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Structures and languages

Structures are given as

M := (M;σ), σ a vocabulary (signature, language)

e.g.

Cfield := (C; +, ·), the field of complex numbers.

Note, that the metric is not definable in Cfield.
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Classification Theory

Aim: classify (theories of) structures with respect to their
definability (expressibility) properties in the given language.

In particular, the property of Th(M) to define its model of
cardinality κ uniquely up to isomorphism: κ-categoricity.

In Fact (Morley, 1965) κ1 > ℵ0 and κ2 > ℵ0 then κ1-categoricity
is equivalent to κ2-categoricity.
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Classification Theory

An example: ACF0 := Th(Cfield) is uncountably categorical.

Corollary. Given a complex algebraic variety V over k and
σZar= the collection of Zariski closed subsets (m-ary relations)
on V m defined over k, the structure

VZar = (V ;σZar)

is categorical.
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Classification Theory

Categorical structures (theories) are at the very top of the
classification hierarchy.

Further on we have (the hierarchy of tameness):
- ω-stable of finite rank
- ω-stable
- superstable
- stable
- . . .

o-minimal form a side-branch of the classification theory.
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Stability

A catchphrase to characterise the model-theoretic Stability
Theory: A generalisation of Algebraic Geometry:

- We have an analogue of the dimension of a variety, the
(Morley) rank of a definable set.
- Analogue of the transcendence degree.
- Analogue of an irreducible curve, a strongly minimal set:
every definable subset of the set is either finite or the
complement to a finite.

An important example beyond AG is the structure (ω-stable of
rank ω) differentially closed field DCF0:

(F; +, ·,D), D a differential operator.
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Beyond algebraic geometry. Analyticity.

Can model theory develop a formal analogue of analytic
geometry, as an extension of algebraic geometry?

An example:
Cexp := (C; +, ·, exp).

Is it quasi-minimal: every definable subset is either countable or
the complement to a countable?
The question is open since 1991.

Ultimately, the “tameness” of Cexp is formulated as a
categoricity statement of an Lω,ω1-axiom system.
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Pseudo-exponentiation

Theorem (2003-2011). There is an axiom system Σexp (not
first-order) such that Σexp has a unique model

Kexp(κ) = (K; ,+, ·, exp)

in every uncountable cardianlity κ.
Kexp(κ) is quasi-minimal.
Σexp contains the Schanuel conjecture and an Nullstellensatz
(exp-Nullstellensatz).

Conjecture. Cexp
∼= Kexp(κ), for κ = continuum.
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A test for the “tame exp”-conjecture

Theorem. (2002: Wilkie, Koiran, Z.) There is an entire complex
function f satisfying a “Schanuel conjecture for f ” for any finite
X ⊂ C,

SCf : tr.deg(X ∪ f (X ))− size(X ) ≥ 0.

and an f -Nullstellensatz.

The structure
Cf = (C; +, ·, f )

is quasiminimal and can be categorically axiomatised by some
axioms Σf .
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A test for the “tame exp”-conjecture (continued)

Cf satisfies the following f -Nullstellensatz: Let W ⊆ C2n be an
irreducible algebraic variety in variables x1, . . . , xn, y1, . . . , yn s.t.

∃xi , yi

∧
i<j≤n

xi 6= xj & 〈x1, . . . , xn, y1, . . . , yn〉 ∈W

and, for any 1 ≤ i1 < . . . ik ≤ n,

dim pri1...ik ,i1...ik W ≥ k

(projection onto 〈xi1 , . . . , xik , yi1 , . . . , yik 〉-space).
Then there is a point

〈a1, . . . ,an, f (a1), . . . , f (an)〉 ∈W .
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A test for the “tame exp”-conjecture (continued)

The axiom(s) SCf are first-order axiomatisable and this implies
that Th(Cf ) is ω-stable.

Remark. The statement “SCf is first-order axiomatisable” is
equivalent to the trivial ZP-conjecture: “special” subsets of Cn

are given by equations xi = xj .

Exercise. The statement “SCexp is first-order axiomatisable” is
equivalent to the ZP-conjecture for Gm.
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Raising to irrational powers in C
Let r1, . . . , rm ∈ C and read

Cr1,...,rm = (C; +, ·,X r1 , . . . ,X rn )

where X r stands for the multivalued operation (relation)

y = exp(r ln x).

Proposition (2015) The statement “SCCr1,...,rm is first-order
axiomatisable” is equivalent to the Mordell-Lang statement for
Gm (M.Laurent’s theorem).

Theorem (F.Gallinaro, 2022) Cr1,...,rm -Nullstellensatz is valid
unconditionally.
The proof is based on tropical geometry techniques.
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Constructions and fine classification theory

Three classical dimension notions:

tr.deg, lin.dim, size.

A present day reading of The Trichotomy Conjecture (1983) is:

The three classical dimensions are the only ones that can
occur in stable structures.

Hrushovski’s construction (1989): one can mix the three
dimension notions to construct new ones fitting the criteria of
stability (and even categoricity).
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Hrushovski predimension and Fraisse amalgamation

Example (1990). Suppose we have two field structures on the
same set F :

(F ; +1, ·1) and (F ; +2, ·2).

We can then consider a predimension notion: for each finite X

δ(X ) := tr.deg1(X ) + tr.deg2(X )− size(X )

Let F be the class of all such (F ; +1, ·1,+2, ·2) which satisfy the
Hrushovski predimension inequality

δ(X ) ≥ 0 for any finite X ⊂ F .

Theorem (Hrushovski) One can amalgamate structures in F .
There is F ∈ F which is strongly minimal (and so categorical)
and has a dimension notion δ∗ different from the classical ones.
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Hrushovski construction a step further

More generally, the fusion of two classical structures

(M1;L1) and (M2;L2)

by the fusing map f : M1 � M2 and a predimension

δf (X ) = d1(X ) + d2(f (X ))− d3(X ) ≥ 0

where d1,d2,d3 classical.

E.g. M1 = M2 = Cfield, fused by exp : C→ C,

δexp(X ) = tr.deg(X ∪ exp X )− lin.dim(X ) ≥ 0
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Hrushovski construction a step further

All known examples of tame analytic structures have been
explained by Hrushovski predimension theory.
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