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We consider a Fredholm integral equation of the 2°¢ kind

b
u(x) = f(x) + A f dy K(xly) u(y) )

One of the common ways to solve the eq. (1) is doing the iterations

b

nar () = f(x) + A f dy K(x|y) un(y)

a

where u,, is the approximation of u at n'? iteration, and uy := f. If we introduce
an operator K with the integral kernel K (x |y), then the eq. (1) can be written
as (I — AK)u = f, where I is the identity operator. The iterations go as u4; =
f + AKu,. The approximation at n'® iteration is equal to u, = o AMK™f
Let us introduce repeated kernels K, (x|y) — the integral kernels of the
operators K™. We have Ko(x|y) = 8(x — y) as the kernel of the identity
operator K° = I. Obviously, K;(x|y) = K(x|y), and for any n > 1 we have

b b b
Kni1(xly) = fdzl dez ~-~fdzn K(x|z1)K(z1]22) - K(zn |y)

The repeated kernels satisfy the following recurring relation:

b
Kmin(x|y) = fdz Km(x|2)Ku(zly) ,ie, K™™=KmK"
a

The expansion resulted from the iterations,

b

u) = @)+ Y A" [ &y K1) f @)
m=1

a

(we did write the m = 0 term separately in order not to deal with distributions)
may converge (later we will see that it does converge for any A in the case
of a Volterra equation), but could also diverge even if there is a well defined
unique solution. A systematic method of obtaining a solution for any A was
suggested by Erik Ivar Fredholm.
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Let us discretize the problem, e.g., using a grid of N points x; = a+h(i—1/2),
1 <i < N, where h = (b—a)/N is the grid spacing. We denote f; := f(x;),
u; == u(x;), and Kj; := K(x;|x;). The integral is approximated by a finite sum
(here we use the midpoint rule), so the integral equation is discretized as

N
u; = fl + AhZKij”j (2)
Jj=1

The solution of this system of N linear equations can be written using the
Cramer’s rule: u; = det 8;/det A, where

1 - AhKyy —AhK 2 —AhKi3 e —AhKN-11 —AhK N1
—AhKy; 1 - AhK,, —AhKy3 e —AhKN_12 —AhK N2
. —AhK3, —AhK3, 1-AhK33 --- —AhKN-13 —AhK N3
A = . . . . . .
—AhKN-1,1 —AhKn-12 —ABKn-13 -+ 1=AhKn-_iN-1 —ARKN N—1
—AhK Ny —AhK N —AhK N3 e —AhKN N-1 1 - AhKNN

is the matrix of the system (2), and the matrix B; is obtained from the matrix
A by substituting the i'™ column by the column vector f.
We are interested in how the solution u(x) depends on the spectral param-

eter A. Let us expand the determinant det A in powers of A:

N N-1 N N-1 N
det A = 1_AhZK”+AZhZZ Z Kiinj—AthZ Z Kinji+...
i=1 i=1 j=itl i=1 j=itl
il il )
. .,
+ + T I +
- JJ
.. as
.. ji
1 Al terms A% terms
+ ."-..._' ] + [." + + "'-...' + .} + .' + ‘ + + ..
A3 terms A% terms

In the expansion above the matrix elements from which the factor A is taken
from are indicated by black dots. Here we use the expression for the deter-
minant through permutations. We grouped the terms according to the cycle
structure in the permutation, the cycles are indicated by thin lines. The vast
majority of factors [in the case of fine discretization grid] in the corresponding
to a permutation product of the matrix elements are coming from the diagonal.
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In order to get a relatively comprehensible expression for det A, it is con-
venient to group the A" terms differently. Let us say we have a A" term that
contains K, j,, Kj, j,» ---» Ki,,j, as factors. All other factors in the corresponding
to a permutation product of the matrix elements do not contain A, so they
come from the diagonal. Thus, the sets of i-indices and j-indices do coincide,
and the mapping o : i — ji, 1 < k < n, is a permutation of n objects.

In order to account for all A” terms, let us first choose the values 1 < i; <
iy < ... <ip £ N and harvest all the A" terms that use the discretized kernel
values from these rows and columns. Then we sum over all possible values of
i1, ig, ..., in. We get

Kiiy Kii, - Ki,
N-n+1 N-n+2 N Kiz,il Kiz,iz Kiz,i,,
detﬂ—1+z /lh)”z Z Z ,
=1 =i+l ip=ipog+l : : :
Ki,ii K Ki,.i,

By making the discretization grid finer and finer (h ), — f ), we finally obtain

A —00 > _A n
det A i Fredholm determinant D) = Z (=4) A,
g n!
b b b
pomt A [ [ [ag (2 50
’ " f ylf ve f Iy o s U
a a a
K(xily1) K(xilyz) -+ K(xilyn)
K(xl, X2,y s xn)  det K(x2.|y1) K(x2.|y2) K(x2.|yn)
Y1, Y2, -5 Yn : : :
K@xnlyr) K(xalyz) -+ K(xnlyn)

Here we used the fact that there are n! orderings of n objects:

fdylfdyz fdyn F(y1,Y2,...,Yn) = fdylfdyz fdyn

a symmetric functlon

S0 Y1<y2<...<Yn
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Let us now find out the behavior of det ;. There are two types of terms: the
ones that contain f;, and the ones that do not (they then have to contain some
fi with j # i). The fi-type terms provide the contribution to det B, which is fi
multiplied by the determinant of the matrix B, with i™ column (containing
f’s) and the i" row removed. This determinant has the same structure as
det A, just one grid point is remived. In the limit N — oo it tends to the
Fredholm determinant D).

To take into account all fj-type terms, we need to sum over j. As the factor
fj comes from non-diagonal matrix element of B;, we necessarily have at least
one more non-diagonal factor which is going to contain h. This h ), will be
converted to the integration over [j —]y.

Let us say we have a A"*! term that contains K, j,, K, j,, --s Kips1, s> a0d
fi (an element from the i column) as factors. As before, all other factors
in the corresponding product of the matrix elements of B; come from the
diagonal; and the sets of row and column numbers do coincide. As i # j, one
of iy, iz, ..., in+1 1s equal to i, and one of jy, ja, ..., ju+1 is equal to j. We have to
sum over all possible positions of the remaining n indices. We get

t ~ —00 - _A "
(L1 i der ) Y= minor Dy xlg) = ) B, a1y

n=0

b b b
alo) = [ [ [ (% B 2 )
n(X|y) f ylf yz f yn ys yls y27 [ERTY yn
a a a
also By(x|y) := K(x|y). We write the solution as

summation over j
—

b
) = f) +Afdy Ra(xly) Fv)

fi terms a

f; terms

The function R (x|y) = D(x|y) /D, is called the Fredholm resolvent.
The objects A, and B, (x|y) satisfy the following recurrent relations:

b
Ay =1, Bo(x|y) = K(x|y), An=fdan_1(ny)

b
Bu(xly) = K(x|y) A, — nfde(sz)Bn_l(zly)



