Consider the linear problem $u^{\prime \prime}(x)=f(x)$ with $u(0)=u(1)=u^{\prime}(0)=$ $u^{\prime}(1)=0$ boundary conditions. For which $f(x)$ there is a solution? Find the [modified] Green's function $K(x \mid y)$.

Let us calculate the adjoint \hat{L}^{\dagger} :

$$
\begin{aligned}
\langle v, \hat{L} u\rangle & =\int_{0}^{1} \mathrm{~d} x v^{*}(x) u^{\prime \prime}(x)=\left.v^{*}(x) u^{\prime}(x)\right|_{0} ^{\pi / 2}-0 \int_{0}^{1} \mathrm{~d} x\left(v^{\prime}(x)\right)^{*} u^{\prime}(x)= \\
& =-\left.\left(v^{\prime}(x)\right)^{*} u(x)\right|_{0} ^{1 \rightarrow}+\int_{0}^{1} \mathrm{~d} x\left(v^{\prime \prime}(x)\right)^{*} u(x)
\end{aligned}
$$

thus $\hat{L}^{\dagger}=\mathrm{d}^{2} / \mathrm{d} x^{2}$ with no boundary conditions on $v(x)$. Arbitrary linear function is a zero mode of \hat{L}^{\dagger}, so there are two [linear independent] zero modes, e.g., $v_{1}(x)=1$ and $v_{2}(x)=x$. In order for solution to exist, the r.h.s. $f(x)$ should be orthogonal to both of them.

The equation $\hat{L} K(x \mid y)=\delta(x-y)$ should be modified - the r.h.s. should be orthogonalized to the zero modes of \hat{L}^{\dagger}. The space of zero modes is twodimensional, and there is a plenty of ways to choose a basis there. Let us demonstrate that two different choices lead to the same modification.

Let us take the pair $v_{1}(x)=1$ and $v_{2}(x)=x$, and then orthogonalize it by the Gram-Schmidt process. We end up with the orthonormalized functions as $U_{0,1}(x)=1$ and $U_{0,2}(x)=\sqrt{12}(x-1 / 2)$.

Now let us take the same pair but in different order: $v_{2}(x)$ goes first. We end up with the orthonormalized functions as $U_{0,3}(x)=\sqrt{3} x$ and $U_{0,4}(x)=3 x-2$.

The modification of the r.h.s. goes as

$$
\begin{aligned}
\delta(x-y) \longrightarrow & \delta(x-y)-U_{0,1}(x) U_{0,1}^{*}(y)-U_{0,2}(x) U_{0,2}^{*}(y)= \\
= & \delta(x-y)-1-12(x-1 / 2)(y-1 / 2)= \\
= & \delta(x-y)-(12 x y-6 x-6 y+4)= \\
= & \delta(x-y)-3 x y-(3 x-2)(3 y-2)= \\
= & \delta(x-y)-U_{0,3}(x) U_{0,3}^{*}(y)-U_{0,4}(x) U_{0,4}^{*}(y) \longleftarrow \delta(x-y)
\end{aligned}
$$

Now let is find the modified Green's function $K(x \mid y)$. We have

$$
K(x \mid y)=-2 x^{3} y+x^{3}+3 x^{2} y-2 x^{2}+ \begin{cases}A x+B, & x<y \\ C x+D, & x>y\end{cases}
$$

where the 4 constants A, B, C, D are found from the 4 boundary conditions. We find $A=B=0$ from $K(0 \mid y)=\left.(\mathrm{d} / \mathrm{d} x) K(x \mid y)\right|_{x=0}=0$. Also $y-1+C+D=0$ from $K(1 \mid y)=0$, and $C=1$ from $\left.(\mathrm{d} / \mathrm{d} x) K(x \mid y)\right|_{x=1}=0$. (Thus, $D=-y$.)

So far we did not use the conditions that the Green's function is continuous and has the derivative at $x=y$ to jump by 1 . Because we so carefully did prepare the r.h.s., this should automatically be satisfied. As $C=1$ we have the correct jump, and as $C x+D=x-y$ is equal to 0 at $x=y$ the Green's function is indeed continuous. Our final expression for the Green's function is

$$
K(x \mid y)=-2 x^{3} y+x^{3}+3 x^{2} y-2 x^{2}+H(x-y) \cdot(x-y)
$$

Let us now interpret the obtained Green's function as the integral kernel of the pseudoinverse of \hat{L}. For that let us find the "singular value decomposition" of \hat{L}. The "right singular eigenvectors" are the eigenfunctions of $\hat{L}^{\dagger} \hat{L}=\mathrm{d}^{4} / \mathrm{d} x^{4}$, a self-adjoint and positive definite operator acting in "small" space of functions satisfying $u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0$ boundary conditions:

$$
\langle v, \hat{L} u\rangle=\int_{0}^{1} \mathrm{~d} x v^{*}(x) u^{\prime \prime \prime \prime}(x)=(\text { non-integral terms })+\int_{0}^{1} \mathrm{~d} x\left(v^{\prime \prime \prime \prime}(x)\right)^{*} u(x)
$$

In non-integral terms we have 3 differentiations somehow distributed between u and v. In any term one of the functions is differentiated just once or not differentiated at all, rendering this term being equal to 0 .

Consider $k^{4}>0$ to be an eigenvalue of $\hat{L}^{\dagger} \hat{L}$. Then the corresponding eigenfunction $V(x)$ is a linear combination of $\cosh k x, \sinh k x, \cos k x$, and $\sin k x$. From the boundary conditions $V(0)=V^{\prime}(0)=0$ it should look like

$$
V(x)=A(\cosh k x-\cos k x)+B(\sinh k x-\sin k x)
$$

where A and B are some constants. In order to satisfy another pair of boundary conditions, $V(1)=V^{\prime}(1)=0$, the constants A and B should solve a homogeneous system of two linear equations

$$
\left[\begin{array}{c}
V(1) \\
V^{\prime}(1)
\end{array}\right]=\left[\begin{array}{cc}
\cosh k-\cos k & \sinh k-\sin k \\
\sinh k+\sin k & \cosh k-\cos k
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which has a non-zero solution only if $\cosh k \cos k=1$. There are infinitely many suitable values of k, which we will denote as $k_{1}[\approx 4.73]<k_{2}[\approx 7.85]<$ \ldots We have $\lim _{i \rightarrow \infty} k_{i}=+\infty$ (the operator \hat{L} is unbounded), with $k_{i} \approx \pi(i+1 / 2)$ for [even not so very] large i.

The normalized eigenfunction $V_{i}(x)$ with an eigenvalue k_{i} looks like

$$
V_{i}(x)=\left(\cosh k_{i} x-\cos k_{i} x\right)-\frac{\cosh k_{i}-\cos k_{i}}{\sinh k_{i}-\sin k_{i}}\left(\sinh k_{i} x-\sin k_{i} x\right)
$$

The left "singular eigenfunctions" can be obtained as $U_{i}=\hat{L} V_{i} / k_{i}^{2}=V_{i}^{\prime \prime} / k_{i}^{2}$, with the result

$$
U_{i}(x)=\left(\cosh k_{i} x+\cos k_{i} x\right)-\frac{\cosh k_{i}-\cos k_{i}}{\sinh k_{i}-\sin k_{i}}\left(\sinh k_{i} x+\sin k_{i} x\right)
$$

The two left singular eigenfunctions that correspond to the zero singular value are $U_{0,1}(x)=1$ and $U_{0,2}(x)=\sqrt{3}(2 x-1)$. Let us check that they are orthogonal to all $U_{i}(x)$:

$$
\left\langle U_{0, j}, U_{i}\right\rangle=\frac{1}{k_{i}^{2}} \int_{0}^{1} \mathrm{~d} x U_{0, j}^{*}(x) V_{i}^{\prime \prime}(x)=\int_{0}^{1} \mathrm{~d} x\left(U_{0, j}^{\prime \prime}(x)\right)^{*} V_{i}(x)=0
$$

Non-integral terms in integration by parts are zero here as $V_{i}(0)=V_{i}(1)=$ $V_{i}^{\prime}(0)=V_{i}^{\prime}(1)=0$.

We should have

$$
L(x \mid y)=\sum_{i=1}^{\infty} U_{i}(x) k_{i}^{2} V_{i}^{*}(y) \quad \text { and } \quad K(x \mid y)=\sum_{i=1}^{\infty} \frac{V_{i}(x) U_{i}^{*}(y)}{k_{i}^{2}}
$$

In "matrix" form the operator \hat{L} could be written as

$$
L(x \mid y)=\left[\begin{array}{llllll}
\cdots & U_{3}(x) & U_{2}(x) & U_{1}(x) & U_{0,2}(x) & U_{0,1}(x)
\end{array}\right]\left[\begin{array}{cccc}
\ddots & \vdots & \vdots & \vdots \\
\cdots & k_{3}^{2} & 0 & 0 \\
\cdots & 0 & k_{2}^{2} & 0 \\
\cdots & 0 & 0 & k_{1}^{2} \\
\cdots & 0 & 0 & 0 \\
\cdots & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\vdots \\
V_{3}^{*}(y) \\
V_{2}^{*}(y) \\
V_{1}^{*}(y)
\end{array}\right]
$$

while the Green's function \hat{K} is obtained by dropping the zero singular values, i.e., removing the last two rows of $\hat{\Sigma}$ and the last two columns of \hat{U} (zero modes of \hat{L}^{\dagger}), and inverting the resulting matrix.

All this is true if the basus of U-functions is complete, i.e., we have

$$
\delta(x-y)=U_{0,1}(x) U_{0,1}^{*}(y)+U_{0,2}(x) U_{0,2}^{*}(y)+\sum_{i=1}^{\infty} U_{i}(x) U_{i}^{*}(y)
$$

as the decomposition of identity operator.

