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Structures and languages

Structures are given as
M := (M, o), o avocabulary (signature, language)
e.g.
Cfiela := (C; +, ), the field of complex numbers.

Note, that the metric is not definable in Cgeyg.
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Classification Theory

Aim: classify (theories of) structures with respect to their
definability (expressibility) properties in the given language.
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In particular, the property of Th(M) to define its model of
cardinality « uniquely up to isomorphism: x-categoricity.
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Classification Theory

Aim: classify (theories of) structures with respect to their
definability (expressibility) properties in the given language.

In particular, the property of Th(M) to define its model of
cardinality « uniquely up to isomorphism: x-categoricity.

In Fact (Morley, 1965) 1 > Ry and k2 > R then xq-categoricity
is equivalent to x»-categoricity.
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Classification Theory

An example: ACFy := Th(Cseiq) is uncountably categorical.
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Classification Theory

An example: ACFy := Th(Cseiq) is uncountably categorical.

Corollary. Given a complex algebraic variety V over k and
ozar= the collection of Zariski closed subsets (m-ary relations)
on V™ defined over k, the structure

Vzar = (V, UZar)

is categorical.
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Classification Theory

Categorical structures (theories) are at the very top of the
classification hierarchy.
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Classification Theory

Categorical structures (theories) are at the very top of the
classification hierarchy.

Further on we have (the hierarchy of tameness):
- w-stable of finite rank

- w-stable

- superstable

- stable
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Classification Theory

Categorical structures (theories) are at the very top of the
classification hierarchy.

Further on we have (the hierarchy of tameness):
- w-stable of finite rank

- w-stable

- superstable

- stable

o-minimal form a side-branch of the classification theory.
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Stability

A catchphrase to characterise the model-theoretic Stability
Theory: A generalisation of Algebraic Geometry:
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Stability

B.Zilber

A catchphrase to characterise the model-theoretic Stability
Theory: A generalisation of Algebraic Geometry:

- We have an analogue of the dimension of a variety, the
(Morley) rank of a definable set.
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Stability

A catchphrase to characterise the model-theoretic Stability
Theory: A generalisation of Algebraic Geometry:

- We have an analogue of the dimension of a variety, the
(Morley) rank of a definable set.
- Analogue of the transcendence degree.
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Stability

A catchphrase to characterise the model-theoretic Stability
Theory: A generalisation of Algebraic Geometry:

- We have an analogue of the dimension of a variety, the
(Morley) rank of a definable set.

- Analogue of the transcendence degree.

- Analogue of an irreducible curve, a strongly minimal set:
every definable subset of the set is either finite or the
complement to a finite.
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Stability

A catchphrase to characterise the model-theoretic Stability
Theory: A generalisation of Algebraic Geometry:

- We have an analogue of the dimension of a variety, the
(Morley) rank of a definable set.

- Analogue of the transcendence degree.

- Analogue of an irreducible curve, a strongly minimal set:
every definable subset of the set is either finite or the
complement to a finite.

An important example beyond AG is the structure (w-stable of
rank w) differentially closed field DCFy:

(F,+,-, D), D adifferential operator.
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Beyond algebraic geometry. Analyticity.

Can model theory develop a formal analogue of analytic
geometry, as an extension of algebraic geometry?
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Beyond algebraic geometry. Analyticity.

Can model theory develop a formal analogue of analytic
geometry, as an extension of algebraic geometry?

An example:
Cexp = (C; +, -, exp).

Is it quasi-minimal: every definable subset is either countable or
the complement to a countable?
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Can model theory develop a formal analogue of analytic
geometry, as an extension of algebraic geometry?

An example:
Cexp = (C; +, -, exp).

Is it quasi-minimal: every definable subset is either countable or
the complement to a countable?
The question is open since 1991.
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Beyond algebraic geometry. Analyticity.

Can model theory develop a formal analogue of analytic
geometry, as an extension of algebraic geometry?

An example:
Cexp = (C; +, -, exp).

Is it quasi-minimal: every definable subset is either countable or
the complement to a countable?
The question is open since 1991.

Ultimately, the “tameness” of C.,, is formulated as a
categoricity statement of an L, ,,,-axiom system.
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Pseudo-exponentiation

Theorem (2003-2011). There is an axiom system ¥, (not
first-order) such that X.., has a unique model

Kexp("f) - (Kv 7+7 Yy exp)
in every uncountable cardianlity .
Kexp() is quasi-minimal.

Y exp CONtains the Schanuel conjecture and an Nullstellensatz
(exp-Nullstellensatz).
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Pseudo-exponentiation

Theorem (2003-2011). There is an axiom system ¥, (not
first-order) such that X.., has a unique model

Kexp("f) - (Kv 7+7 Yy exp)

in every uncountable cardianlity .

Kexp() is quasi-minimal.

Y exp CONtains the Schanuel conjecture and an Nullstellensatz
(exp-Nullstellensatz).

Conjecture. Ce,p = Keyp(k), for = continuum.
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A test for the “tame exp”-conjecture

Theorem. (2002: Wilkie, Koiran, Z.) There is an entire complex
function f satisfying a “Schanuel conjecture for f” for any finite
X cCC,

SCt @ tr.deg(X U f(X)) — size(X) > 0.

and an f-Nullstellensatz.
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A test for the “tame exp”-conjecture

Theorem. (2002: Wilkie, Koiran, Z.) There is an entire complex
function f satisfying a “Schanuel conjecture for f” for any finite
X cCC,

SCt @ tr.deg(X U f(X)) — size(X) > 0.

and an f-Nullstellensatz.
The structure
(Cf = ((C;—i—, . f)

is quasiminimal and can be categorically axiomatised by some
axioms X ;.
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A test for the “tame exp”-conjecture (continued)

Cy satisfies the following f-Nullstellensatz: Let W C C?" be an
irreducible algebraic variety in variables x1, ..., Xn, Y1,..., ¥n S.1.

3x;, y; /\ Xi # X & (X1, ..., Xn, Y1, -, Yn) € W
i<j<n

and, forany 1 <ij <...ix <n,

dim pr W >k

ool o

(projection onto (x;,, ..., X, Yi,-- -, i )-space).
Then there is a point

(ay,...,an, f(a1),...,f(an)) € W.
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A test for the “tame exp”-conjecture (continued)

The axiom(s) SCy are first-order axiomatisable and this implies
that Th(Cy) is w-stable.
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A test for the “tame exp”-conjecture (continued)

The axiom(s) SCy are first-order axiomatisable and this implies
that Th(Cy) is w-stable.

Remark. The statement “SC;y is first-order axiomatisable” is
equivalent to the trivial ZP-conjecture:
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A test for the “tame exp”-conjecture (continued)

The axiom(s) SCy are first-order axiomatisable and this implies
that Th(Cy) is w-stable.

Remark. The statement “SC;y is first-order axiomatisable” is
equivalent to the trivial ZP-conjecture: “special” subsets of C”
are given by equations x; = X;.
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A test for the “tame exp”-conjecture (continued)

The axiom(s) SCy are first-order axiomatisable and this implies
that Th(Cy) is w-stable.

Remark. The statement “SC;y is first-order axiomatisable” is
equivalent to the trivial ZP-conjecture: “special” subsets of C”
are given by equations x; = X;.

Exercise. The statement “SC.; is first-order axiomatisable” is
equivalent to the ZP-conjecture for Gp,.

B.Zilber

Arizona Winter School

Classification theory, stability and analyticity

11/15



Raising to irrational powers in C

Letr,...,rm € C and read
Choofm = (C; +,-, X", ..., X
where X" stands for the multivalued operation (relation)

y = exp(rinx).
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Raising to irrational powers in C

Letr,...,rm € C and read
Choofm = (C; +,-, X", ..., X
where X" stands for the multivalued operation (relation)
y = exp(rinx).
Proposition (2015) The statement “SCcry....m is first-order

axiomatisable” is equivalent to the Mordell-Lang statement for
Gm (M.Laurent’s theorem).
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Raising to irrational powers in C

Letr,...,rm € Candread
Choofm = (C; +, -, X", ..., X™)
where X" stands for the multivalued operation (relation)
y = exp(rinx).

Proposition (2015) The statement “SCcry....m is first-order
axiomatisable” is equivalent to the Mordell-Lang statement for
Gm (M.Laurent’s theorem).

Theorem (F.Gallinaro, 2022) C"-~'m-Nullstellensatz is valid
unconditionally.
The proof is based on tropical geometry techniques.
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Constructions and fine classification theory

Three classical dimension notions:

tr.deg, lin.dim, size.
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Constructions and fine classification theory

Three classical dimension notions:
tr.deg, lin.dim, size.

A present day reading of The Trichotomy Conjecture (1983) is:

The three classical dimensions are the only ones that can
occur in stable structures.
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Constructions and fine classification theory

Three classical dimension notions:

tr.deg, lin.dim, size.

A present day reading of The Trichotomy Conjecture (1983) is:

The three classical dimensions are the only ones that can
occur in stable structures.

Hrushovski’s construction (1989): one can mix the three
dimension notions to construct new ones fitting the criteria of
stability (and even categoricity).
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Hrushovski predimension and Fraisse amalgamation

Example (1990). Suppose we have two field structures on the
same set F :
(Fv +1 3 '1) and (Fv +27 '2)‘

B.Zilber Arizona Winter School

Classification theory, stability and analyticity 14/15



Hrushovski predimension and Fraisse amalgamation

Example (1990). Suppose we have two field structures on the
same set F :
(Fv +1 3 '1) and (Fv +27 '2)‘

We can then consider a predimension notion: for each finite X

d(X) := tr.degq (X) + tr.degy(X) — size(X)
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Hrushovski predimension and Fraisse amalgamation

Example (1990). Suppose we have two field structures on the
same set F :

(Fv +1 3 '1) and (Fv +27 '2)‘
We can then consider a predimension notion: for each finite X

d(X) := tr.degq (X) + tr.degy(X) — size(X)

Let F be the class of all such (F; +1, 1,42, -2) which satisfy the
Hrushovski predimension inequality

§(X) > 0 for any finite X C F.
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Hrushovski predimension and Fraisse amalgamation

Example (1990). Suppose we have two field structures on the
same set F :
(Fv +1 3 '1) and (Fv +27 '2)‘

We can then consider a predimension notion: for each finite X
d(X) := tr.degq (X) + tr.degy(X) — size(X)

Let F be the class of all such (F; +1, 1,42, -2) which satisfy the
Hrushovski predimension inequality

§(X) > 0 for any finite X C F.

Theorem (Hrushovski) One can amalgamate structures in F.
There is F € F which is strongly minimal (and so categorical)

and has a dimension notion ¢* different from the classical ones.
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Hrushovski construction a step further

More generally, the fusion of two classical structures
(My; L1) and (Mz; L)
by the fusing map f : My — M, and a predimension
61(X) = di(X) + d2(f(X)) — a3(X) = 0

where dj, db, d3 classical.
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Hrushovski construction a step further

More generally, the fusion of two classical structures
(My; L1) and (Mz; L)
by the fusing map f : My — M, and a predimension
61(X) = di(X) + d2(f(X)) — a3(X) = 0

where dj, db, d3 classical.
Eg My =M, = Chield, fused by exp:C — C,

Jexp(X) = tr.deg(X U exp X) — lin.dim(X) > 0
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Hrushovski construction a step further

All known examples of tame analytic structures have been
explained by Hrushovski predimension theory.
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