Why do we need complex numbers?

Cubic equation

Consider we are to solve a cubic equation $a x^{3}+b x^{2}+c x+d=0$. We assume that $a \neq 0$ (otherwise the equation is quadratic at best), so we can divide this equation by $a: x^{3}+B x^{2}+C x+D=0$, where $\{B, C, D\}=\{b, c, d\} / a$. Then let us make a variable change $X=x+B / 3$. That will kill quadratic term and produce a form $X^{3}+P X+Q=0-$ depressed cubic (with $P=C-B^{2} / 3$, $Q=D-B C / 3+2 B^{3} / 27$). Now if $Q=0$, then $X=0$ is a solution, and the rest is quadratic equation $X^{2}+P=0$. If $Q \neq 0$, then let us rescale the variable: $X=$ $-(Q / 2)^{1 / 3} x$, and the equation gets the following form $x^{3}+\left[P /(Q / 2)^{2 / 3}\right] x-$ $2=0$. The only remained parameter of the equation is

$$
p=\frac{P}{(Q / 2)^{2 / 3}}=\left(3 a c-b^{2}\right) /\left(b^{3}-\frac{9 a b c}{2}+\frac{27 a^{2} d}{2}\right)^{2 / 3}
$$

Now we are dealing with the equation $x^{3}+3 p x-2=0$. It can be checked directly that

$$
x=\left(1+\sqrt{1+p^{3}}\right)^{1 / 3}+\left(1-\sqrt{1+p^{3}}\right)^{1 / 3}
$$

gives us a root. The expression is defined only if $p \geq-1$, otherwise the argument of the square root $1+p^{3}$ is negative. The curve $x(p)$ describing a root nevertheless happily continues to the left not paying attention to the fact that $1+p^{3}$ became negative. This part of the curve on the plot is "cloudy" on the graph. We can draw the curve there as follows: Take any $x>2$ and calculate $p=\left(2-x^{3}\right) / 3 x$ that will be less than -1 . That x will give us a solution for this p.

The whole picture of solutions looks like this:

At $p=-1$ in addition to $x=2$ the 2 nd root appears: $x=-1$, while there are three roots if $p<-1$.

