typos in MATH 583A&B class notes

2016-04-13, 07:23

On the right is the cover of the class notes that I have. If you have some other version, and the page numbering seems to be different — please tell me.

Thanks to: Dwight Nwaigwe, Kenneth Plackowski, Kenneth Yamamoto.

cover

$$\boxed{\text{MATH 583A}} \longrightarrow \boxed{\text{MATH 583A\&B}}$$

page 235

near the top of the page:
$$B_0 = \frac{2}{L} \int_0^L f(x) dx \longrightarrow B_0 = \frac{1}{L} \int_0^L f(x) dx$$

page 241

in 2 places: $T: H \to \mathbb{R} \longrightarrow T: H \to \mathbb{C}$ — no need to bound ourselves to reals, and in the beginning of the page 243 complex conjugates do appear.

page 250

near the middle of the page:	$s \rightarrow 0$	\longrightarrow	$\sigma \! \rightarrow \! 0$	
------------------------------	-------------------	-------------------	------------------------------	--

page 263

not a typo, but a simpler proof of **Theorem 7**: Assume λ is in the residual spectrum of *L*. Then (by Theorem 6) $\overline{\lambda}$ is an eigenvalue of $L^* = L$. Then (by the consequence of the proof of Theorem 5) λ is real, so $\lambda = \overline{\lambda}$ is an eigenvalue of *L*, *i.e.*, it is in the point spectrum of *L*.

proof o	of Theorem	7 : y	$\in \mathcal{N}(L-$	$\bar{\lambda})$ –	$\rightarrow y$	$r \in \mathcal{N}(L^*)$	$-\bar{\lambda})$	— alt	houg	h <i>L</i> *	=L	here, anyway.	
	72 1 (1	7	1 0										

footnote ⁷²: $k \neq 1$ \longrightarrow k > 0 — otherwise rank is never equal to 1, which is the rank of "not generalized" eigenvectors

page 264

beginning of **6.5.2**: domain of $S \longrightarrow$ range of S

page 265

$$\sigma_p(S) = \{0\} \longrightarrow \sigma_p(S) = \emptyset \longrightarrow \{0\}$$
 usually means "a set with one element, namely 0".

page 267

page 277

(7.7):
$$\boxed{\int_0^x} \longrightarrow \boxed{\int_a^x}$$

(7.9): $(\xi - x) \longrightarrow (x - \xi)$

page 278

end of 7.1: Section 1.3
$$\longrightarrow$$
 Section 7.3
(7.18): $f(t)dt \longrightarrow f(\tau)d\tau$

page 281

near the top of the page: Sturm Liouville
$$\longrightarrow$$
 Sturm-Liouville

page 283

page 290

(7.85):
$$pu'' + p'u + qu \longrightarrow pu'' + p'u' + qu$$

page 300

near the top of the page:
$$Lu = f \longrightarrow Lu = g$$

page 302

the very bottom of the page:
$$1\frac{1}{2}\xi^2 + c_1 \longrightarrow -\frac{1}{2}\xi^2 + c_1$$

page 303

right after (7.165):
$$\int_{\xi}^{x} K_{>} dx \longrightarrow \int_{\xi}^{1} K_{>} dx$$

footnote ⁸⁵: $K'_{2|x=\xi} \longrightarrow K'_{<|x=\xi}$

page 309

between (7.189) and (7.190): sides of (192) \longrightarrow sides of (189)

page 321

after (8.21):
$$(1 - \lambda \alpha_{11}c_1) \longrightarrow (1 - \lambda \alpha_{11})c_1$$

page 323

near the bottom of the page: $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$

page 328

(8.39):
$$\lambda_m \int_a^b u_m(\xi) \longrightarrow \lambda_n \int_a^b u_m(\xi)$$

the very bottom of the page: $\frac{\lambda_m}{\lambda_m} \int_a^b \longrightarrow \frac{\lambda_m}{\lambda_n} \int_a^b$

page 335

after (8.62): powers of $\lambda \longrightarrow$ powers of μ

page 341

near the top of the page: campact
$$\longrightarrow$$
 compact

upper half of the page: $T = \lim_{n \to \infty} T_n$ — we have $||T_{n+1} - T_n|| = 1$, so there is no limit here.

page 347

$$(9.16): \boxed{\frac{\partial L}{\partial q}} + \longrightarrow \boxed{\frac{\partial L}{\partial q}} \delta q +$$

page 351

$$(9.42): y^2 x \longrightarrow y^2_x$$

page 376

the lower half of the page:	the 20^{th}) century	$ \longrightarrow$	the 20 th century)
	-		-