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Abstract

This paper explores a system of discontinuous differential equa-
tions involving floor functions1. Such equations don’t make sense in
terms of general theorem concerning existence and uniqueness of solu-
tions of ordinary differential equations. The focus of this paper is on
possible methods to regularize this system of “odd” equations. Two
types of regularizations are discussed and the behavior of correspond-
ing solutions is investigated.

1 Introduction

This paper concerns a set of discontinuous differential equations which
describe a system of coupled maps. These equations involve floor functions
and have the following form:

dcj(t)

dt
= floor(cj−1(t))− 2floor(cj(t)) + floor(cj+1(t)) (1)

Here j is site index with 1 ≤ j ≤ N and floor(z) represents the floor function
of number z.

A general first order differential equation with some initial condition takes
the form y′(t) = f(t, y) with y(t0) = y0. General theorem concerning the
existence and uniqueness of its solution requires that f(t, y) and its partial
derivative with respect to y be continuous in a certain neighborhood region.
However, the floor function floor(z) is not continuous itself, not mentioning
any derivative. Thus, equation (1) does not make sense in its original form.

1Floor function is a function that rounds the specified number down and returns the
largest number that is less than or equal to the specified number.
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Our goal in this paper is to find possible methods to regularize equation (1)
such that the equations we have after regularizations do make sense.

The paper is organized as follows. Section 2 shortly reviews the origin of
this problem. Section 3 presents the first type of regularization in which we
replace the derivative with forward difference. The behavior of the solution
is discussed both numerically and analytically. In section 4 we move on to
present the second type of regularization in which we use a series of functions
to approximate floor function. The behavior of the solution is discussed
numerically in this section, and finally in section 5 we present some further
questions for this problem.

2 Origin of Problem

The following system of equations is used to describe the dynamics of
sliding charge-density waves (CDW’s):

xj(τ + 1) = xj(τ) + floor[k
∑
i(nn)

(xi(τ)− xj(τ)) + A(τ)]

Here i and j are site indices, τ is time index and the sum is over nearest
neighbors. This system of equations describes the evolution of the positions
xj of N particles in deep periodic potential wells, with nearest neighbor
particles connected by springs of spring constant k � 1, in the presence of
force impulse A(τ). The floor functions arise because after each pulse every
particle falls into the nearest potential minimum [1].

Let c̃j(τ) = k
∑

i(nn) (xi(τ)− xj(τ)) and we obtain a new system of equa-
tions in the following form:

c̃j(τ + 1)− c̃j(τ) = k
∑
i(nn)

[floor(c̃i(τ) + A(τ))− floor(c̃j(τ) + A(τ))]

Consider a one-dimensional case with force impulse A(τ) = 0 and we
have:

c̃j(τ + 1)− c̃j(τ) = k[floor(c̃j−1(τ))− 2floor(c̃j(τ)) + floor(c̃j+1(τ))]

Furthermore, if we take t = τ ∗ k to be rescaled time index and c̃(τ) =
c(τ ∗ k) = c(t) and we have:

cj(t+ k)− cj(k) = k[floor(cj−1(t))− 2floor(cj(t)) + floor(cj+1(t))]

The limit k → 0 seems to lead us to our system of equation (1) but before
we can do that, one question needs to be answered: does the solution of the
previous equation converge in the limit k → 0? This provides us an idea of
regularizing the system of equations (1).
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3 Discretization

In this section, we replace the derivative in the left-hand side with for-
ward difference formula and investigate the behavior of the solution both
numerically and analytically. Our goal is to show the strong convergence of
cj as well as the weak convergence of floor(cj) in the limit k → 0.

Now the problem is expressed as follows:

cj(t+ k)− cj(k) = k[floor(cj−1(t))− 2floor(cj(t)) + floor(cj+1(t))] (2)

with fixed boundary conditions:

c0 = a, cN+1 = b where a, b ∈ ℵ (3)

and random initial conditions:

cj(t = 0) = random number, 1 ≤ j ≤ N (4)

Due to the special structure of equation (2), we can reduce the boundary
conditions (3) to a simpler form. First, let l = b − a and we can set c0 =
0, cN+1 = l instead of c0 = a, cN+1 = b. This is because the following
transform ci → ci − a, 0 ≤ i ≤ N + 1 does not change the dynamics of our
system2. Second, we can furthermore require that 0 ≤ l ≤ N . The proof is
similar: if l = p ∗ (N + 1) + q with 0 ≤ q < N + 1, the following transform
ci → ci − i ∗ p, 0 ≤ i ≤ N + 1 does not change the dynamics of the system.
To sum up, we can reduce the boundary conditions to the following form:

c0 = 0, cN+1 = l, with 0 ≤ l ≤ N (5)

We first focus on long-term behavior of solution of equations (2) with
initial conditions (4) and boundary conditions (5). We conducted numerical
simulations using different combinations of N and l with certain values of k
and observed interesting results.

As shown in figure 1(a) where N = 4, l = 4, the system seems to reach
a stable final state after approximately 12500 steps3(the horizontal part in
the figure) where cj takes the value of an integer (specifically the integer j
for 1 ≤ j ≤ 4 in this case). This is not precise if we take a closer look at the
last 60 steps of figure 1(a). Figure 1(b) shows that each site cj is oscillating

2The solution depends on initial conditions. After such transform, each set of initial
conditions also needs to be transformed.

3One step means one operation on the system of equations (2). Namely, the operation
of calculating cj(t + k) from cj(t) for a given step size k. The number of steps m can be
seen as a measure of time t = m ∗ k.
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Figure 1: (a) Plot of cj versus number of steps for equations (2) with bound-
ary conditions (5) and random initial conditions (4). System parameters are
k = 0.001, N = 4, l = 4. (b) Plot of cj versus number of steps for the last 60
steps of (a).
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around an integer (specifically the integer j for 1 ≤ j ≤ 4 in this case). It
means that for each j, floor(cj) is also oscillating by taking the values of
both j and j − 1 within each cycle of oscillation. The period of the cycle of
oscillation4 is 5 for every site.

N = 4, l = 4 is one of the two typical kinds of combination in the sense
that l and N+1 are coprime in this case. Figure 2(a) and 2(b) are numerical
results with system parameters N = 3, l = 2. Note that now l and N + 1
are not coprime any more. As shown in figure 2(a),in terms of the long-term
behavior of solution we still have stable structure after certain number of
steps. However, figure 2(b) shows some difference. While c1 and c3 are still
oscillating around an integer, the value of c2 is always larger than 1. It means
that floor(c2) remains unchanged instead of oscillating. The period of cycle
is 2 for every site.

Figure 1(a) and 2(a) enable us to calculate the average value of floor(cj)
in detail. Let uj denote the average value of floor(cj) over a complete cycle.
When N = 4, l = 4, we have: u1 = 4

5
, u2 = 8

5
, u3 = 12

5
, u4 = 16

5
. When N =

3, l = 2, we have: u1 = 1
2
, u2 = 1, u3 = 3

2
. Another point worth mentioning is

that the amplitude of oscillation in both figure 1(a) and figure 2(a) is 0.002,
given that k = 0.001.

Based on these two cases and other numerical simulations we have con-
ducted, we propose the following conjecture concerning the long-term behav-
ior of solutions of equations (2):

Conjecture:

1. Periodic behavior, specifically oscillation5, must exist.
2. The period of cycle: suppose l

N+1
can be fully reduced to q

p
, then the

period of cycle is p.
3. Average value of floor(cj) over a complete cycle: j∗l

N+1
for 1 ≤ j ≤ N .

4. Pattern of oscillation: (1) If j∗l
N+1

is not an integer, then cj oscillates

around the integer floor( j∗l
N+1

) + 1 and floor(cj) takes the value of both

floor( j∗l
N+1

) and floor( j∗l
N+1

) + 1. Otherwise, cj oscillates within the interval

( j∗l
N+1

, j∗l
N+1

+ 1) and floor(cj) can only take the value of j∗l
N+1

. (2) The ampli-
tude of oscillation is proportional to O(k) for any site.

It is beneficial to add some remarks. (1) The conjecture is consistent with
all the results we have so far. (2) A special case concerning the cycle period
is when l = 0. In this case the period is actually 1 meaning that cj stays

4in the sense of step number
5The special case of a period of 1 also counts as oscillation in this paper.
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Figure 2: (a) Plot of cj versus number of steps for equations (2) with bound-
ary conditions (5) and random initial conditions (4). System parameters are
k = 0.001, N = 3, l = 2. (b) Plot of cj versus number of steps for the last 40
steps of (a).
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constant for each j. We consider this case as a special kind of oscillation
in this paper. (3) When j∗l

N+1
is an integer, cj can stay anywhere within

the interval ( j∗l
N+1

, j∗l
N+1

+ 1), oscillating or being constant. As an example,
consider the simple case with N = 1, l = 0 and cj(0) = c where c ∈ (0, 1). (4)
Most importantly, the conjecture is independent of the exact value of step
size k.

We now move on to an incomplete proof of the conjecture.
Proof of part 1. Part 1 is the theoretical foundation of the whole conjec-

ture. The basic idea of proving part 1 is that the system only has finite num-
ber of states6. Suppose cj0 = max {cj, 1 ≤ j ≤ N} and floor(cj0) ≥ l, then
cj0 is non-increasing due to the special structure of equations (2). Similarly,
if cj1 = max {cj, 1 ≤ j ≤ N} and floor(cj1) ≤ 0, then cj1 is non-decreasing.
Therefore, the whole system is bounded by the initial conditions plus the
boundary conditions (5). For every j, moreover, cj can only change its value
by a multiple of k due to equations (2). As a result, the system can only
have a finite number of states and will inevitably return to an old state and
start to behave in a periodical way.

Proof of part 3. Suppose the cycle period is p meaning that cj(t+p∗k) =
cj(t) for each j. uj, the average value of cj, can be expressed as:

uj =
1

p

p∑
i=1

floor(cj(t+ i ∗ k)) 1 ≤ j ≤ N (6)

Sum the equations (2) over a complete cycle and we have:

u2 + u0 − 2u1 = 0

u3 + u1 − 2u2 = 0

. . .

uN+1 + uN−1 − 2uN = 0

Note that u0 = 0, uN+1 = l and the solution of this system of equations is:

uj =
j ∗ l
N + 1

1 ≤ j ≤ N

Due to the definition (6), it is natural to require that p∗u1 = p∗ l
N+1
∈ ℵ.

Therefore if l
N+1

can be fully reduced to u
v
, p must be a multiple of v. A

special case is when l = 0 which does not give any restriction on p. In
this case, we can expect a cycle of period 1. Actually, this is also the only
case that we may have a cycle of period 1. So far in this paragraph is an

6A state of the system means a set of numbers {cj , 1 ≤ j ≤ N}.
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incomplete proof of part 2. We will discuss the proof of the rest part of our
conjecture in the final section.

The conjecture implies both the strong convergence of cj and the weak
convergence of floor(cj) in the limit k → 0 in the long term. We con-
sider the simple case when l and N + 1 are coprime. As the value of k
decreases, the amplitude of oscillation also decreases. Moreover, the aver-
age value of floor(cj) is restricted to be j∗l

N+1
. Therefore, cj must oscillate

around the integer floor( j∗l
N+1

) + 1 which guarantees the strong convergence
of cj. However, the strong convergence of cj should be understood in the
sense of the weak convergence of floor(cj). Independent of the strong con-
vergence of cj, floor(cj) always oscillates between two values: floor( j∗l

N+1
)

and floor( j∗l
N+1

) + 1. The average value of floor(cj) over a complete cycle is
a constant which implies the weak convergence of floor(cj).
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Figure 3: Plot of a transition. It is part of a numerical simulation with
system parameters N = 4, l = 4, k = 0.001. As shown in the figure, c2 is
drifting at the beginning and c3 is oscillating. When c2 reaches the integer
2, the transition occurs. After the transition, c2 starts to oscillate while c3
starts to drift.

We need more careful discussion for the normal case when l and N + 1
may not be coprime. In such case, we argue that cj of those sites such
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that j∗l
N+1

∈ ℵ is determined by the initial conditions of the system7 but it
needs theoretical proof. However, the weak convergence of floor(cj) is still
guaranteed.

We now apply the idea of oscillation and time averaging procedure in the
proof of conjecture part 3 to the time evolving process of the system.
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Figure 4: Plots of cj versus number of steps with same system parameters
N = 3, l = 3 and same initial conditions. The upper plot is the result of
k = 0.001 and the lower one is using k = 0.0005. If we use time index
t = m ∗ k where m is the step number, the two plots look the same in this
scale.

As shown in figure 1(a) and 2(a), there are some transient horizontal
regions before the systems stop evolving8. We argue that there are two types
of sites: “drifting” sites and “stuck” sites [2]. Namely, a drifting site is in
transit between two differnent numbers (may not be two integers) and a
stuck site oscillates periodically around a number (may not be an integer).
When a site changes its pattern or oscillation of drifting, or changes from
drifting to oscillating or in the opposite direction, we call it a transition.

7Recall that cj can stay anywhere within the interval ( j∗l
N+1 , j∗l

N+1 + 1) in this case.
8The expression here may not be so accurate. We consider the appearence of periodic

behavior in the long times as the end of evolving
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A transition occurs when a drifting site reaches the value of an integer (as
shown in figure (3)). The whole evolving process can be considered as a
sequence of drifting or oscillating processes and transitions.

When k is sufficiently small, every drifting site cj provides a stationary
environment for its neighbors in the sense that floor(cj) does not change dur-
ing the drifting process. Suppose cj0 and cj1 are a pair of drifting sites within
a certain period of time. They serve as a set of fixed boundary conditions for
the sites between them9. Therefore, we can apply the time averaging proce-
dure as before and expect strong convergence of cj and weak convergence of
floor(cj) for j0 < j < j1.

We have argued that the amplitude of oscillation is proportional to O(k).
Moreover, it is shown numerically that the number of steps a transition needs
remains finite in the limit k → 0. Thus the time a transition lasts for is
propotional to O(k). As shown in figure (4), the dynamics of the systems are
almost the same for k = 0.001 and k = 0.0005. In fact the slight difference
is proportional to O(k) and is invisible in this scale.

So far, it is reasonable to conclude that we can define the k → 0 limit of
the system of equations (2). Therefore, the regularization of discretization is
well-defined and reasonable.

4 Approximating Floor Functions

The basic idea of this section is to construct a sequence of continuously
differentiable functions qε(x) to approximate floor function floor(x) and in-
vestigate the behavior of solutions in the limit ε→ 0.

Let frac(x) denote the fractional part10 of real number x. We utilize
hyperbolic tangent function tanh(x) and define qε(x) as follows:

qε(x) =

floor(x) + 1
2

{
tanh(

(1−ε)+1
2
−frac(x)

2[frac(x)−(1−ε)][frac(x)−1]
) + 1

}
frac(x) ∈ (1− ε, 1)

floor(x) frac(x) ∈ [0, 1− ε]

Figure (5) demonstrates how this sequence of functions qε(x) approximate
floor(x) in the limit ε→ 0.

9It also explains why the cycle is less than N + 1 when l and N + 1 are not coprime.
When j∗l

N+1 is an integer, floor( j∗l
N+1 ) stays constant and the jth site cuts the whole chain

into pieces. Each piece has fixed boundary conditions and can oscillate separately with a
period of p < N + 1.

10Therefore frac(x) = x− floor(x).
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Figure 5: Plots of qε(x) with ε = 0.25 (b) ε = 0.1.
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Figure 6: Numerical results of (a) cj vs. t and (b) qε(cj(t)) vs. t with system
parameters N = 4, l = 4, ε = 0.1.
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Due to numerical results, we can expect strong convergence of both cj and
qε(j). We present this result using a simple example with system parameters
N = 4, l = 4. Figure 6(a) shows that we can still treat the integer j as the
limit of cj, which is consistent with the results we obtain using regularization
of discretization11. Figure 6(b) shows that we even have strong convergence
of qε(cj) and the limit of convergence is j∗l

N+1
. Recall that we only have

weak convergence of floor(cj) when using regularization of discretization.
However, the value of uj, which represents the average value of floor(cj), is
exactly j∗l

N+1
.

The example with N = 4, l = 4, ε = 0.1 itself provides insight into the
behavior of the system, especially the possible limits of cj and qε(cj) in the
limit ε → 0. The strong convergence can be demonstrated directly by cal-
culating numerically the difference between real values of cj and qε(cj) and
their expected limits. As a result, we can argue that the regularization of
approximating floor functions is reasonable.

5 Conclusion and Further Questions

In this paper we have shown that the two types of regularization, namely
discretization of the derivative and approximation of floor functions, are well-
defined and reasonable. They both imply strong convergence of cj in a certain
limit and moreover, they share the same limit of convergence. However, the
first type of regularization features a weak convergence of floor(cj) while the
second type features a strong convergence of qε(cj) in contrast. They also
share the same limit of convergence.

Some further questions concern the theoretical proof of the results pre-
sented in section 3 and 4. One idea to prove the conjecture in section 3 is to
show that there can not be any drifting sites when the system is oscillating.
Because uj, the average value of floor(cj), is a constant, floor(cj) can only
take two values if uj is not an integer or one value if uj is an integer. Again,
since there are no drifting sites, the amplitude of oscillation can only be O(k).
Therefore, the pattern of the oscillation is fixed. We can move on to prove
part 2 of the conjecture concerning cycle period based on the pattern of the
oscillation.

I would like to thank Professor Shankar Venkataramani here for his help
with my research project.

11Recall that in this case, cj oscillates around the integer j with an oscillation amplitude
proportional to O(k).
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