MATH 583A Principles and Methods of Applied Mathematics

Section 001, Fall 2018 (instructor: Misha Stepanov)

Homework 4

1. Find how the distribution $x^n \delta''(x)$, with n = 0, 1, 2, 3, acts on a test function.

2. Consider $F(x) = \delta(x) + \delta''(x)$. How the distribution *F* acts on test functions? Find its Fourier transform. What is $\hat{F}(\pm 1)$? Of what operator \hat{L} the function F(x - y) is the integral kernel? Solve the equation $\hat{L}\varphi = 0$.

3. Consider the function (actually a distribution)

$$g(x) = \frac{1}{N} \sum_{n=1}^{N} \delta\left(x + 1 - \frac{2n-1}{N}\right).$$

Draw the "graph" of g(x). Find its Fourier transform $\hat{g}(k)$. Compare it with the one of $H(1 - x^2)/2 = H(1 - x)H(1 + x)/2$.

4. Find the Fourier transform of $\sum_{n=-\infty}^{\infty} \delta(x - n)$. Explain the similarity of it at small *k* with the Fourier transform of 1.

5. Find the Fourier transform of the floor function $\lfloor x \rfloor$. (Pay attention to the vicinity of k = 0.)