typos in MATH 583A\&B class notes

2016-12-27, 12:??
On the right is the cover of the class notes that I have. If you have some other version, and the page numbering seems to be different - please tell me.

Thanks to: Dwight Nwaigwe, Kenneth Plackowski, Kenneth Yamamoto.

cover
MATH 583A \longrightarrow MATH 583A\&B
page 235
near the top of the page: $B_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x \rightarrow B_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x$
page 241
in 2 places: $T: H \rightarrow \mathbb{R} \longrightarrow T: H \rightarrow \mathbb{C} —$ no need to bound ourselves to reals, and in the beginning of the page 243 complex conjugates do appear.
page 246
near the top of the page: $\left.\left.\right|^{\left|-v(x) u^{\prime}(x)+v^{\prime}(x) u(x)\right|_{0}^{1}} \rightarrow\left(-v(x) u^{\prime}(x)+v^{\prime}(x) u(x)\right)\right|_{0} ^{1}$
next row: $+u^{\prime}(1) v(1) \longrightarrow-u^{\prime}(1) v(1)$
after "with the associated domain is": $v(0)=0 \longrightarrow v(1)=0$
page 250
near the middle of the page: $s \rightarrow 0 \rightarrow \sigma \rightarrow 0$
page 263
not a typo, but a simpler proof of Theorem 7: Assume λ is in the residual spectrum of L. Then (by Theorem 6) $\bar{\lambda}$ is an eigenvalue of $L^{*}=L$. Then (by the consequence of the proof of Theorem 5) λ is real, so $\lambda=\bar{\lambda}$ is an eigenvalue of L, i.e., it is in the point spectrum of L.
proof of Theorem 7: $y \in \mathcal{N}(L-\bar{\lambda}) \rightarrow y \in \mathcal{N}\left(L^{*}-\bar{\lambda}\right)$ - although $L^{*}=L$ here, anyway.
footnote ${ }^{72}: k \neq 1 \rightarrow k>0$ - otherwise rank is never equal to 1 , which is the rank of "not generalized" eigenvectors
page 264
beginning of 6.5.2: domain of $S \longrightarrow$ range of S
page 265
$\sigma_{p}(S)=\{0\} \rightarrow \sigma_{p}(S)=\emptyset-\{0\}$ usually means "a set with one element, namely 0 ".
page 267
near the bottom of the page: centered on $\lambda=1 \longrightarrow$ centered on $\lambda=0$
near the bottom of the page: shows that $|\lambda|>0 \rightarrow$ shows that $|\lambda|>1$
page 277
(7.7): $\int_{0}^{x} \rightarrow \int_{a}^{x}$
(7.9): $(\xi-x) \longrightarrow(x-\xi)$
page 278
end of 7.1: Section 1.3 \longrightarrow Section 7.3
(7.18): $f(t) d t \longrightarrow f(\tau) d \tau$

page 281

near the top of the page: Sturm Liouville \longrightarrow Sturm-Liouville

page 283

near the middle of the page: Sturm Liouville \longrightarrow Sturm-Liouville
before (7.49): Heaveside \longrightarrow Heaviside
page 290
(7.85): $p u^{\prime \prime}+p^{\prime} u+q u \longrightarrow p u^{\prime \prime}+p^{\prime} u^{\prime}+q u$
page 300
near the top of the page: $L u=f \longrightarrow L u=g$

page 302

the very bottom of the page: $1 \frac{1}{2} \xi^{2}+c_{1} \rightarrow-\frac{1}{2} \xi^{2}+c_{1}$
page 303
right after (7.165): $\int_{\xi}^{x} K_{>} d x \rightarrow \int_{\xi}^{1} K_{>} d x$
footnote ${ }^{85}:\left.\left.K_{2}^{\prime}\right|_{x=\xi} \longrightarrow K_{<}^{\prime}\right|_{x=\xi}$
page 309
between (7.189) and (7.190): sides of (192) \longrightarrow sides of (189)
page 321
$\operatorname{after}(8.21):\left(1-\lambda \alpha_{11} c_{1}\right) \longrightarrow\left(1-\lambda \alpha_{11}\right) c_{1}$
page 323
near the bottom of the page: $\binom{\frac{1}{2}}{\frac{1}{2}} \rightarrow\binom{\frac{1}{2}}{\frac{1}{3}}$
page 328
(8.39): $\lambda_{m} \int_{a}^{b} u_{m}(\xi) \rightarrow \lambda_{n} \int_{a}^{b} u_{m}(\xi)$
the very bottom of the page: $\frac{\lambda m}{\lambda m} \int_{a}^{b} \rightarrow \frac{\lambda_{m}}{\lambda_{n}} \int_{a}^{b}$

page 335

after (8.62): powers of $\lambda \longrightarrow$ powers of μ

page 341

near the top of the page: campact \longrightarrow compact
upper half of the page: $T=\lim _{n \rightarrow \infty} T_{n}$ — we have $\left\|T_{n+1}-T_{n}\right\|=1$, so there is no limit here.
page 347
(9.16): $\frac{\frac{\partial L}{\partial q}+}{\frac{\partial L}{\partial q} \delta q+}$
page 351
(9.42): $y^{2} x \longrightarrow y_{x}^{2}$
page 354

(9.54):
$\left.\left|\frac{\delta f}{\delta y_{x}} \delta\right|_{x_{1}}^{x_{2}} \longrightarrow \frac{\delta f}{\delta y_{x}} \delta\right|_{x_{1}} ^{x_{2}}$
page 358
$f(k ; a)=e^{k a}+e^{-k a} \longrightarrow f(k ; a)=\left(e^{k a}+e^{-k a}\right) / 2$
page 360
(9.75) and (9.76): $\frac{\frac{\delta F}{\delta n}}{\frac{\delta F}{\delta u}}$
page 361
in the paragraph after (9.81): $[v] \longrightarrow[v]$
page 363
near the top of the page: $(\delta u) y \rightarrow(\delta u)_{y}$
page 375
(9.162): $\sum_{i} p_{i} d \dot{q}+\dot{q}_{i} d p_{i}-\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}-\frac{\partial L}{\partial q_{i}} d q_{i}-\frac{\partial L}{\partial t} d t \longrightarrow \sum_{i}\left(p_{i} d \dot{q}_{i}+\dot{q}_{i} d p_{i}-\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}-\frac{\partial L}{\partial q_{i}} d q_{i}\right)-\frac{\partial L}{\partial t} d t$
page 376
the lower half of the page: the $\left.20^{\text {th }}\right)$ century \rightarrow the $20^{\text {th }}$ century)

