Point-counting and applications

Jonathan Pila

Overview of lectures for Arizona Winter School 2023

Lecture 1. The basic point-counting result (for "definable sets in an o-minimal structure", but deferring a proper discussion of this notion) and its simplest application to an "unlikely intersection" problem: describing the distribution of torsion points on a subvariety of $(\mathbb{C}^{\times})^n$, a problem also known as "Multiplicative Manin-Mumford".

Lecture 2. An introduction to definable sets in o-minimal structures, examples, and refinements of point-counting to count algebraic points of bounded degree. This encounters the situation when the "basic" statement can become trivial, but the proof of the counting theorem still yields a useful statement. This will be needed in the application in Lecture 3.

Lecture 3. On unlikely intersections for a curve in $Y(1)^n$. This is a true "unlikely intersection" problem, rather than a "special point" problem. We will go through the proof (of a partial result) emphasizing the arithmetic aspects, functional transcendence, point-counting, and further issues where o-minimality plays a role.

Lecture 4. In the lest lecture we will describe further applications and problems.

Projects

Project 1. To consider some variants and special cases of the result on unlikely intersections of an *asymmetric curve* in $Y(1)^n$ (theorem of Habegger-Pila). This would mainly involve getting good/explicit height bounds for the unlikely intersections in suitable settings.

Project 2. To consider generalizations/variants of some results of Jones-Thomas-Wilkie, Wilkie, Jones-Qiu on "integer-valued definable functions". For entire (instead of definable) functions this is a classic topic going back to Pólya (1915) and many variants have been studied. It involves an interplay of complex analysis in o-minimal structures with arithmetic properties.