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Consider the linear problem u ′′(x ) = f (x ) with u (0) = u (1) = u ′(0) =
u ′(1) = 0 boundary conditions. For which f (x ) there is a solution? Find the
[modi�ed] Green’s function K (x |y).

Let us calculate the adjoint L̂†:

〈v, L̂u〉 =

1∫
0

dx v∗ (x )u ′′(x ) =���
���

�:0
v∗ (x )u ′(x )

����
π/2

0
−

1∫
0

dx (v ′(x ))∗u ′(x ) =

= −���
���

�:0
(v ′(x ))∗u (x )

����
1

0
+

1∫
0

dx (v ′′(x ))∗ u (x )

thus L̂† = d2/dx2 with no boundary conditions on v (x ). Arbitrary linear
function is a zero mode of L̂†, so there are two [linear independent] zero
modes, e.g., v1 (x ) = 1 and v2 (x ) = x . In order for solution to exist, the r.h.s.
f (x ) should be orthogonal to both of them.

�e equation L̂K (x |y) = δ (x − y) should be modi�ed — the r.h.s. should
be orthogonalized to the zero modes of L̂†. �e space of zero modes is two-
dimensional, and there is a plenty of ways to choose a basis there. Let us
demonstrate that two di�erent choices lead to the same modi�cation.

Let us take the pair v1 (x ) = 1 and v2 (x ) = x , and then orthogonalize it by
the Gram–Schmidt process. We end up with the orthonormalized functions as
U0,1 (x ) = 1 andU0,2 (x ) =

√
12(x − 1/2).

Now let us take the same pair but in di�erent order: v2 (x ) goes �rst. We end
up with the orthonormalized functions asU0,3 (x ) =

√
3x andU0,4 (x ) = 3x − 2.

�e modi�cation of the r.h.s. goes as

δ (x − y) −→ δ (x − y) −U0,1 (x )U
∗
0,1 (y) −U0,2 (x )U

∗
0,2 (y) =

= δ (x − y) − 1 − 12(x − 1/2) (y − 1/2) =
= δ (x − y) − (12xy − 6x − 6y + 4) =
= δ (x − y) − 3xy − (3x − 2) (3y − 2) =
= δ (x − y) −U0,3 (x )U

∗
0,3 (y) −U0,4 (x )U

∗
0,4 (y) ←− δ (x − y)

Now let is �nd the modi�ed Green’s function K (x |y). We have

K (x |y) = −2x3y + x3 + 3x2y − 2x2 +
{

Ax + B, x < y;
Cx + D, x > y
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where the 4 constantsA, B,C , D are found from the 4 boundary conditions. We
�nd A = B = 0 from K (0 |y) = (d/dx )K (x |y)x=0 = 0. Also y − 1 +C + D = 0
from K (1 |y) = 0, and C = 1 from (d/dx )K (x |y)x=1 = 0. (�us, D = −y.)

So far we did not use the conditions that the Green’s function is continuous
and has the derivative at x = y to jump by 1. Because we so carefully did
prepare the r.h.s., this should automatically be satis�ed. As C = 1 we have the
correct jump, and asCx +D = x −y is equal to 0 at x = y the Green’s function
is indeed continuous. Our �nal expression for the Green’s function is

K (x |y) = −2x3y + x3 + 3x2y − 2x2 + H (x − y) · (x − y)

Let us now interpret the obtained Green’s function as the integral kernel of
the pseudoinverse of L̂. For that let us �nd the “singular value decomposition”
of L̂. �e “right singular eigenvectors” are the eigenfunctions of L̂†L̂ = d4/dx4,
a self-adjoint and positive de�nite operator acting in “small” space of functions
satisfying u (0) = u (1) = u ′(0) = u ′(1) = 0 boundary conditions:

〈v, L̂u〉 =

1∫
0

dx v∗ (x )u ′′′′(x ) = (non-integral terms) +
1∫

0

dx (v ′′′′(x ))∗ u (x )

In non-integral terms we have 3 di�erentiations somehow distributed between
u and v . In any term one of the functions is di�erentiated just once or not
di�erentiated at all, rendering this term being equal to 0.

Consider k4 > 0 to be an eigenvalue of L̂†L̂. �en the corresponding
eigenfunction V (x ) is a linear combination of coshkx , sinhkx , coskx , and
sinkx . From the boundary conditions V (0) = V ′(0) = 0 it should look like

V (x ) = A(coshkx − coskx ) + B (sinhkx − sinkx )

whereA and B are some constants. In order to satisfy another pair of boundary
conditions, V (1) = V ′(1) = 0, the constants A and B should solve a homoge-
neous system of two linear equations

[
V (1)
V ′(1)

]
=

[
coshk − cosk sinhk − sink
sinhk + sink coshk − cosk

] [
A
B

]
=

[
0
0

]

which has a non-zero solution only if coshk cosk = 1. �ere are in�nitely
many suitable values of k , which we will denote as k1[≈ 4.73] < k2[≈ 7.85] <
...Wehave limi→∞ ki = +∞ (the operator L̂ is unbounded), withki ≈ π(i+1/2)
for [even not so very] large i .
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�e normalized eigenfunction Vi (x ) with an eigenvalue ki looks like

Vi (x ) = (coshkix − coskix ) −
coshki − coski
sinhki − sinki

(sinhkix − sinkix )

�e le� “singular eigenfunctions” can be obtained asUi = L̂Vi/k
2
i = V

′′
i /k

2
i ,

with the result

Ui (x ) = (coshkix + coskix ) −
coshki − coski
sinhki − sinki

(sinhkix + sinkix )

�e two le� singular eigenfunctions that correspond to the zero singular value
areU0,1 (x ) = 1 andU0,2 (x ) =

√
3(2x−1). Let us check that they are orthogonal

to allUi (x ):

〈U0,j ,Ui 〉 =
1
k2i

1∫
0

dx U ∗0,j (x )V
′′
i (x ) =

1∫
0

dx (U ′′0,j (x ))∗Vi (x ) = 0

Non-integral terms in integration by parts are zero here as Vi (0) = Vi (1) =
V ′i (0) = V

′
i (1) = 0.

We should have

L(x |y) =
∞∑
i=1

Ui (x ) k
2
i V
∗
i (y) and K (x |y) =

∞∑
i=1

Vi (x )U
∗
i (y)

k2i

In “matrix” form the operator L̂ could be wri�en as

L(x |y) =
[
· · · U3 (x ) U2 (x ) U1 (x ) U0,2 (x ) U0,1 (x )

]



. . .
...
...
...

· · · k23 0 0
· · · 0 k22 0
· · · 0 0 k21
· · · 0 0 0
· · · 0 0 0





...
V ∗3 (y)
V ∗2 (y)
V ∗1 (y)



while the Green’s function K̂ is obtained by dropping the zero singular values,
i.e., removing the last two rows of Σ̂ and the last two columns of Û (zero modes
of L̂†), and inverting the resulting matrix.

All this is true if the basus ofU -functions is complete, i.e., we have

δ (x − y) = U0,1 (x )U
∗
0,1 (y) +U0,2 (x )U

∗
0,2 (y) +

∞∑
i=1

Ui (x )U
∗
i (y)

as the decomposition of identity operator.


