(A)− ν(k)(A)

)(
ν(A) + ν(k)(A)

)]
= E

[(
(P1 − Pk)(δT1

− δTk

)(
(P1 + Pk)(δT1

+ δTk
)

+ 2P2δT2 + · · ·+ 2Pk−1δTk−1
+ 2

∑
i≥k+1

PiδTi

)]
. (3.22)

In the above expression, from independence of P and T, the term

E
[(

(P1 − Pk)(δT1
− δTk

)(
(P1 + Pk)(δT1

+ δTk
)
)]

= E[
(
P 2

1 − P 2
k ]E[δT1

− δTk
] (3.23)

vanishes since E[δTj ] = µ(A) for all j ≥ 1 by stationarity of T.

Also, by reapportioning, we have that 〈F (k)
i−k = Pi/(1−P1−· · ·−Pk) : i ≥ k+ 1〉

has GEM(θ) distribution and is independent of {P1, . . . , Pk}, and as before T.
Then, the term

2E
[(

(P1 − Pk)(δT1
− δTk

) ∑
i≥k+1

PiδTi

]
= 2E [(P1 − Pk)(1− P1 − · · · − Pk)]E

[ ∑
i≥k+1

F
(k)
i−k(δT1

− δTk
)δTi

]
. (3.24)

Let X be a Beta(1, θ) random variable, and note that E[F
(k)
i−k] = b(1 − b)i−k−1

where b = (1 + θ)−1 = E[X]. Denote also for 1 ≤ i < j that

rj−i = rj−i(A) := E[δTi
(A)δTj

(A)].

We compute, as
∑
i≥1 Pi = 1 a.s. and X is nontrivial, that the factor

E [(P1 − Pk)(1− P1 − · · · − Pk)] = E
[
(P1 − Pk)

∑
j≥k+1

Pk
]

(3.25)

= E[X(1−X)]
∑
j≥k+1

b(1− b)j−1−k(E[(1−X)]k−1 − E[(1−X)2]k−1
)
> 0.

To set up an induction, consider the cases k = 2, 3. Recall that P and T are
independent. In (3.22), the ‘cross-term’

E
[(
P1 − Pk

)(
δT1 − δTk

)(
2P2δT2 + · · ·+ 2Pk−1δTk−1

)]
, (3.26)

when k = 2 does not appear and, when k = 3, it vanishes as it reduces to 2E[(P1−
P2)P2](r1 − r1) = 0.
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When k = 2, noting (3.23), (3.24) and (3.25), we have that the equation (3.22)
reduces to

0 =
∑
i≥3

E[F
(2)
i−2]E[δT1

δTi
− δT2

δTi
] =

∑
i≥3

b(1− b)i−3
(
ri−1 − ri−2

)
which after summing by parts may be rewritten as r1 =

∑
j≥1 b(1− b)j−1rj .

When k = 3, correspondingly, we have that (3.22) reduces to 0 =
∑
i≥4 b(1 −

b)i−4
(
ri−1 − ri−3

)
which is equivalent after simple manipulation to r1 = r2.

We now claim that r1 = rk−1 for k ≥ 2. To show the induction step, suppose
that r1 = · · · = rk−2. Then, the cross-term (3.26) vanishes as E[δT1

δTj
] = rj−1 =

rk−j = E[δTk
δTj

] for 2 ≤ j ≤ k − 1. Hence, noting (3.23), (3.24) and (3.25), we

have that (3.22) is equivalent to 0 =
∑
i≥k+1 b(1 − b)i−k−1

(
ri−1 − ri−k

)
or after

simple calculation, using the induction assumption, that rk−1 = r1.
We now show that the Markov chain T is aperiodic. Let Q be its transition

matrix. Taking A = {c} for c ∈X , from the proved claim, we have that µ(c)Qc,c =
r1 = rk = µ(c)Qkc,c for k ≥ 1. Since the chain is irreducible, µ(c) > 0, and also

there is a time k̃ where Qk̃c,c > 0. Hence, Qc,c = Qkc,c > 0 for each k ∈ N and in
particular, the chain is aperiodic.

As a consequence, we have for c, d ∈ N that Qkc,d → µ(d) as k →∞. Hence, for

any A ⊆X , we have that r1(A) = rk(A) = limj→∞ rj(A) = µ(A)2.
Define stochastic matrices S and Q′ by

Sa,b = µ(b) and Q′a,b =
µ(b)

µ(a)
Qb,a (3.27)

for all a, b ∈ X . Note Q′ is the transition probability of the reversed chain. Since
rk = r1 = µ(A)2, when we take A = {a, b} for a 6= b, we have

µ(a)Qka,a + µ(a)Qka,b + µ(b)Qkb,a + µ(b)Qkb,b =
(
µ(a) + µ(b)

)2
.

It follows that S = 1
2

(
Qk + (Q′)k

)
for k ≥ 1.

Consider now Hilbert space H = L2(X , µ) with Hermitian inner-product

〈f, g〉 =
∑

f̄(x)g(x)µ(x)

where f̄ is the complex conjugate, as in the proof of Theorem 2.15. As before,
we consider a kernel M on X as on operator from H to H , where (Mf)(x) =∑
y∈X Mx,yf(y). Note that Q′ is the adjoint of Q when considered as operators.

From (3.27), the operator S is a projection onto constant functions. We now claim
that Q = S.

Indeed, consider the closed subspace K = {g ∈ H : 〈1, g〉 =
∑
x∈X g(x)µx =

0} ⊂ H . On K, since Sg = 0, where 0 is the constant function with value
0, we have that Qkg = −(Q′)kg for k ≥ 1. By computation,

∑
(Qg)(x)µ(x) =∑

x,y µ(x)Qx,yg(y) =
∑
y µ(y)g(y), and so QK ⊆ K. Then, we have

Q2g = Q(Qg) = −Q′(−Q′g) = (Q′)2g = −Q2g

for each g ∈ K. In other words, Q2 annihilates K. Thus, for g ∈ K, we have

0 = 〈g,Q2g〉 = 〈Q′g,Qg〉 = −〈Qg,Qg〉 = −‖Qg‖2.
That is, Q also annihilates K. Let 1 be the constant function with value 1. Then,
every function in H can be uniquely written as a sum of a constant function and
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a function in K, namely f = 〈1, f〉1 +
(
f − 〈1, f〉

)
1
)
. Noting Q1 = 1, we conclude

that Q is the projection onto constant functions. That is, Q = S.
Therefore, Q is composed of identical rows µ, and as a consequence T is an iid

sequence with common distribution µ. This finishes the proof of the theorem. �
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