Why do we need complex numbers?

Cubic equation

Consider we are to solve a cubic equation $ax^3 + bx^2 + cx + d = 0$. We assume that $a \neq 0$ (otherwise the equation is quadratic at best), so we can divide this equation by a: $x^3 + Bx^2 + Cx + D = 0$, where $\{B, C, D\} = \{b, c, d\}/a$. Then let us make a variable change X = x + B/3. That will kill quadratic term and produce a form $X^3 + PX + Q = 0$ — *depressed* cubic (with $P = C - B^2/3$, $Q = D - BC/3 + 2B^3/27$). Now if Q = 0, then X = 0 is a solution, and the rest is quadratic equation $X^2 + P = 0$. If $Q \neq 0$, then let us rescale the variable: $X = -(Q/2)^{1/3}x$, and the equation gets the following form $x^3 + [P/(Q/2)^{2/3}]x - 2 = 0$. The only remained parameter of the equation is

$$p = \frac{P}{(Q/2)^{2/3}} = \left(3ac - b^2\right) \left/ \left(b^3 - \frac{9abc}{2} + \frac{27a^2d}{2}\right)^{2/3}\right)$$

Now we are dealing with the equation $x^3 + 3px - 2 = 0$. It can be checked directly that $x = (1 + \sqrt{1 + p^3})^{1/3} + (1 - \sqrt{1 + p^3})^{1/3}$

gives us a root. The expression is defined only if $p \ge -1$, otherwise the argument of the square root $1 + p^3$ is negative. The curve x(p) describing a root nevertheless happily continues to the left not paying attention to the fact that $1 + p^3$ became negative. This part of the curve on the plot is "cloudy" on the graph. We can draw the curve there as follows: Take any x > 2 and calculate $p = (2 - x^3)/3x$ that will be less than -1. That *x* will give us a solution for this *p*.

The whole picture of solutions looks like this:

At p = -1 in addition to x = 2 the 2nd root appears: x = -1, while there are three roots if p < -1.