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1. Introduction. Relatively recent models of mRNA creation and degradation
in cells incorporate the notion of a stochastic ‘promoter’ which influences birth rates
and serves as a surrogate to the complex underlying structure of chemical reactions.
In such models, the stationary distribution of mRNA levels is of interest, given in
particular that now readings from cells can be taken.

The multistate promoter process is a more involved model than the simple birth-
death process with constant rates in which the evolution is somewhat regular and
the stationary distribution is Poisson. In particular, observations in types of cells
indicate that the production of mRNA in the multistate process can be ‘bursty’ and
the levels of mRNA in stationarity can have heavy, non-Poissonian tails [1], [18] and
references therein. In this respect, the multistate mRNA process can reproduce both
phenomena, and is now receiving much attention as a possible complex yet tractable
model [5], [6], [17], [19], [30], and references therein.

The general multistate promoter process is a pair evolution (E,M) where the
state of the promoter E ∈ X belongs to discrete finite or countably infinite set X and
the level of mRNA M ∈ {0, 1, 2, . . .} is a nonnegative integer. The dynamics of the
pair is that the promoter E = i switches to a different state E = j with rate Gi,j ≥ 0
for i ̸= j, not dependent on M . On the other hand, when E = i, the birth rate of M
to M + 1 is βE = βi ≥ 0 and the death rate of M to M − 1 is δM , proportional to
M with δ > 0, degradation modeled not dependent on the state E. The parameters
β = {βi}i∈X and ‘generator’ G = {Gi,j}i,j∈X, where Gi,i = −

∑
j ̸=i Gi,j , completely

specify the process; see Figure 1 for a chemical reaction representation.
In [3], [15], [20], [25], the stationary distribution for mRNA levels M is identified

for multistate processes when X = {1, 2} as a scaled Beta-Poisson mixture. More
generally, in [17], when X = {1, 2, . . . , n} and the generator G is such that Gi,j = αj is
independent of i ̸= j, it is shown that the stationary distribution is a scaled Dirichlet-
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Si
Gij−−→ Sj for i, j ∈ X; i ̸= j

Si
βi−→ Si +M for i ∈ X

M
δ−→ ∅

M
α−→ M + P

P
γ−→ ∅

Fig. 1. Above is a representation in chemical equations for the multi-state promoter process
with protein. Promoter states are represented by chemical species Si : i ∈ X with transitions be-
tween states such that molecule numbers always satisfy [Si] ∈ {0, 1} for all i and

∑
i[Si] = 1;

see [17]. Representing mRNA by a species M and protein by a species P , the promoter process
(E(t),M(t), P (t)) is determined by the above elementary equations with E(t) = i when [Si] = 1,
and (M(t), P (t)) = ([M ], [P ]). We note that the multi-state mRNA process (E(t),M(t)), without
protein, is well-defined.

Poisson mixture. In the ‘refractory’ case when βi > 0 for exactly one i ∈ X =
{1, 2, . . . , n} and G is now allowed to be general where Gi,j may depend on i, [17]
derives a scaled Beta product-Poisson mixture. In [29], a general hypergeometric
formula is given for general G generators. Although a certain generating function of
the stationary distribution in the general model is known to satisfy a PDE in terms of
parameters [17], a constructive solution for the stationary distribution is not known
for the general multistate promoter process.

1.1. Prospectus. In this context, the first aim of this article is to consider a
multistate promoter process with general class creation rates β and promoter switch-
ing rates G in the context of ‘stick-breaking’. We identify an explicit form of the
stationary distribution of (E,M) in terms of a ‘Markovian stick-breaking’ mixture dis-
tribution, reminiscent of the stick-breaking form of the Dirichlet process used much
in nonparametric Bayesian statistics. We also state formulas for certain moments
aided by the ‘stick-breaking’ formulation. That ‘stick-breaking’ would be involved in
such a characterization in this mRNA dynamics context was unexpected. When G
is such that Gi,j does not depend on i for j ̸= i, there is a sense of independence in
the promotor switches which in retrospect suggests that the Dirichlet process may be
involved. It turns out the appropriate generalization, which takes into account the
time spent on each promoter state before switching, when Gi,j ’s depend on i, is the
‘Markovian Stick-Breaking Measure’ discussed in the next section.

A second aim is to conduct Bayesian statistical inference based on synthetic sta-
tionarily distributed data, with a future view toward inference with respect to labo-
ratory biological mRNA data. This has been considered in the literature for certain
multistate models [18] and references therein; see also [22]. In this respect, we ex-
ploit the stick-breaking form of the stationary distribution to perform the inference
which seems to allow for good computation and error bounds. Bayesian inference is
specifically considered as it allows straightforward uncertainty quantification.

Still a third aim of this work is to extend results from the multistate mRNA model
to a general multistate mRNA model with protein interactions, namely a process
(E,M,P ) ∈ X× {0, 1, 2, . . .}2 where (E,M) rates are the same and the rates of P to
P + 1 is αM and P to P − 1 is γP where α, γ > 0; see Figure 1 for a representa-
tion in terms of chemical reactions. We mention, the identification of the stationary
distribution in such a model, was posed as an open problem in [17]. Recently, in [4],
protein interactions have been considered in the ‘refractory’ case where βi > 0 for



STATIONARITY IN GENE EXPRESSION NETWORKS 3

exactly one state E = i in terms of Pólya urn models. We mention also previous work
on on-off promoter models [28]. We identify here in the general setting the station-
ary distribution of (E,M,P ) in terms of the ‘stick-breaking’ apparatus, in particular
interestingly ‘clumped’ versions, and discuss computation of moments.

We now amplify and detail more the considerations in these three aims after a
brief discussion of related papers in the literature.

1.2. Related literature. The identification of the stationary distribution of
(E,M) connects interestingly to disparate models of inhomogeneous Markov chains
of their own interest.

First, by a Poisson representation introduced in [10] for chemical reaction models,
one can associate a piecewise deterministic Markov process X where X satisfies an
ODE depending on the process E. Here, X represents a mass action kinetics process
with respect to the levels of the promoter ‘chemicals’. Then, in [17], it is shown at
stationarity that M |(E,X) ∼ Poisson(β ·X). The question of identification becomes
now one of the distribution of (E,X); see Theorem 3.6.

Next, consider a discrete time inhomogeneous Markov chain {Mn}n≥0 on X where
the transition kernel from time n to n + 1 is (I + G/n). In a sense, {Mn}n≥0 is a
discrete time version of the process E. In [8] (see also [9]), the limit of the empirical
distribution of this chain is identified as a Markov stick-breaking measure νG; see
Theorem 3.4.

Finally, [2], in the study of ‘freezing MC’s’, generalizing those in [9], considered the
piecewise deterministic Markov process (E,X) (although its connection with mRNA
dynamics was perhaps not known). They showed at stationarity, X has the law
of the empirical distribution limit of the chain {Mn}n≥0, among other results; see
Theorem 3.5.

1.3. Aim 1. These results from the literature form the basis of ‘Aim 1’, and have
natural combination, leading to identification of the desired stationary distribution of
(E,M) as a Poisson mixture (Theorem 3.7). We also give some moment computations
in Section 3.1. Then, the notion of the ‘identifiability’ with respect to the mRNA level
M is discussed in Section 3.2.

We comment that our approach through stick-breaking distribution relations dif-
fers from the generating function/differential equations one in [17]. Using generating
functions, marginal distributions of X could be identified as Beta-products in [17],
from which the refractory case solved. The stick-breaking construction allows sam-
pling from the full distribution of X in the general setting. In a nutshell, the stick-
breaking approach captures the time-averaged frequencies of the promoter states; see
[8] for more discussion of the construction. Nevertheless, both approaches take ad-
vantage of a Poisson representation of the multistate promoter dynamics [10], as well
as the introduction of a piecewise deterministic Markov process.

The introduction of stick-breaking constructions to the study of the multi-state
promoter process however supports the development of statistical tools and the ex-
tension of the model to include protein in the remaining Aims.

1.4. Aim 2. In Section 5, we discuss parameter estimation and model selection
under a Bayesian framework. We assume that observed data come from the station-
ary distribution of the associated mRNA model with unknown parameters (β,G). In
Section 5.1, we describe a Gibbs sampler to draw samples from the posterior distri-
bution. Empirical posterior means and empirical credible intervals are respectively
used as the point estimators and interval estimators of (β,G). Given the estimated
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parameters from several candidate models with different number of states or different
sparsity structures in (β,G), we discuss in Section 5.2 how to use Bayesian Information
Criterion (BIC) to select the model underlying the observed data.

The key step in both inference tasks is to evaluate the likelihood function (the
probability of observing the data) which are not in a closed-form. We utilize trun-
cations of the stick-breaking form of the stationary distribution to approximate the
likelihood with Monte Carlo simulations. The discussed procedures in Section 5.1
and Section 5.2 are applied to synthetic datasets with various choices of (β,G) with
|X| = 2 or 3 for empirical performance evaluation. In our experiments, the model
parameters can be estimated accurately and the underlying models can be selected
correctly with high probability when the sample size is large.

1.5. Aim 3. The protein model (E,M,P ) mentioned earlier can be analyzed by
writing the interactions in terms of Ẽ = (E,M) and M̃ = P , where now Ẽ is in the role
of being a ‘promoter’ with respect to protein levels M̃ . Since the promoter state space
X×{0, 1, 2, . . .} is not finite, direct application of results in [8], [2] will not be possible
as the transition operator (I − G̃/n) will not be stochastic, that is G̃ with respect to
Ẽ transitions will not be bounded. The idea however in Section 4 is to approximate
the infinite promoter space Ẽ by finite spaces Ẽc = X× {0, 1, . . . , c}. Then, we take
limits as c ↑ ∞ of ‘clumped’ stick-breaking representations of the associated stationary
distributions introduced in [8], perhaps of interest in itself (Theorem 4.4).

1.6. Outline. The plan of the paper is to introduce notation and definitions
of stick-breaking measures and their ‘clumped’ forms in Section 2. In Section 3, we
discuss the relationship between certain time-inhomogeneous Markov chains, stick-
breaking measures, piecewise deterministic Markov processes and multistate mRNA
promoter models and formulate Theorem 3.7; in Section 3.1, some moments are com-
puted, and in Section 3.2, identifiability of parameters is discussed. In Section 4, we
discuss models which incorporate protein interactions and state Theorem 4.4 which
is then shown in Section 6. In Section 5, we discuss how to utilize the stick-breaking
constructions to estimate model parameters based on data from the stationary dis-
tribution (Section 5.1) and how to perform model selection (Section 5.2). Then, in
Section 7, we conclude.

2. Stick-breaking measure representations and other definitions. We
first introduce notation on spaces and matrices used throughout the article in Sec-
tion 2.1, before defining the notion of a ‘stick-breaking’ measure and related ingredi-
ents in Section 2.2. In Section 2.3, we discuss the notion of a ‘clumped’ representation
of the stick-breaking measure which will be useful in the later discussion of protein
interactions.

2.1. Notation on spaces and conventions. We will concentrate on finite
spaces X, enumerated as X = {1, 2, . . . , |X|}. Denote the space of probability measures
on X by

∆X =

{
(pi)i∈X ∈ [0, 1]X :

∑
i∈X

pi = 1

}
.

Define also that a generator matrix G on X is the square matrix or operator
G = (Gi,j)i,j∈X such that Gi,j ≥ 0 when i ̸= j and

∑
j Gi,j = 0 for each i ∈ X. We

say that G is an irreducible generator matrix when for each pair (i, j) ∈ X2 there is a
power k = ki,j such that (Gk)i,j > 0. We say G has a stationary distribution µ ∈ ∆X



STATIONARITY IN GENE EXPRESSION NETWORKS 5

when µ is a left eigenvector with eigenvalue 0, that is
∑

i µiGi,j = 0 for all j ∈ X.
When G is irreducible, it has a unique stationary distribution µ.

We remark that the generator matrix can always be (non-uniquely) decomposed
as θ(Q − I) where θ > 0 and Q is a stochastic matrix or operator. When G is
irreducible, then Q is irreducible and additionally G and Q have the same stationary
probability vector(s) µ (independent of the choice of θ).

We now enumerate several conventions used throughout the article.

• If v ∈ RX, then D(v) denotes a square diagonal matrix or operator over X
whose ith entry is vi for each i ∈ X. If A ⊂ X, then D(A) = D(v) where
v =

∑
i∈A ei where {ei}i∈X is the standard basis of RX.

• N = {1, 2, 3, ...} and N0 = {0, 1, 2, ...}
• We define empty sums

∑
∅ = 0, empty scalar products

∏
∅ = 1, and empty

matrix products as the identity
∏

∅ = I.
• Products: For a collection of matrices {Mj}kj=1, we denote the standard

forward order product as
∏k

j=1 Mj = M1 · M2 · · ·Mk and the non-standard

reverse order product as
∏k;(R)

j=1 Mj = Mk ·Mk−1 · · ·M1.
• Adjoints: Given a probability vector µ over X, we define the adjoint A∗ of a
square matrix or operator A on X with respect to µ by A∗ = D(µ)−1ATD(µ).
For a generator G with G = θ(Q− I) having unique stationary distribution,
we always understand G∗ and Q∗ to be adjoints taken with respect to the
associated stationary distribution.

2.2. Stick-breaking measures. Before stating a generalization of the Dirich-
let process with respect to θ > 0 and a probability vector µ on X, which will form
the backbone of our work, we first define basic notions. Recall that the classic
Dirichlet process is a distribution on the space of probability measures on a mea-
surable space with the property that a sample measure ν is such that the joint dis-
tribution of

(
ν(A1), . . . , ν(Ak)

)
is that of a Dirichlet distribution with parameters(

θµ(A1), . . . , θµ(Ak)
)
for finite partitions {Ai}ki=1 of the measurable space. On fi-

nite spaces X, as considered here, the Dirichlet process with parameters
(
θ, µ

)
has

Dirichlet(θ, µ) distribution. Here, a sample ν ∈ ∆X is a probability measure on X.
Such a process ν admits a ‘stick-breaking’ representation involving two ingredi-

ents: a GEM residual allocation model as well as an independent sequence of i.i.d.
random variables {Ti}i≥1 on X with common distribution µ. See [14, 24] for more on
stick-breaking measures. The GEM model is defined as follows.

Definition 2.1 (GEM residual allocation model). Let (Wj)j≥1 be an iid sequence
of Beta(1, θ) variables, and define

Pj = Wj

j−1∏
i=1

(1−Wi).

Then, P = (P1, P2, . . .) is said to have GEM(θ) distribution.

Define now the (random) ‘stick-breaking’ measure on X,

ν =
∑
j≥1

PjδTj
.

It is well-known that the law of ν is that of the Dirichlet process on X with parameters
(θ, µ).
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We now consider a generalization where {Ti}i≥1 is a stationary Markov chain on X
with stationary distribution µ. Such a generalization was first considered in [8] in the
context of empirical distribution limits of ‘simulated annealing’ time-inhomogeneous
Markov chains.

Definition 2.2 (MSBM(G), MSBMI(G)). Let G be an irreducible generator
matrix over X, with a unique stationary distribution µ. Let G = θ(Q − I) be a
decomposition of G. Let also P ∼ GEM(θ) and let T be a stationary homogeneous
Markov chain independent of P and having kernel Q with stationary distribution µ.
Then, the random measure

(2.1) νG =
∑
j≥1

PjδTj

taking values in ∆X is said to have distribution MSBM(G). Here, MSBM stands
for Markovian stick-breaking measure. The pair (T1, νG) is said to have MSBMI(G)
distribution (MSBM and Initial), and is denoted (T1, νG) ∼MSBMI(G). Note that
here T1 is distributed according to µ.

The construction of the ‘stick-breaking’ object with MSBM (G) distribution given
in the above definition is many to one as the choice of decomposition G = θ(Q −
I) is not unique, though the distribution MSBM (G) itself is independent of this
choice. Valid choices of decomposition, that is those such that Q is stochastic, are
indexed by the selection of θ, namely those θ such that θ ≥ θ(G) where θ(G) =
supi∈X |Gi,i|. Specifically, for each θ ≥ θ(G), let Pθ have GEM (θ) distribution and
let Tθ independent of Pθ be a stationary Markov chain with transition kernel Qθ =
I +G/θ. Define

νθ( · ) =
∞∑
j=1

P θ
j δT θ

j
( · ).

Then, each pair (T θ
1 , ν

θ) is a stick-breaking representation of MSBMI (G); νθ
d
= νθ(G)

for all θ ≥ θ(G). Here, Tθ is a Markov chain which may repeat, that is it may be that
P
(
T θ
j = T θ

j+1

)
> 0. We consider a clumped, that is non-repeating, stick-breaking

representation in the next section, which will be relevant to models involving protein.
The series in the stick-breaking construction of Definition 2.2 has the fastest rate of
convergence when θ = supi∈X |Gi,i| is smallest.

We remark exactly in the situation when G permits a decomposition G = θ(Q−I)
such that Q is constant stochastic with rows µ, then MSBM (G) = Dirichlet(θ, µ);
see Theorem 2.16 [8]. In this case, the Markov chain {Ti}i≥1 is i.i.d. since Q is
constant stochastic, and the MSBM measure is the Dirichlet process. When G cannot
be decomposed in this way, intuitively non-independence of {Ti}i≥1 introduces non-
Dirichlet process evaluations. See [8] for more discussion.

Moreover, we note that the stick-breaking construction allows to bound the error
in truncating the series. This will be useful for later statistical inference. Indeed, for

m ≥ 0,
∑

j≥m+1 PjδTj (X) ≤
∑

j≥m+1 Pj =
∏m

j=1(1 − Wj). Since − log(1 − Wj)
d
=

Exp(θ), we have that− log
∏m

j=1(1−Wj)
d
= Ym := Gamma(m, θ), wherem is the shape

and θ is the rate parameter. Then, the chance the error is greater than 0 < λ < 1 is

P (exp(−Ym) ≥ λ) = P (Aλ ≥ m)(2.2)

where Aλ
d
= Poisson(−θ log(λ)).
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2.3. Clumped stick-breaking constructions. We now recall a ‘clumped’
stick-breaking construction using the Markov chain Z whose law corresponds to a
non-repeating version of the Markov Chain T of the MSBMI (G) distribution (cf. [8]
for more discussion). This construction will later aid in the study of models involv-
ing protein. Let Z be a homogeneous Markov chain with initial distribution µ and
transition kernel

Ki,j =
Gi,j

−Gi,i
1(i ̸= j)

Next, let W be a random sequence such that W|Z is an independent sequence
{Beta(1,−GZj ,Zj

)}j≥1 of variables. Define R from W as a residual allocation model

Rj = Wj

j−1∏
i=1

(1−Wi).

Form the associated stick-breaking measure

ν( · ) =
∞∑
j=1

RjδZj
( · ).

Then, ν
d
= νθ, and moreover we have the following ‘clumped’ statement.

Proposition 2.3 (cf. Theorems 2.8, 2.13 [8]). Let G be an irreducible generator
matrix over X with unique stationary distribution µ. Define stochastic kernel

Ki,j =
Gi,j

−Gi,i
1(i ̸= j).

Let Z be a homogeneous Markov chain with transition kernel K and initial distribution
µ. Let W be a random sequence of [0,1]-valued random variables such that given Z, W
is an independent sequence with Wj ∼Beta(1,−GZj ,Zj ). Form the residual allocation

model R = {Wj

∏j−1
i=1 (1−Wi)}j≥1. Then,Z1,

∞∑
j=1

RjδZj ( · )

 ∼ MSBMI(G)

3. Time-inhomogeneous MCs, PDMPs, and multistate mRNA pro-
moter processes. We consider now seemingly unrelated processes, which however
in combination bear upon the multistate mRNA promoter process. In the main sec-
tion, we deduce results on the associated stationary distribution and in Section 3.1 on
its moments. We also discuss identifiability of parameters with respect to stationary
mRNA levels in Section 3.2.

The first process is a time-inhomogeneous Markov chain, considered in [8], [9]
with respect to certain ‘simulated annealing’ models.

Definition 3.1 (Inhomogeneous Chain M = (Mn)n≥1 (cf. [8]). Let G be an
irreducible generator matrix on X. We associate to G the discrete time Markov chain
M = (Mn)n≥1 with state space X having transition kernels

Kn = I +
G

n
1(n > N)
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for sufficiently large N that Kn is stochastic. We denote the empirical measure of M
up to time n by

νn =
1

n

n∑
j=1

δMj
.

In words, the Markov chain M stays on the state it is at with larger probability
as n grows, and switches states with probability of order O(1/n). In this way, the
states in X can be considered ‘valleys’ from which it becomes more difficult to leave
as time increases. Nevertheless, there will be an infinite number of switches in the
chain.

We also remark in passing that Definition 3.1 extends to countable discrete spaces
(see [8]), although we do not use this extension in this article, concentrating on finite
X.

The second process is a type of piecewise deterministic Markov process (PDMP)–
informally, a pair (E(t), X(t)) such that E(t) is a Markov jump process on X and,
if {tn}n≥1 are the jump times of E(t), then X(t) evolves deterministically on each
interval [tn, tn+1) in a manner determined by E(tn). Such a process is determined by
the jump rates of E(t), the transition measure of (E(t), X(t)), and the flows governing
the deterministic behavior of X(t) between jumps. See [7] for a more general and
precise definition; note that we have switched the standard PDMP order (X(t), E(t))
to (E(t), X(t)) to be consistent with [17].

Definition 3.2 (Exponential Zig-zag Process (cf. [2])). An exponential zig-zag
process is a PDMP (E(t), X(t)) taking values in X×∆X with infinitesimal generator

LZf(i, x) = (ei − x) · ▽xf(i, x) +
∑
j ̸=i

Gi,j [f(j, x)− f(i, x)]

= (ei − x) · ▽xf(i, x) +
∑
j

Gi,jf(j, x)

where G is an irreducible generator matrix on a finite space X. Such a process has a
unique stationary distribution (cf. Section 3 [2]).

In words, the E process switches according to rates G. However, depending on
the current state E = i, the Xj values decrease at rate proportional to Xj for j ̸= i
and Xi increases at rate 1−Xi.

We now state carefully the multistate mRNA promoter process.

Definition 3.3 (Multistate promoter process (cf. [17])). Let G be an irreducible
generator matrix on a finite space X. Consider the jump Markov process (E(t),M(t))
taking values in X× N0 with transition rates

(i,m) → (j, n) at rate


Gi,j n = m
βi i = j, n = m+ 1
δm i = j, n = m− 1
0 otherwise

for i, j ∈ X and m, n ∈ N0.
We also associate to the multistate promoter process a process X(t) taking values

in ∆X which is a solution to

d

dt
Xi(t) = δ

[
1(E(t) = i)−Xi(t)

]
.
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It is known that the joint process (E(t),M(t), X(t)) has a unique stationary distribu-
tion (cf. Corollary 3.5 [17]). In particular, we denote the stationary distribution of
(E(t),M(t)) by π1(i,m|G, β, δ).

The multistate promoter process models mRNA production by a gene promoter
which can be in one of a finite collection X of states. The Markov jump process
E(t) with rates G tracks the state of the promoter over time. The rate of mRNA
production while the promoter is in state i is given by βi ≥ 0. Then, the production
of mRNA is a birth-death process, with mRNA produced at rate βi when E(t) = i,
while each individual mRNA degrades independently at rate δ > 0. The process X(t),
although auxiliary, is helpful in computations and, as alluded to in the introduction,
represents a mass action kinetics process on the simplex ∆X. By introduction of X(t),
one may introduce a system of differential equations, which is more readily analyzed
than the combinatorial model without it (cf. Section 3 in [2] for more discussion).

We now state three results on these processes and deduce the stick-breaking rep-
resentation of the multistate mRNA promoter process in Theorem 3.7.

The first result is that the empirical measure of the time-inhomogeneous MC
converges weakly to the MSBM stick-breaking measure. A different characterization
for types of G may also be found in [9].

Theorem 3.4 (cf. Theorem 2.13 [8]). Let G be an irreducible generator matrix,
with stationary distribution µ, over X. Let M be the inhomogeneous chain associated
to G, and (νn)n≥1 be the empirical measures of M. Then

(Mn, ν
n)

d−−→ MSBMI(G∗).

The second result is that the stationary distribution of the PDMP is the limit
empirical measure for the time-inhomogeneous MC, under Assumptions 2.1, 2.6 in [2]
which are satisfied since the transition kernels are in form I +G/n for large n. In [2],
one may also find a non stick-breaking characterization of the limit, as well as other
interesting results.

Theorem 3.5 (cf. Theorem 2.8 [2]). Let G be an irreducible generator matrix
over X. Let M be the inhomogeneous chain associated to G, and (νn)n≥1 be the
empirical measures of M. Let also (E(t), X(t)) be an exponential zig-zag process
parametrized by G. Then, the associated stationary distribution (E,X) is the limit
distribution of the time-inhomogeneous Markov chain:

(E,X)
d
= lim

n→∞
(Mn, ν

n).

We comment that the above limit [2] is identified as the one found in [9] charac-
terized by moments. Later, in [8], this limit was seen in terms of stick-breaking as
stated in Theorem 3.4.

The third result finds that the stationary distribution of the multistate promoter
process is a certain Poisson mixture. In [17], generating functions of the stationary
distribution are also given.

Theorem 3.6 (cf. Proposition 4.1 [17]). Let G be an irreducible generator
matrix over X. Let β ∈ (R+)X and δ, λ > 0. Let (E(t),M(t)) be a multistate promoter
process parametrized by G with associated process X(t). Suppose M(0)|E(0), X(0) ∼
Poisson(λ(0)) where λ(t) satisfies

λ(t) = δ−1β ·X(t).
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Then,

M(t)
∣∣∣(E(τ))τ≥0 ∼ Poisson(λ(t)) where ∂tλ(t) = βE(t) − δλ(t).

Further, with respect to an observation (E,M,X) from the stationary distribution of
(E(t),M(t), X(t)), we have

M
∣∣∣E,X ∼ Poisson(δ−1β ·X).

We remark, in passing, that the stationary distribution of (E(t),M(t)) does not
depend on the initial distribution of M(0). Indeed, the representation of M(t) as a
Poisson mixture is retained after a finite, random burnoff period corresponding with
degradation of all mRNA initially present; see [22].

We now straightforwardly combine the three previous results to find a stick-
breaking representation of the stationary distribution π1(i,m|G, β, δ), that is of the
limit (E,M).

First, by scaling time by δ, we see that the stationary limit of the multistate
process components (E,X) is the limit of the PDMP in the work of [2] with generator
G/δ. In turn, the work of [8] shows that this limit is MSBMI (G∗/δ). Hence, we
obtain the main statement of this section, namely the following theorem.

Theorem 3.7. Let G be an irreducible generator matrix over X. Let β ∈ (R+)X

and δ > 0. Let (E(t),M(t)) be a multistate promoter process parametrized by G with
associated process X(t). Then,(

E(t),M(t), X(t)
) d−→ (E,M,X)

where

(E,X) ∼ MSBMI(G∗/δ) and M
∣∣∣E,X ∼ Poisson(δ−1β ·X).

Hence, the stationary distribution π1(i,m|G, β, δ) of (E,M) is the law of the mixture
Poisson(δ−1β ·X).

3.1. Moments with respect to the multistate mRNA promoter process.
Using the stick-breaking apparatus we may identify moments of interest. We first state
a result found in [23].

Proposition 3.8 (cf. Theorem 4 [23]). Let (T, ν) ∼ MSBMI(G) for an irreduc-

ible generator matrix G with stationary distribution over X. Let n ∈ N, k⃗ ∈ Nn
0 , and

(Aj)
n
j=1 be disjoint collection of subsets of X. Define S(k⃗) to be the collection of all

distinct k-lists consisting of k1 many 1’s, k2 many 2’s, and so on to kn many n’s,
where k =

∑n
j=1 kj. Then,E

 n∏
j=1

ν(Aj)
kj

∣∣∣∣∣T = x


x∈X

=
(
#S(k⃗)

)−1 ∑
σ∈S(k⃗)

k;(R)∏
j=1

(I −G/j)−1D(Aσj
)

 1⃗.

We may rewrite the above expression in more convenient form.

Corollary 3.9. Consider the context of the previous proposition. If (T̃ , ν̃) ∼
MSBMI(G∗), then

E

 n∏
j=1

ν̃(Aj)
kj

∣∣∣∣∣T̃ = x

 = µ−1
x ·

(
#S(k⃗)

)−1 ∑
σ∈S(k⃗)

µT

 k∏
j=1

D(Aσj
)(I −G/j)−1

 ex.
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Proof. By convention,

[ k;(R)∏
j=1

(I −G/j)−1D(Aσj )
]⃗
1

= D−1(µ)(I −GT /k)−1D(µ)D(Aσk
) · · ·D−1(µ)(I −GT )−1D(µ)D(Aσ1

)⃗1.

Since D(µ) and D(Aσ·) commute, the product equals

D−1(µ)(I −G/k)−1D(Aσk
)(I −G/(k − 1))−1 · · · (I −G)−1D(Aσ1

)µ.

The xth entry can be found by taking the transpose and multiplying by ex. Noting
that D−1(µ)ex = µ−1

x ex finishes the calculation.

We observe that we can recover a formal, if not particularly useable, expression of
the stationary probabilities, and also moments of the mRNA levels M in stationarity;
see also [17] for a derivation using a PDE for the generating function.

Corollary 3.10. Let G be an irreducible generator matrix over X having unique
stationary distribution µ. Let β ∈ (R+)X and δ > 0. Then, the stationary distribution
π1 of the multistate promoter process (E,M) parametrized by G, β, and δ is given as

π1(i,m|G, β, δ) = π1(i,m|G/δ, β/δ, 1)

= µT

[
1

m!

m∏
k=1

D(β/δ)(I −G/(δk))−1

]

×

∑
n≥0

(−1)n

n!

m+n∏
k=m+1

D(β/δ)(I −G/(δk))−1

 ei.

Further, by the factorial moment property of the Poisson distribution, for each
k ∈ N0,

E [M(M − 1)(M − 2) · · · (M − k + 1)]

= E
[
(β ·X/δ)k

]
= µT

 k∏
j=1

D(β/δ)(I −G/(δj))−1

 1⃗.(3.1)

where X ∼ MSBM(G∗/δ).

Proof. Note that the Poisson mixture relation (T,Poisson(δ−1β · ν)) ∼ π1 for
(T, ν) ∼MSBMI (G∗/δ) is stated in Theorem 3.7. The stationary probability formulas
now follow from the moment calculation (3.1). To verify these observe β · ν/δ =∑

i∈X δ−1βiν(i) and

E
[
(β ·X/δ)k

]
= δ−k

∑
j1,...,jk

βj1 · · ·βjkE
[
ν(j1) · · · ν(jk)

]
where 1 ≤ j1, . . . , jk ≤ |X|. One can now check, via Corollary 3.9, that the desired
formula is obtained.
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3.2. On identifiability of mRNA levels. Consider the multistate mRNA pro-
moter process (E(t),M(t), X(t)) parametrized by G, β and δ in Definition 3.3. To
begin the discussion, we will scale out the parameter δ and take it as δ = 1. Let
(E,X) represent the stationary distribution of the process (E(t), X(t)). In [17], it is
shown that (E,X) is identifiable by G, that is two different generators cannot give
the same stationary distribution.

Indeed, we sketch the argument for the convenience of the reader: The associated
Laplace transform of (E,X) is ϕ(s) = (ϕ1 . . . , ϕ|X|), where ϕi(s) = E[1(E = i)es·X ]
satisfies ∑

i

si∂siϕ(x) =
(
D(s) +GT )ϕ(s).

Then, for fixed s = β, the Laplace transform of (E, β ·X) is Φ(w) = ϕ(wβ) where

w∂wΦ =
(
wD(β) +GT

)
Φ.(3.2)

In Corollary 4.3 of [17], Φ(w) is developed in power series, Φ(w) =
∑

k≥0 ck(β)w
k,

where in particular the characterization c1(β) = (I −GT )−1D(β)µ is made, where µ
is the distribution of E. Note that µ = Φ(0) = Φ′(0) = µ′. Hence, if there are two
generators G and H for which (E,X)G = (E,X)H in law, then c1(s;G) = c1(s;H).
Since s is arbitrary and µ has full support as G is irreducible, we conclude G = H.

However, one may ask about identifiability of the mRNA level M itself. In Theo-
rem 3.7, we see that the stationary mRNA level M is determined by the distribution
of β · X. Since mRNA level readings are available from lab experiments, for infer-
ence purposes, it makes sense to study the identifiability of the distribution of β ·X
in terms of (β,G). Since we are not given the distribution of E and β is not arbi-
trary, the previous identifiability argument for (E,X) is not sufficient. Moreover, in
the refractory case, when only one component βi > 0, the rest vanishing, [17] shows
that certain eigenvalues of G are identifiable, although G itself cannot be determined.
However, see the examples below. Of course, when β is a vector with common entries,
β ·X = β1, certainly X cannot be identified. Nevertheless, since the support of β ·X
is [mini βi,maxi βi], both mini βi and maxi βi are identifiable.

To further the discussion, the Laplace transform of β ·X is 1⃗ ·Φ(w) which satisfies

w1⃗ · ∂wΦ = w1⃗D(β)Φ + 1⃗GTΦ = wβ · Φ

since 1⃗GT = 0⃗ given that G is a generator matrix. Hence, if the distribution of β ·X
and β′ ·X ′ with respect to generators G and H respectively match, then

1⃗ · Φ(w) = 1⃗ · Φ′(w) and β · Φ(w) = β′ · Φ′(w).(3.3)

Differentiating the last item β · Φ and multiplying by w, we get that

wβ · ∂wΦ(w) = wβ ·D(β)Φ(w) + β ·GTΦ(w)(3.4)

and a similar equation with respect to Φ′. One can develop subsequent equations by
differentiating in w. One also has expressions for the moments (cf. Corollary 3.10 or
[17]).

Despite the nonlinearity of these relations which seem difficult to negotiate, we
believe that identifiability of (β,G) holds with respect to irreducible generators G,
when the entries of β are strictly ordered, say β = (β1, . . . , β|X|) where β1 > β2 > · · · >
β|X| ≥ 0, but we leave this theoretical question to a future investigation. Numerically,
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in this respect, however, we observe that the work in Section 5 gives positive evidence
of this claim.

However, in a ‘Dirichlet setting’, where G = θ(Q− I) and H = θ′(Q′ − I) where
Q and Q′ are stochastic matrices with constant rows µ and µ′ respectively, and the
scale factors θ = θ′ agree, the algebra simplifies considerably. In this setting there
is no memory in the E promoter transition rates, and these rates sum to the same
value.

Lemma 3.11. In the Dirichlet setting, when the scale factors θ = θ′ agree, the
parameters are identifiable, that is (β,Q) = (β′, Q′).

The proof of this lemma is left to Appendix A.
We finish the section with two ‘refractory’ examples, the first showing non-trivial

absence of identifiability and the second, studied in the numerical study Section 5.2,
where one can actually show identifiability:

Example 3.12. Consider two distinctly parametrized three-state models with gen-
erators G and Ǧ,

G =

−5 2 3
2 −5 3
2 2 −4

 Ǧ =

−5 3 2
2 −3 1
2 4 −6

 .

and vector β = (1, 0, 0). Then, if M is distributed as in Theorem 3.7 according to
parameters G and β, and M̌ is distributed as in Theorem 3.7 according to parameters

Ǧ and β, the M
d
= M̌ . According to [17], the identifiable parameters of G are the

(nonzero) eigenvalues of −G and the eigenvalues of −G(1), where G(1) is a matrix
obtained by removing the first row and the first column of G. [Herbach considers
H = GT , which gives the same formulas.] Both G and Ǧ share these eigenvalues, with
−G and −Ǧ having eigenvalues 0, 7, and 7, and −G(1) and −Ǧ(1) having eigenvalues 2
and 7. As such, the generic three-state model for mRNA levels cannot be identifiable
from mRNA levels alone.

Example 3.13. Consider a three-state refractory model where β1 > 0 and β2 =
β3 = 0 and G has zero entries, G13 = G31 = 0. In this case, we claim the model is
identifiable. Form

G =

−a a 0
b −b− c c
0 d −d

 ,

where a, b, c, and d are positive real numbers. Again, according to [17], the identifiable
parameters of G are the (nonzero) eigenvalues of −G and the eigenvalues of −G(1),
where G(1) is a matrix obtained by removing the first row and the first column of G.

Let λ1 and λ2 be the two nonzero eigenvalues of −G. They are the zeros of the
equation (in λ) λ2−(a+b+c+d)λ+ad+bd+ac = 0. Let λ3 and λ4 be the eigenvalues
of −G(1). They are the zeros of the equation (in λ) λ2 − (b+ c+ d)λ+ bd = 0. Then
a, b, c, and d can be expressed by λi, i = 1, 2, 3, 4 as

a = λ1 + λ2 − (λ3 + λ4), b = λ3 + λ4 − (λ1λ2 − λ3λ4)/a,

c = (λ1λ2 − λ3λ4)/a− λ3λ4/b, d = λ3λ4/b,

meaning a, b, c, and d are identifiable.
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4. Protein production in the multistate mRNA promoter process. We
discuss now an extension of the multistate promoter model which incorporates protein
production. Specifically, when the multistate promoter process (E(t),M(t)) is in state
(i,m), we formulate that individual proteins are produced at rate of αm and the
protein level p degrades at rate γp. Such an ansatz corresponds to the idea that each
individual mRNA independently produces protein at rate α > 0 and each protein
degrades at rate γ > 0.

A version of this model was indicated in [17], and stationary distributions in the
‘refractory’ case, when only one βi is positive, were found in [4]. In this context, our
goal will be to derive the stationary distribution in the general (β, δ, α, γ,G) model
through the stick-breaking apparatus.

The strategy will be to consider ‘bounded joint multistate mRNA-protein pro-
cesses’ which restrict mRNA levels below a capacity level c. Such bounded joint
processes have the same abstract finite-state promoter structure as the multistate
mRNA promoter process, with stationary distributions given in terms of Markovian
stick-breaking measures. The idea is to take a limit now as the capacity level c ↑ ∞
to recover the stationary distribution in the general ‘unbounded’ model, mentioned in
the introduction. Importantly, clumped representations of the MSBM’s (Section 2.3)
for the bounded joint process will be of use in this regard.

We now define carefully the bounded joint process.

Definition 4.1 (Bounded joint multistate mRNA-protein process). Let G be
an irreducible generator over X. A bounded joint process is the Markov jump process
(E(t),M(t), P (t)) on X× {0, 1, 2, ..., c} × N0 with rates

(i,m, p) → (j, n, q) at rate



Gi,j ; i ̸= j, n = m, q = p
βi ; i = j, n = m+ 1 ≤ c, q = p
δm ; i = j, n = m− 1, q = p
αm ; i = j, n = m, q = p+ 1
γp ; i = j, n = m, q = p− 1
0 ; o.w.

We associate to this process the bounded generator matrix over finite state space X̃ =
X× {0, 1, 2, ..., c}

G̃c
(i,m),(j,n) = 1(i ̸= j,m = n)Gi,j + 1(i = j, n = m+ 1 ≤ c)βi

(4.1)

+ 1(i = j, n = m− 1)δm+ 1(i = j,m = n)(Gi,i − βi1(m < c)− δm)

and denote its stationary distribution as πc
2(i,m, p|G, β, δ, α, γ, c).

We note also, omitting the protein, the bounded mRNA process (E(t),M(t)) on
the finite state space X × {0, 1, 2, . . . , c} is well-defined. See Figure 2 for a represen-
tation in terms of chemical reactions.

One may understand the bounded joint process as follows. Let (E(t),M(t), P (t))
be a bounded joint process with generator G, production rates β and α, death rates
δ and γ, and cap c. Denote the same process as

(Ẽ(t), M̃(t)) with Ẽ(t) = (E(t),M(t)) and M̃(t) = P (t).(4.2)

Then, we observe (Ẽ(t), M̃(t)) is a multistate promoter process taking values in
X̃× N0 parameterized by generator G̃c, production rates β̃i,m = αm, and death rate
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Si
Gij−−→ Sj for i, j ∈ X; i ̸= j

Si
βi1([M ]+1≤c)−−−−−−−−−→ Si +M for i ∈ X

M
δ−→ ∅

M
α−→ M + P

P
γ−→ ∅

Fig. 2. Above is a representation in chemical equations for a bounded multi-state promoter
process with protein. Promoter states are represented by chemical species Si : i ∈ X with transitions
between states such that molecule numbers always satisfy [Si] ∈ {0, 1} for all i and

∑
i[Si] = 1;

see [17]. Representing mRNA by a species M and protein by a species P , the promoter process
(E(t),M(t), P (t)) is determined by the above elementary equations with E(t) = i when [Si] = 1,
and (M(t), P (t)) = ([M ], [P ]). Note that always [M ] ≤ c, and that the process (E(t),M(t)), without
protein, is also well-defined.

δ̃ = γ, where X̃ = X× {0, 1, . . . , c}. In particular, as X and so X̃ are finite spaces, we
have for all (i,m, p) ∈ X× {0, 1, . . . , c} × N0, that

πc
2(i,m, p|G, β, δ, α, γ, c) = π1((i,m), p|G̃c, β̃, δ̃),(4.3)

for which there is a stick-breaking relation via Theorem 3.7.

We now state carefully the unbounded joint process.

Definition 4.2 ((Unbounded) joint multistate mRNA-protein process). Let G
be an irreducible generator over X. The (unbounded) joint process is the Markov jump
process (E(t),M(t), P (t)) on X× N2

0 with rates

(i,m, p) → (j, n, q) at rate



Gi,j ; i ̸= j, n = m, q = p
βi ; i = j, n = m+ 1, q = p
δm ; i = j, n = m− 1, q = p
αm ; i = j, n = m, q = p+ 1
γp ; i = j, n = m, q = p− 1
0 ; o.w.

We associate to this process the unbounded generator matrix

G̃∞
(i,m),(j,n) = 1(i ̸= j,m = n)Gi,j + 1(i = j, n = m+ 1)βi

+ 1(i = j, n = m− 1)δm+ 1(i = j,m = n)(Gi,i − βi − δm)

and denote its stationary distribution as π∞
2 (i,m, p|G, β, δ, α, γ).

In the following, we will use the notation G̃·,T = (G̃·)T and G̃·,∗ = (G̃·)∗.
We remark that the existence/uniqueness of π∞

2 in the above definition is formu-
lated in the following lemma. The proof of Lemma 4.3 is given in the Appendix B
following from an application of Theorem 1.1 [21].

Lemma 4.3. There exists a unique stationary distribution π∞
2 for the unbounded

process in Definition 4.2. Moreover, π∞
2 integrates eϵ1i+ϵ2m+ϵ3p, for some constants

ϵ1, ϵ2, ϵ3 > 0.

The type of association with a multistate mRNA process made earlier with respect
to the bounded joint process cannot be implemented directly with respect to the
unbounded joint protein process. Indeed, the generator matrix G̃∞ associated to the
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unbounded joint protein process is itself unbounded, and hence cannot be normalized
to construct a stochastic kernel as discussed after Definition 2.2. However, we will
see that the ‘clumped’ stick-breaking construction of Proposition 2.3 may still be
understood and used in this context.

Theorem 4.4. Let (E(t),M(t), P (t)) be an unbounded joint process with respect
to E-generator G, production rates β and α, and death rates δ and γ. Then, the
associated stationary distribution π∞

2 (i,m, p|G, β, δ, α, γ) may be sampled as follows:
Define a stochastic kernel K over X× N0 by

K(i,m),(j,n) =
G̃∞,∗

(i,m),(j,n)

−G̃∞,∗
(i,m),(i,m)

1((i,m) ̸= (j, n))

Let now Z be a homogeneous Markov chain over X × N0 with transition kernel
K and initial distribution π1. Conditioned on Z, let W be a sequence of independent
random variables with Wj ∼ Beta(1,−G̃∞

Zj ,Zj
/γ). Consider the residual allocation

model R = {Wj

∏j−1
i=1 (1−Wi)}j≥1, and define a random vector X ∈ ∆X×N0 by

X(i,m) =

∞∑
j=1

RjδZj
((i,m))

Then, if

P
∣∣∣Z,R ∼ Poisson

α

γ

∑
(i,m)

mX(i,m)


and we denote Z1 = (E,M) ∼ π1(i,m|G, β, δ) (as defined in Definition 3.3), we have
(E,M,P ) is a sample from the stationary distribution of (E(t),M(t), P (t)),

π∞
2 ( · , · , · |G, β, δ, α, γ),

which can be expressed as the limit of the stationary distributions,

πc
2(i,m, p|G, β, δ, α, γ, c) = π1((i,m), p|G̃c, β̃c, δ̃),

of bounded joint processes (Ec,M c, P c) (cf. (4.3)), that is

π∞
2 (i,m, p|G, β, δ, α, γ)

d
= lim

c→∞
π1((i,m), p|G̃c, β̃c, δ̃).

The joint moments of (M,P ) can be captured in terms of the limit

E[MkP ℓ] = lim
c→∞

E[(M c)k(P c)ℓ]

where E[(M c)k(P c)ℓ] = E
[
(M c)kE[(P c)ℓ|Ec,M c]

]
has calculation using the relations

(4.2) and Corollary 3.10.

Remark 4.5. Although the representation of the stationary distribution π∞
2 of the

unbounded mRNA-protein interaction model is given as a limit of ‘clumped’ repre-
sentations of Markov stick-breaking measures of the bounded models, we point out
that this limit though is not in Markov stick-breaking form as given in Definition 2.2.
The same strategy of proof could in principle, under assumptions, be used to capture
the stationary distribution of an ‘infinite’ promoter mRNA model where X would
be countably infinite instead of finite. Given the nature of applications, we did not
pursue in this direction however.
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5. Bayesian Inference. Given the possibility to extract mRNA level readings
from cells in laboratory, it is natural to explore statistical inference procedures of
parameters β and G from data (cf. [1], [18]). In the following, we concentrate on
Bayesian estimation of model parameters and selection of an appropriate underly-
ing model based on mRNA readings. The methods are demonstrated by synthetic
experiments where the data are samples from a given stationary distribution. The
stick-breaking form of the stationary distribution (E,M,X) in the multistate mRNA
promoter model with parameters β and G (having scaled δ = 1), will be useful in this
regard. In particular, one can directly sample from the stationary distribution to a
given level of accuracy by truncating the series.

To compare with literature, in [1] and [18], inference procedures were performed
for parameters in a multistate promoter mRNA-protein interaction network where the
promoter space X = {0, 1} has two states. As remarked in the two-state setting, the
mRNA level stationary level M is a Poisson-Beta mixture. With certain approxima-
tions, extending also to the stationary protein level P , results were found in accord
with laboratory data.

From a different point of view, in [22], synthetic data taken at four time points
from a multistate promoter mRNA model where |X| = 2, 3 and some components of
the parameters β and G vanish a priori, inference of parameters is carried out.

In the following, we restrict also to |X| = 2, 3 state multistate promoter mRNA
models. Our emphasis will be on understanding the benefit from using an explicit
stick-breaking formulation of the stationary measure. Since we also have derived a
stick-breaking representation of the stationary distribution in models with protein
interactions, the same formalism will apply.

We present, in Section 5.1, a Bayesian approach for estimating the parameters in
the multistate promoter model based on data from the stationary distribution. Al-
though the mass function of the stationary distribution is derived in Corollary 3.10, it
cannot be used directly for inference due to the slow convergence of the series in the
formulation. We overcome the difficulty by approximating the mass function using
Monte Carlo simulations according to the stick-breaking representation of the station-
ary distribution. The estimation performance is examined under various multistate
promoter models.

On a different track, the promoter model for a gene is often fixed a priori in
the literature. The number of the promoter states and the nonzero parameters in G
are often assumed known before data analysis. In this context, we demonstrate in
Section 5.2 a data-driven method for selecting the promoter model. This method also
relies on the stick-breaking representation of the stationary distribution.

5.1. Parameter estimation.. Given L observations M1, . . . ,ML from the fol-
lowing model

(5.1)
Ml|Xl, β,G

ind.∼ Poisson(β ·Xl), l = 1, . . . , L,

Xl
iid∼ MSBM (G), l = 1, . . . , L

our goal is to estimate the parameters β and G. We first consider the case that β
have nonzero and distinct elements and all the entries in G are nonzero. Under this
setting, we describe how to estimate β and G in a Bayesian approach [12]. Then we
discuss how to modify the procedure when a zero constraint or an equality constraint
is desired for some of the parameters.

In a Bayesian framework, parameters are assumed to have a prior distribution,
representing experimenter’s belief on the parameter values before observing data.
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Given data from a certain model, prior beliefs are updated with the information in
the data to produce the posterior distribution, that is the conditional distribution of
parameters given data.

Without any equality or zero constraints, the parameter space of model (5.1) has
n2 dimensions where n = |X|. Following the discussion in Section 3.2, we assume
β1 > β2 > · · · > βn > 0. This requirement avoids the non-identifiability issue brought
by permuting the states in the multistate promoter model, but it, together with the
positive constraint on the rate parameters, restricts the parameter space to a subset of
the Euclidean space, which brings an extra difficulty to the statistical inference. To get
rid of these restrictions, we transform the parameters (β1, . . . , βn, G1,2, . . . , Gn,n−1)
into

(5.2) η = (log(β1 − β2), log(β2 − β3), . . . , log βn, logG1,2, . . . , logGn,n−1).

We first compute the posterior and conduct posterior sampling on η and then apply
the inverse of the ‘log’ transformation (5.2) to obtain the posterior density and the
posterior samples of β and G. The parameters are then estimated by the empirical
posterior means and the estimation uncertainty are quantified via empirical credible
intervals.

We consider independent priors on the elements of η:

(5.3) π(η) =

n2∏
j=1

π(ηj).

In all the synthetic experiments presented later in this section, we used independent

log-gamma priors for ηj , j = 1, . . . , n2 (that is exp(ηj)
ind∼ Gamma(aj , bj)) where

aj = 2.0, bj = 0.01 for ηj related to β and aj = 1.0, bj = 0.1 for ηj related to G.
Other priors such as Gaussian priors can also be used. Given the choice of prior
distribution, the posterior distribution of η is

π(η | M1, . . . ,ML) =
f(M1, . . . ,ML|η)π(η)∫
f(M1, . . . ,ML|η)π(η)dη

∝
L∏

l=1

E[exp(−λl)λ
Ml

l ]

n2∏
j=1

π(ηj),(5.4)

where f(M1, . . . ,ML|η) is the probability mass function of M1, . . . ,ML, λl = β ·Xl,
and the expectation is taken with respect to Xl.

Since it is difficult to compute the posterior mean analytically, we use a Gibbs
sampler [11], a special Markov Chain Monte Carlo algorithm [26] to draw samples
from the posterior distribution. In a Gibbs sampler, parameters are initialized at an

arbitrary value η(0) = (η
(0)
1 , . . . , η

(0)
n2 ). In each iteration, each parameter is sampled

from its full conditional distribution given the data and the current value of other

parameters. In our case, in iteration g, we should draw η
(g)
j from

(5.5) π(ηj |η(g)1 , . . . , η
(g)
j−1, η

(g−1)
j+1 , . . . , η

(g−1)
n2 ,M1, . . . ,ML).

However, the distribution (5.5) is difficult to directly sample from. A Metropolis-
Hastings (MH) algorithm [16, 26] is adopted to sample ηj from (5.5). More specifically,

in iteration g of the Gibbs sampler, given the current value η
(g−1)
j of ηj , a proposed
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value η′j is generated by a Gaussian random walk, that is η′j ∼ N(η
(g−1)
j , σ2

j ). Then
η′j is accepted as a new sample with probability

(5.6) α = min

{
1,

π(η′j | η
(g)
1 , . . . , η

(g)
j−1, η

(g−1)
j+1 , . . . , η

(g−1)
n2 ,M1, . . . ,ML)

π(η
(g−1)
j | η(g)1 , . . . , η

(g)
j−1, η

(g−1)
j+1 , . . . , η

(g−1)
n2 ,M1, . . . ,ML)

}
.

If η′j is not accepted, η
(g−1)
j is reused as the sample obtained in this iteration. In

other words,

η
(g)
j =

{
η′j with probability α;

η
(g−1)
j with probability 1− α.

The key step of performing the MH step is to evaluate α. As α is determined by

the ratio of the full conditional density of ηj at η′j and η
(g−1)
j and the full conditional

density of ηj is proportional to π(η|M1, . . . ,ML), it is sufficient to evaluate the left
hand side of (5.4). Although it can not be computed exactly due to the intractable
expectation, we can use Monte Carlo simulations to approximate the expectation.
Given the value of η, thus β and G, E[exp(−λ)λMl ] is approximated by

1

B

B∑
b=1

exp(−λb)λ
Ml

b ,

where λb = β ·X(b) and X(b), b = 1, . . . , B are iid samples from MSBM (G).
Truncations of the stick-breaking constructions in (2.1) are used when drawing

samples from MSBM (G). For a given G, the number of terms in the truncated
series can be determined explicitly based on the error tolerance. More specifically, to
guarantee that the error of truncation is below ε with probability higher than 1− p,
we truncated the series at term 1 +w(G, ε, p) where w(G, ε, p) is the smallest integer
w such that P (Z ≤ w) ≥ 1 − p for a Poisson random variable Z with parameter
−max1≤i≤n |Gi,i| log(ε) (cf. discussion near (2.2)). In the experiments presented
later in this section, we further restrict the maximum number of terms involved in
the calculations to avoid extremely long computing time for certain values of G.

Sometimes, it is desirable to obtain estimates of (β,G) with zero constraints
or equality constraints on the elements. For example, if one knows from previous
investigation that the gene expression of interest follows a two-state refractory pro-
moter model, then the desired estimate should have constraint β1 > β2 = 0. If it
is known a priori that Xl, l = 1, . . . , L in (5.1) should follow a Dirichlet distribution
in a three-state model, then one would expect an estimate of G with G2,1 = G3,1,
G1,2 = G3,2, and G1,3 = G2,3. The estimation procedure described above will not
produce estimates satisfying the constraints, but a slight modification to the proce-
dure will suffice as the constraints essentially reduce the dimension of the param-
eter space. The constrained (β,G) can be transformed to an unconstrained vec-
tor η with dimension lower than n2. In the two-state refractory promoter exam-
ple, η = (log β1, logG1,2, logG2,1). In the three-state Dirichlet distribution example,
η = (log(β1 − β2), log(β2 − β3), log β3, logG2,1, logG1,2, logG1,3). Once the uncon-
strained parameter vector η is identified, a Gibbs sampler similar to the one described
above can be applied to obtain posterior samples of η.

We conduct synthetic experiments to study the estimation performance of the
above procedure. Four instances of the multistate promoter model described in (5.1)
are considered in the experiments:
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• a two-state model,
• a three-state model with MSBM (G) being a Dirichlet distribution,
• a three-state model with MSBM (G) having a symmetric structure in G, and
• a three-state model with MSBM (G) having an asymmetric structure in G.

Three choices of sample size, L = 100, 500, 1000, are considered to investigate the
performance of the sampler. Twenty datasets are generated for each model and each
choice of L. The MCMC algorithm is run for five times with randomly generated
initial values. In each run, after tuning the step size σ2

j in the proposal density, the
MCMC algorithm is run for 20,000 iterations. The first 10,000 iterations are discarded
as the burn-in period. Every 10 iterations of the remaining 10,000 iterations are kept
for inference. The length of the burn-in period is chosen based on a pilot run of the
algorithm. The convergence of the MCMCs is further diagnosed according to the
Gelman-Rubin statistic [13] computed from the five chains for each dataset. The root
mean squared error (RMSE) of the posterior mean estimator for each parameter is
recorded for evaluation. It is computed as

RMSE =

√√√√ 1

20

20∑
i=1

(θ̂i − θ)2,

where θ is parameter value used for generating data and θ̂i is the estimated value from
the ith dataset. Smaller RMSE indicates better estimation performance. We also
compute the empirical 95% credible interval of each parameter for each dataset. The
(frequentist) coverage of the credible intervals for each parameter across 20 datasets
are recorded, where coverage here refers to the proportion of times the interval con-
tained the true value. In the following, we present the results for each model instance.

5.1.1. Two-state model. The parameter setting of the two-state model is
adapted from [18]. More specifically, we set β = (1000, 1)⊤, and G =

(−10 10
.34 −.34

)
when generating data.

Table 1
RMSE and the coverage of 95% credible intervals for parameters in the two-state model among

20 datasets.

L β1 β2 G2,1 G1,2

RMSE
100 542.73 0.41 0.06 5.84
500 412.50 0.13 0.03 4.36
1000 319.84 0.13 0.02 3.36

Coverage
100 0.05 0.90 0.95 0.35
500 0.45 1.00 0.95 0.70
1000 0.80 0.90 1.00 0.80

Table 1 presents the RMSE and the coverage of 95% credible interval for param-
eters in the two-state model. The estimation clearly improves in terms of RMSE as
the sample size L increases. The coverage of the credible intervals of β2 and G2,1

stays around 95% for all three choices of sample size while the coverage of β1 and
G1,2 is low in the small sample case L = 100 and increases significantly as sample size
increases. This poor coverage in the small sample case is the consequence of the large
bias of the posterior mean estimator (shown in Figure 3) and the insufficient variation
in the posterior distribution, as the information about the two parameters in a small
dataset is not strong enough to dominate the information in the prior distribution.
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It can be difficult to determine the appropriate sample size for estimating param-
eters in complex models. In our context, L = 100 in general poses a difficult statistical
inference task. To better see this, Figure 4 displays the prior and the posterior den-
sity of the transformed parameters obtained from one dataset. For log(β1 − β2), the
high density region of the prior is to the left of the true value. When L = 100, the
center of the posterior density and, in fact, most of the posterior probability mass is
confined within the high density region of the prior. As a result, the posterior mean
of log(β1 − β2) underestimates the true value and the posterior distribution has in-
sufficient variation. When L = 1000, the dataset contains stronger information about
log(β1 − β2) and the posterior is not significantly affected by the biased information
in the prior. Such a problem is not obviously reflected in the plot for log(G1,2) as
the true value locates in the high density region of the prior. The information of
log(β2) and log(G2,1) in a small dataset is already strong enough to correct the biased
information in the prior, producing credible intervals with good coverage and nearly
unbiased estimators as shown in Table 1 and Figure 3.
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Fig. 3. Boxplots of the posterior means of the parameters in the two-state model from 20
datasets. The horizontal dashed red lines indicate the true values.
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Fig. 4. Prior and posterior densities of the transformed parameters in the two-state model.
The vertical dotted red lines indicate the true values.

5.1.2. Three-state Dirichlet model. The parameter values for the three-state

Dirichlet model are β = (1000, 100, 1)⊤ and G =
(−11.0 1.0 10.0

0.34 −10.34 10.0
0.34 1.0 −1.34

)
. With the equal-

ity constraints G1,2 = G3,2, G1,3 = G2,3, and G2,1 = G3,1, the transformed parameter
vector is

η =
(
log(β1 − β2), log(β2 − β3), log(β3), log(G2,1), log(G1,2), log(G1,3)

)
.
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The results for this model are presented in Table 2 and Figures 5 and 6. In general,
the estimation performance improves as the sample size increases. When L = 100,
the large bias in the posterior means and the low coverage of the credible intervals are
the results of insufficient information in the data and biased information in the prior.
We would like to point out that when L = 100, the posterior densities of log(β1 − β2)
and log(β2 − β3) almost match the prior densities, indicating the data provide little
information about the parameter.

Table 2
RMSE and the coverage of 95% credible intervals for parameters in the three-state Dirichlet

model among 20 datasets.

L β1 β2 β3 G2,1 G3,2 G1,3

RMSE
100 438.89 118.91 2.13 0.10 0.56 3.49
500 327.74 112.28 1.17 0.07 0.35 3.38
1000 269.92 63.50 0.78 0.06 0.23 2.80

Coverage
100 0.65 1.00 0.45 1.00 0.70 1.00
500 0.90 1.00 0.85 0.95 0.80 1.00
1000 0.90 1.00 0.90 1.00 0.85 0.95
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Fig. 5. Boxplots of the posterior means of the parameters in the three-state Dirichlet model
from 20 datasets. The horizontal dashed red lines indicate the true values.

5.1.3. Symmetric three-state model. The parameters used in the general
symmetric three-state model for generating data are β = (300, 150, 20)⊤ and G =
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Fig. 6. Prior and posterior densities of the transformed parameters in the three-state Dirichlet
model. The vertical dotted red lines indicate the true values.

(−2.0 2.0 0.0
0.5 −1.0 0.5
0.0 2.0 −2.0

)
. The model structure of G is known a priori, meaning that G1,3 and

G3,1 are fixed at zero in all iterations of the Gibbs sampler and the transformed
parameter vector is

η =
(
log(β1 − β2), log(β2 − β3), log(β3), log(G1,2), log(G2,1), log(G2,3), log(G3,2)

)
.

Table 3 and Figures 7 and 8 present the results for this model. In general, similar
to the results for the two previous models, the estimation performance for all the
parameters improves as the sample size increases. However, the RMSEs of G2,1, G2,3,
and G3,2 for L = 500 are greater than those for L = 100. This happens because one
of the 20 datasets produces an estimated value far from the true value. This outlier
distorts the values of RMSEs in the case L = 500. As the boxplots in Figure 7 show,
the estimates from most of the datasets do improve as the sample size increases.

In Figure 8, the posterior densities of log(β2−β3), log(G2,1), and log(G2,3) closely
resemble the corresponding prior densities when L = 100, demonstrating weak infor-
mation in the data once again.

We observe that the estimated values of the parameters are generally in close
vicinity of the true values, especially when the sample size is large. Although we do
not theoretically prove the identifiability of the general multistate promoter models,
this observation suggests that the model is likely to be identifiable at least for the
three-state case considered here.
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Table 3
RMSE and the coverage of 95% credible intervals for parameters in the symmetric three-state

model among 20 datasets.

L β1 β2 β3 G1,2 G2,1 G2,3 G3,2

RMSE
100 133.42 51.68 8.28 11.80 7.29 7.80 2.91
500 132.94 40.69 6.09 9.01 7.88 18.56 4.07
1000 117.02 10.88 5.11 4.66 0.59 0.16 0.35

Coverage
100 0.70 1.00 1.00 0.20 0.95 0.60 0.70
500 0.75 1.00 0.95 0.70 0.80 0.90 0.90
1000 0.95 0.95 1.00 0.95 0.95 0.95 1.00
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Fig. 7. Boxplots of the posterior means of the parameters in the symmetric three-state model
from 20 datasets. The horizontal dashed red lines indicate the true values.
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5.1.4. Asymmetric three-state model. We now consider another general

three-state model with β = (300, 150, 20)⊤ and G =
(−1.0 1.0 0.0

0.0 −0.5 0.5
1.0 0.5 −1.5

)
. The G matrix

does not have a symmetric pattern as the one in Section 5.1.3. We again assume the
structure of G is known when estimating the parameters. The transformed parameter
vector is

η =
(
log(β1 − β2), log(β2 − β3), log(β3), log(G1,2), log(G2,3), log(G3,1), log(G3,2)

)
.
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Fig. 9. Top-left panel: boxplots of the average of Gelman-Rubin statistics of different trans-
formed parameters in the asymmetric three-state model for 20 datasets. Other panels: boxplots of
the posterior means of the parameters in the asymmetric three-state model from 20 datasets. The
horizontal dashed red lines indicate the true values.

The Gelman-Rubin statistic averaged over the transformed parameters for each
dataset are presented in the first panel of Figure 9 to demonstrate the convergence of
the MCMC algorithm. For all three choices of L, the Gelman-Rubin statistic is below
1.2 for all 20 datasets, indicating reasonable convergence of the MCMC algorithm. In
addtion, we observe that the algorithm has better convergence (smaller Gelman-Rubin
statistic values) when the sample size is larger.

Table 4
RMSE and the coverage of 95% credible intervals for parameters in the asymmetric three-state

model among 20 replication.

L β1 β2 β3 G1,2 G2,1 G2,3 G3,2

RMSE
100 104.24 37.37 10.03 3.29 4.36 0.69 1.05
500 14.42 2.75 5.13 0.27 0.12 0.18 0.26
1000 7.21 2.17 5.08 0.15 0.11 0.12 0.34

Coverage
100 0.95 1.00 1.00 0.9 0.80 1.00 1.00
500 1.00 1.00 1.00 1.00 0.95 0.95 1.00
1000 1.00 1.00 0.95 1.00 0.85 1.00 0.95
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Fig. 10. Prior and posterior densities of the transformed parameters in the asymmetric three-
state model. The vertical dotted red lines indicate the true values.

The results of parameter estimation are shown in Table 4 and Figures 9 and 10.
They once again suggest that the estimation performance improves as the sample size
increases and that the model parameters are identifiable.

In addition to the marginal inference presented above, Figures 11 and 12 exhibit
pairwise joint posterior densities of the transformed parameters. The densities are
obtained by kernel density estimation. The figures suggest that there are varying
degree of dependence among the parameters.

5.2. Model selection.. In the previous section, parameters are estimated with
the assumption that the structure of the multistate promoter model (the number of
states, the position of zero elements, etc.) is known. In this section, we consider select-
ing an appropriate model structure according to the Bayesian Information Criterion
(BIC) [27].

Suppose we want to choose from several models with different structures. Given
observed data M1, . . . ,ML for each candidate model, the model parameter can be
estimated using the procedure described in Section 5.1. Recall that η denotes the
unconstrained parameter vector. Let q denote the dimension of η and η̂ denote the
estimated value of η. The BIC for a model with parameter vector η is defined as

BIC = −2 log f(M1, . . . ,ML | η̂) + log(L)q,

where f(M1, . . . ,ML | η̂) is the probability of observing the sample under the model
when η = η̂. After computing the BIC for each candidate model, the model with the
smallest BIC is chosen as the most appropriate one.

In general, a more complex model (a model with more parameters) produces a
higher f(M1, . . . ,ML | η̂). However, an overly complex model is undesired in practice
as it brings in instability in statistical inference without improving much the explan-
atory power. If two models give similar f(M1, . . . ,ML | η̂), the one with the fewer
parameters is favored by BIC due to the term log(L)q. Therefore, BIC can help us
select the simplest model that explains the observed data reasonably well.
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Fig. 11. Contour plots of the pairwise joint posterior densities from one dataset with L = 1000.
The two parameters in each plot are from the same parameter group (β or G). The joint densities
are obtained by kernel density estimation. The red crosses indicate the true values.
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Fig. 12. Contour plots of the pairwise joint posterior densities from one dataset with L = 1000.
The two parameters in each plot are from different parameter groups (β or G). The joint densities
are obtained by kernel density estimation. The red crosses indicate the true values.
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We demonstrate the model selection approach again using synthetic experiments.
We still consider three choices of sample size L, 100, 500, and 1000. For each choice,
20 datasets are generated from the three-state model in Section 5.1.3. There we
estimated the nonzero parameters in β and G assuming the number of states and
structures of β and G are known. Differently, in this section, we examine whether
the correct underlying model (the number of states and the nonzero elements) can
be identified from several candidate models using the BIC framework. The candidate
models are the following:

• the true model, that is the three-state model with G13 = G31 = 0,
• a two-state model with all parameters being nonzero,
• a three-state refractory promoter model with β2 = β3 = G13 = G31 = 0, and
• a general three-state model with all parameters being nonzero.

Table 5
Distribution of the selected model among 20 datasets.

True Refractory Two-state General three-state
L = 100 0 0 20 0
L = 500 14 0 6 0
L = 1000 20 0 0 0

For each dataset, we fit all four candidate models and compute BIC for each model
fit. The model with the lowest BIC is selected. Table 5 gives the distributions of the
selected model among the 20 datasets. It shows that the model selection accuracy
improves as the sample size increases. We note that the true model is selected for
all 20 datasets when L = 1000. As we have seen in Section 5.1.3, the datasets with
L = 100 in general provide little information about most of the parameters, producing
log-likelihood functions that do not vary much for different parameter values. As a
result, the log-likelihood component in BIC are comparable for the four candidate
models. For 15 out of 20 datasets, the difference in the log-likelihood functions of
the four models is within 2.00. Therefore, the penalty term log(L)q dominates model
selection and the simplest model (two-state model) is selected for all 20 datasets.

6. Clumped constructions and proof of Theorem 4.4. Viewing the un-
bounded model where (E(t),M(t)) serves as a ‘promoter’, define

ẽ = (i,m) m̃ = p β̃(i,m) = αm δ̃ = γ

G̃∞
(i,m),(j,n) = Gi,j1(i ̸= j,m = n) + βi1(i = j, n = m+ 1) + δm1(i = j, n = m− 1)

− 1(i = j,m = n) [−Gi,i + βi + δm]

As commented before Theorem 4.4, note that G̃∞ is not a bounded generator matrix
since its diagonal entries grow unbounded with m, that is θ(G̃∞) = ∞. As a result,
G̃∞ cannot be normalized by some value of θ such that I + G̃∞/θ is a stochastic
kernel, preventing consideration of non-clumped stick-breaking measure construction
of the stationary distribution π∞

2 of the unbounded model parameterized by G̃∞ as
in the discussion of the ‘bounded’ mRNA-protein model.

We will however derive a type of clumped stick-breaking form of the stationary
distribution π∞

2 of the process (E∞(t),M∞(t), P∞(t)) through a limit with respect to
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the ‘bounded’ mRNA (Ec(t),M c(t)) and mRNA-protein (Ec(t),M c(t), P c(t)) models
(cf. Definition 4.1 and Figure 2). To this end, we view the bounded mRNA-protein
model and its stationary distribution πc

2 on the full state space (ẽ, m̃) ∈ (X×N0)×N0,
explicitly denoting dependence on the integer-valued capacity parameter c:

ẽ = (i,m) m̃ = p β̃(i,m) = αm δ̃ = γ

and

G̃c
(i,m),(j,n) = G̃∞

(i,m),(j,n)1(m,n ≤ c)

with the necessary modification of G̃c
(i,c),(i,c) to accord with the formula (4.1) and to

preserve generator structure. Note that for all m < c that

G̃c,∗
(i,m),(i,m) = G̃∞,∗

(i,m),(i,m)(6.1)

By inspection of the rates, we may couple the bounded and unbounded processes
so that Ec(t) ≡ E∞(t), and also M c(t) ≤ M∞(t) and P c(t) ≤ P∞(t), and hence also
in the t ↑ ∞ limit. Since the stationary distribution π∞

2 of the unbounded process
integrates eϵ1i+ϵ2m+ϵ3p for some ϵ1, ϵ2, ϵ3 > 0 (Lemma 4.3), the stationary measures
πc
2 ∼ (Ec,M c, P c) indexed in c are tight and so relatively compact in the space of

probability measures on X×N2
0. In Appendix C, we provide more details to show this

tightness.
We now show weak convergence of the clumped stick-breaking forms of πc

2 to π∞
2 .

Given uniform exponential moments, then the joint moments of (M c)k(P c)ℓ would
converge to those of (M∞)k(P∞)ℓ. In this way, the last statement of Theorem 4.4
would hold.

Let µc = πc
1(i,m|G, β, δ) be the unique stationary measure of (Ec(t),M c(t))

having support {(i,m) : m ≤ c}. Let also µ∞ = π1(i,m|G, β, δ) be the estab-
lished stationary distribution π1 of (E∞(t),M∞(t)), the usual mRNA portion of the
(unbounded) multistate promoter process. Note that this stationary distribution is
unique as the process (E∞(t),M∞(t)) is irreducible.

We now argue that µc converges to µ∞, which is the stationary distribution of
G̃∞. The measure µc is a projection of πc

2 to the pair (Ec,M c), and so the sequence
µc indexed in c is tight from the tightness argument of πc

2. We have G̃c converges
pointwise to G̃∞ as c ↑ ∞,and that G̃c is banded (with respect to lexicographical
ordering of states (i,m)). By consideration of the balance equation µcG̃c = 0, it
follows that limit points µlim satisfy the balance equation µlimG̃

∞ = 0 which has
unique solution µ∞. Hence, µc converges to µ∞.

Similarly, we argue that πc
2 converges to π∞

2 . Specifically, let Ǧc be the generator
associated with the process (Ec(t),M c(t), P c(t)) for 0 ≤ c ≤ ∞. The generators
Ǧc are banded for an appropriate choice of ordering on states (i,m, p) and converge
pointwise to Ǧ∞. Since the sequence {πc

2}c≥0 is also tight, every limit point π2,lim of
the sequence must be a distribution which satisfies 0 = π2,limǦ

∞. Since π∞
2 is the

only such distribution, πc
2 converges to π∞

2 .
We now consider the clumped stick-breaking construction with respected to the

bounded model. For each value of c < ∞, define a Markov chain Zc on state space
X× {0, 1, . . . , c} with initial measure µc and non-repeating transition kernel

Kc
ẽ,f̃

=
G̃c,∗

ẽ,f̃

−G̃c,∗
ẽ,ẽ

1(ẽ ̸= f̃) + 1(ẽ = f̃ and ẽ2 > c).
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Note that this Markov chain only reaches states with m ≤ c.
Given Zc, let Wc be an independent sequence of W c

j ∼ Beta(1,−G̃c,∗
Zc

j ,Z
c
j
/γ)

variables, and Rc = {W c
j

∏j−1
i=1 (1 − W c

i )}j≥1 be constructed from Wc as a residual
allocation model. Define the stick-breaking measure

Xc( · ) =
∞∑
j=1

Rc
jδZc

j
( · ).

Now, since by Theorem 3.7 and the clumped representation afforded by Proposi-
tion 2.3, we know that if

P c|(Zc,Rc) ∼ Poisson

α

γ

∑
(i,m)

m Xc(i,m)


and Zc

1 = (Ec,M c) ∼ µc, then the stationary distribution πc
2 ∼ (Ec,M c, P c) for

the bounded joint process can be written in terms of µc and the Poisson mixture
P c|(Zc,Rc).

We now show that one can take a limit as c → ∞. Since (a) µc converges pointwise
to µ∞ of G̃∞ and (b) the uniformly banded matrices G̃c converge entrywise to G̃∞,
we have

lim
c→∞

Kc
ẽ,f̃

= lim
c→∞

G̃c,∗
ẽ,f̃

−G̃c,∗
ẽ,ẽ

1(ẽ ̸= f̃) = lim
c→∞

[D(µc)−1G̃c,TD(µc)]ẽ,f̃

−G̃c
ẽ,ẽ

1(ẽ ̸= f̃)

=
[D(µ∞)−1G̃∞,TD(µ∞)]ẽ,f̃

−G̃∞
ẽ,ẽ

1(ẽ ̸= f̃)

=
G̃∞,∗

ẽ,f̃

−G̃∞,∗
ẽ,ẽ

1(ẽ ̸= f̃) = K∞
ẽ,f̃

.(6.2)

Let now Z∞ be a Markov chain with initial distribution µ∞ and kernelK∞. Given
Z∞, let W∞ be an independent sequence of W∞

j ∼ Beta(1,−G̃∞,∗
Z∞

j ,Z∞
j
/γ) variables,

and R∞ be constructed from W∞ as a residual allocation model.
Let zn = {zj}nj=1 be a deterministic sequence of states zj = (ej ,mj). Since G̃c,∗

ẽ,ẽ

converges to G̃∞,∗
ẽ,ẽ as c ↑ ∞, the conditional distribution of {Rc

j}nj=1|{Zc
j}nj=1 = zn

converges to that of {R∞
j }nj=1|{Z∞

j }nj=1 = zn as c ↑ ∞.
Also, as µc converges to µ∞ and Kc

ẽ,f̃
converges to K∞

ẽ,f̃
, the distribution of

{Zc
j}nj=1 converges to that of {Z∞

j }nj=1 as c ↑ ∞.
We conclude then, since 1 =

∑
j≥1 R

∞
j =

∑
j≥1 R

c
j for each c, as c ↑ ∞ that Xc(·)

converges weakly to

X∞( · ) =
∞∑
j=1

R∞
j δZ∞

j
( · ),

and P c|(Zc,Rc) ∼ Poisson
(
α
∑

(i,m) m Xc(i,m)
)
converges weakly to

P∞|(Z∞,R∞) ∼ Poisson

α

γ

∑
(i,m)

m X∞(i,m)
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and Zc
1 = (Ec,M c) ∼ µc converges to Z∞

1 = (E∞,M∞) ∼ µ∞.
Hence,

lim
c→∞

(Ec,M c, P c)
d
= (E∞,M∞, P∞) ∼ π∞

2 ( · , · , · |G, β, δ, α, γ),

and we conclude the proof of Theorem 4.4.

7. Summary and conclusion. Through relations between seemingly disparate
objects, namely stick-breaking Markovian measures, empirical distribution limits of
certain time-inhomogeneous Markov chains, and Poisson mixture representations of
stationary distributions in multistate mRNA promoter models, we identify the sta-
tionary joint distribution of promoter state and mRNA level via a constructive stick-
breaking formula. Moreover, we also consider protein interactions influenced by
mRNA levels and find a stick-breaking formulation of the joint promoter, mRNA and
protein levels. Interestingly, this formula with respect to un-bounded protein levels
involves a ‘clumped’ representation of the stick-breaking measure. These results con-
stitute what seem to be a significant advance over previous work, which approximate
stationary distributions or restrict solvable computations to specialized settings.

Importantly, the stick-breaking construction allows to sample directly from the
stationary distribution, permitting inference procedures for parameters as well as
model selection. Such a feature improves over sampling from the stationary distri-
butions by running the process for a length of time. Our experiments show that, for
various choices of the model settings, the inference procedures based on the stick-
breaking construction are able to estimate model parameters accurately and select
the underlying model correctly when the sample size is sufficiently large. In addition,
the form of the stationary distribution allows to compute mixed moments between
mRNA and protein levels, which might bear upon correlation analysis as in [1].

Although in principle the ‘stick-breaking’ apparatus can be used to identify sta-
tionary distributions in linear chains of reactions, a natural problem for further study
is to understand the role of ‘feedback’ in constructing the stationary distribution in
more general networks, say those where protein or mRNA levels influence promoter
switching rates. It would also be of interest to study the stationary distributions and
connections with ‘stick-breaking’ in more general chemical reaction networks, with
possibly non-Poisson representations, not necessarily those with Poisson character as
in [10].

The experiments in Section 5.1 show that when the sample size is small, the
proposed Bayesian inference for the stick-breaking model could be biased due to bi-
ased prior information and insufficient information in the data. One might mitigate
the problem by placing non-informative priors (e.g. a flat prior) on the transformed
parameters so that prior information will not dominate the inference. However, as
shown in the experiments, small datasets may contain extremely weak information
about model parameters, making the inference mainly to rely on the prior. In this
case, if a non-informative prior is used, the MCMC algorithm may encounter con-
vergence issues. In practice, single-cell mRNA data, which are the main motivation
and application area of our model, often have a large sample size (a large number of
cells). Since the proposed inference procedure tends to produce accurate results for
large datasets (L = 1000 in our experiments), we do not expect the proposed method
to produce results with large bias in practice for weakly or moderately informative
priors (e.g. the one used in the our experiments).

We have also discussed the notion of identifiability of parameters and believe
mRNA levels M can identify the promoter switching rates G and intensities β when
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the β = {βi} components are known to be distinct. Our numerical results indicate
that this is the case. We leave the theoretical justification for future investigation. On
top of the identifiability, establishing posterior consistency of the proposed Bayesian
inference is another piece of future work. Finally, of course, a next step is to under-
stand inference of parameters and model selection from laboratory cell readings.

Appendix A. Proof of Lemma 3.11. First, noting the form of G, (3.2) reduces
to

w∂wΦ = wD(β)Φ + θ(⃗1 · Φ)µ− θΦ

and (3.4) becomes

wβ · ∂wΦ = wβ ·D(β)Φ + θ
[
(⃗1 · Φ)(β · µ)− β · Φ

]
.

A similar equation holds with respect to Φ′. Note the relations in (3.3). In particular
as Φ(0) = µ and Φ′(0) = µ′, note β · µ = β′ · µ′. Hence, since wβ · ∂wΦ = wβ′ · ∂wΦ′,
β · Φ = β′ · Φ′ and 1⃗ · Φ = 1⃗ · Φ′, with respect to the above display, β ·D(β)Φ(w) =
β′ ·D(β′)Φ′(w).

Now, by differentiating β ·D(β)Φ, multiplying by w and substituting the previous
expression for w∂wΦ, one obtains another equation

wβ ·D(β)∂wΦ = wβ ·D(β)2Φ+ θβ ·D(β)
[
µ(⃗1 · Φ)− Φ

]
.

Then, considering the like equation with respect to Φ′, we arrive at β · D(β)2Φ =
β′ ·D(β′)2Φ′.

One can iterate this process and obtain, for k ≥ 1, that β · D(β)kΦ(w) = β′ ·
D(β′)kΦ′(w). Hence, evaluating at w = 0, for k ≥ 1, we have∑

i

(βi)
kµi =

∑
i

(β′
i)

kµ′
i.(A.1)

Since we know that β1 and β′
1 are the unique positive maxima in the entries

of the vectors β, β′, one gets from (A.1) that β1 = β′
1 (confirming what we knew a

priori) and so µ1 = µ′
1 by considering the asymptotics as k gets large. We may then

subtract βk
1µ1 from both sides, and repeat the argument since the components of β, β′

are assumed to be strictly ordered. Successively, we recover that βj = β′
j > 0 and

µj = µ′
j for 1 ≤ j ≤ |X| − 1. Finally, from the relation 1⃗ · µ = 1⃗ · µ′ = 1, we get

also µ|X| = µ′
|X| and so β|X| = β′

|X|. In particular, vectors β = β′ and the constant

stochastic operators Q = 1⃗ µt = 1⃗ (µ′)t = Q′.

Appendix B. Proof of Lemma 4.3. We will verify part (iii) of Theorem 1.1
[21], namely, for a Ψ-irreducible, aperiodic Markov process, “there exists a closed,
small set C and an extended-valued non-negative function V satisfying V (x0) < ∞
for some x0 (in the state-space), such that Condition (V3) holds”, from which the
lemma follows by applying the equivalent part (i) of Theorem 1.1 [21]. Here, to satisfy
Condition (V3) in [21], we take f in Condition (V3) equal to V specified later–see
(B.1).

By inspection, the unbounded joint multistate mRNA-protein continuous-time
process in Definition 4.2 is irreducible and aperiodic (Ψ-irreducible when Ψ is counting
measure). Recall that we enumerate X = {1, 2, . . . , |X|}. We now check that C =
X× {0, 1, . . . ,m0} × {0, 1, . . . , p0} ⊂ X× N2

0 is a ‘small’ set as in [21] for m0, p0 < ∞
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to be chosen later: Namely, the time t probability starting from x ∈ C to reach a set
A ∈ X× N2

0 is bounded below as

p(t)(x,A) ≥ p(s)(x, y0)ν(A),

where y0 is a fixed point in C and s is chosen large enough so that, for a small ε > 0,
minx∈C p(s)(x, y0) ≥ ε > 0, the time t > s, and ν(A) := p(t−s)(y0, A).

Let L be the generator of the unbounded process, and define the function V :
X× N2

0 → R by V (i,m, p) = exp
{
ϵ1i+ ϵ2m+ ϵ3p

}
. Then, by computation,

LV (i,m, p) = V (i,m, p)
[∑
j∈X

(
eϵ1(j−i) − 1

)
Gi,j

+
(
eϵ2 − 1

)
βi +

(
eϵ3 − 1

)
αm+

(
e−ϵ2 − 1

)
δm+

(
e−ϵ3 − 1

)
γp

]
.

Note that

max
i∈X

[∑
j∈X

(
eϵ1(j−i) − 1)Gi,j

+
(
eϵ2 − 1

)
βi +

(
eϵ3 − 1

)
αm+

(
e−ϵ2 − 1

)
δm+

(
e−ϵ3 − 1

)
γp

]
< −1

when both (i) α(eϵ3 −1)+δ(e−ϵ2 −1) < 0, which for given ϵ2 > 0 holds for sufficiently
small ϵ3 > 0, and (ii) m > m0 is sufficiently large depending on {ϵk}k=1,2,3, G,
{βk}k∈X, and α, δ, γ.

Then, condition (V3) in [21] holds with f = V ≥ 1:

LV ≤ −V + b1(C)(B.1)

where b = maxi∈X,m≤m0,p≤p0
V (i,m, p) + maxi∈X,m≤m0,p≤p0

|LV |(i,m, p) < ∞ say.
Hence, as desired, the lemma statement follows from part (iii) of Theorem 1.1 in

[21].

Appendix C. Tightness of {πc
2}. To show tightness of {πc

2}, by definition, we
show that limR↑∞ supc π

c
2(X× {R,R+ 1, . . .}2) = 0.

By Markov’s inequality, and that M c ≤ M∞, P c ≤ P∞ with respect to the
stationary distributions πc

2 and π∞
2 , we have

πc
2(X× {R,R+ 1, . . .}2) ≤ e−ϵ1−ϵ2R−ϵ3R

∫
eϵ1i+ϵ2m+ϵ3pdπc

2

≤ e−ϵ1−ϵ2R−ϵ3R

∫
eϵ1i+ϵ2m+ϵ3pdπ∞

2

for ϵ1, ϵ2, ϵ3 > 0.
Since by Lemma 4.3, π∞

2 integrates eϵ1i+ϵ2m+ϵ3p for specified ϵ1, ϵ2, ϵ3 > 0, the
claim follows.
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