
ABELIAN VARIETIES OVER FINITE FIELDS:

PROBLEM SET 4

SANTIAGO ARANGO-PIÑEROS, SEOKHYUN CHOI, ALICE LIN, YUXIN LIN, AND MINGJIA ZHANG

Instructions: The goal of this problem set is to assimilate the Weil conjectures for abelian varieties anf
curves. Problems marked (⋆), (⋆⋆), and (⋆ ⋆ ⋆) denote beginner, intermediate, and advanced problems,
respectively. For the computational problems (Ï) you may use CoCalc or MAGMA’s online calculators.

Notation: As customary, p will be a prime, and q will be a power of p. We use ℓ to denote a prime, different
from p. For a field K, we will use GK to denote the absolute Galois group of K.

Problem 1 (⋆⋆)
Let A be a ring of finite type over Z.
(1) Show that for every maximal ideal m in A, the residue field κ(m) := A/m is finite.a

(2) Let Max(A) be the set of maximal ideals in A; this is called the maximal spectrum of A. Show that
Max(A) is countable.

We define the norm of a maximal ideal m to be the size of its residue field N(m) := #κ(m). Define the
zeta function of A as the formal Euler product

ζA(s) :=
∏

m∈Max(A)

(
1−N(m)−s

)−1
.

(3) Calculate the zeta function of the following rings; for R = Fq and Z:
(a) A = R.
(b) A = R[x].
(c) A = R[x, y].

aConsider the structure map Z → A composed with the projection A → A/m. What are the possibilities for the kernel of
the composition?

We can restate (and slightly generalize) the previous problem in the language of schemes as follows.

Problem 2 (⋆⋆)
Let X be a scheme of finite type over Z.
(1) Show that for every closed point P ∈ X the residue field κ(P ) := OX,P /mP is a finite field.ab

(2) Denote by |X| the set of closed points in X. Show that |X| is countable.
We define the norm of a closed point P to be the size of its residue field N(P ) := #κ(P ). Define the zeta
function of X as the formal Euler product

ζX(s) :=
∏

P∈|X|

(
1−N(P )−s

)−1
.

(3) Calculate the zeta function of the following schemes; for R = Fq and Z:
(a) X = SpecR.
(b) X = A1

R.
(c) X = P1

R.

aA closed point P in SpecA is simply a maximal ideal m in A, and its residue field is κ(P ) = A/m.
bA possibly useful result from commutative algebra is the Artin–Tate lemma.
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Problem 3 (⋆ ⋆ ⋆)
In this problem we are going to show that the zeta function defined in Problem 2 defines a holomorphic
function. This is [Ser65, Theorem 1].

Theorem A. Let X be a scheme of finite type over Z. Then, ζX(s) converges absolutely for a complex
variable s in the half-plane Re(s) > dimX.a

To prove this, proceed as follows:

(1) If X is a finite union of schemes Xi, show that Theorem A follows if the conclusion is true for each
Xi. This reduces the proof to the affine case.

(2) Let f : X → Y be a surjective and finite morphism between schemes of finte type. Show that if the
conclusion of Theorem A is valid for Y , then it is valid for X too.

(3) Reduce to showing that the result holds for X = An
Fp
.

(4) Let Y be a scheme of finite type over Z. Show that ζY×A1(s) = ζY (s− 1).b

(5) Conclude the proof by calculating ζAn
Fp
(s) and showing that it converges absolutely in the half-plane

Re(s) > n.

aIn particular, ζX(s) is a Dirichlet series
∑

an/ns with integral coefficients.
bThis generalizes [Har77, Appendix C, Problem 5.3].

The following problem justifies the definition of the zeta function of a variety over a finite field as the
exponential generating series of its point counts.

Problem 4 (⋆⋆)
Let X be a variety over Fq. Let md denote the number of degree d closed points on X.

(1) Prove that for every n ≥ 1, we have ∑
d|n

dmd = #X(Fqn).

(2) If we let T = q−s, show that

ζX(s) = Z(X,T ) := exp

( ∞∑
n=1

#X(Fqn)

n
Tn

)
.

(3) Let X be a smooth, projective, and geometrically irreducible curve of genus g defined over Fq. Show
that one can recover the zeta function Z(X,T ) from the point counts

#X(Fq),#X(Fq2), . . . ,#X(Fqg ).

(4) (Ï) Use your favorite computer algebra system to write a computer program that receives as input:
• an irreducible polynomial f ∈ Fq[x],

and outputs the Frobenius polynomial of the Jacobian of the hyperelliptic curve X/Fq with affine
equation y2 = f(x).

(5) (Ï) Use your favorite computer algebra system to write a computer program that receives as input:
• an irreducible polynomial f ∈ Fq[x],
• a positive integer N ,

and outputs the first N terms of the zeta function of the hyperelliptic curve X/Fq with affine equation
y2 = f(x).a

aCompare the efficiency of your function with the built-in intrinsics!

The following problem is [Poo06, Problem 3.10].
2

https://stacks.math.columbia.edu/tag/01wg


Problem 5 (⋆)
Let X be the Hermitian curve xq+1 + yq+1 + zq+1 = 0 in P2 over Fq.

(1) Check that X is smooth projective.
(2) Calculate the genus of X.
(3) Calculate #X(Fq2).
(4) Compute the zeta function of XFq2

.

(5) Calculate #X(Fq).
(6) Compute the zeta function of X.

In this problem, we will calculate the zeta functions of some particular elliptic curves, and see that they
are indeed of the form predicted by the Weil conjectures.

Problem 6 (⋆⋆)
Let E/Fp be the elliptic curve

y2 = x3 − n2x

for some n such that p ∤ 2n, and p ≡ 1 mod 4. We will prove that

(6.a) Z(E, T ) =
(1− αT )(1− αT )

(1− T )(1− pT )

for some specific α, α ∈ C.
(1) Let q be a power of p. Let C/Fq be the curve

u2 = v4 + 4n2.

Show that #E(Fq) = #C(Fq) + 1.
(2) Let χk,q : F∗

q → C∗ be a character of order k for k = 2, 4. Prove

(6.b) #{x ∈ Fq : xk = a} =

k∑
j=1

χj
k,q(a), k = 2, 4

for a ̸= 0.
(3) Note that

#C(Fq) = 1 +#{u ∈ Fq : u2 = 4n2}+#{v ∈ Fq : v4 = −4n2}
+#{u, v ∈ F∗

q : u2 = v4 + 4n2}.
By applying Equation 6.b, show that

#C(Fq) = q + 1 + χ2,q(n)(J(χ2,q, χ4,q) + J(χ2,q, χ4,q))

where J(χ, ψ) is the Jacobi sum

J(χ, ψ) =
∑
x∈Fq

χ(x)ψ(1− x).

(4) Conclude that
#E(Fq) = q + 1− αq − αq

where αq = −χ2,q(n)J(χ2,q, χ4,q).
(5) Let N : F∗

pr → F∗
p be the norm map. Note that we can take that

χ2,pr = χ2,p ◦N, χ4,pr = χ4,p ◦N.
By Hasse-Davenport relation, we obtain

−J(χ2,pr , χ4,pr ) = −J(χ2,p ◦N,χ4,p ◦N) = −J(χ2,p, χ4,p)
r.

Conclude that
αpr = αr

p.

(6) Complete the proof of Equation 6.a.
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Problem 7 (⋆)
Let E/Fq be an elliptic curve. Denote by ϕq the q-Frobenius on E and let PE(T ) = T 2 − aT + q be the
characteristic polynomial of ϕq.

(1) Review PSET2, Problem 11 and conclude the rationality of the zeta function Z(E, T ).
(2) Verify the functional equation

Z(E, (qT )−1) = Z(E, T ).

(3) Use the fact that deg([m] + [n]ϕ) > 0 for all integers m, n to deduce the Hasse bound |a| ≤ 2
√
q.

(4) Let α, β ∈ C be roots of PE(T ). Show that |α| = |β| = √
q.

Recall that a q-Weil number is an algebraic integer α such that for every embedding σ : Q(α) → C,
|σ(α)| = q1/2. Two q-Weil numbers α, α′ are conjugate if they are in the same orbit under the action of
GalQ. In particular, there exists a field isomorphism Q(α) → Q(α′) mapping α to α′, so that α and α′ have
the same minimal polynomial over Q.

Problem 8 (⋆)
Let α be a q-Weil number. Show that there are two possibilities:

(1) Q(α) has at least one real embedding ϕ : Q(α) → R. Then either
• Q(α) = Q, and ϕ(α) = ±√

q, or
• Q(α) = Q(

√
p), and ϕ(α) = ±√

q.
(2) Q(α) has no real embeddings. In this case, Q(α) is a CM field, i.e. an imaginary quadratic extension

of a totally real field. In particular, consider the subfield of Q(α) generated by β := α+ q/α.

Conversely, show that we can characterize all q-Weil numbers by the two above possibilities. In particular,
if α is an algebraic integer such that either

• α = ±√
q, or

• α is a root of T 2 − βT + q where β is a totally real algebraic integer and |ϕ(β)| < 2
√
q for every

embedding ϕ : Q(β) ↪→ R,
then α is a q-Weil number.

The following problem is an exercise in [CO09, Exercise 3.10]. It classifies the center of a division algebra
equipped with a positive involution.

Problem 9 (⋆)
Let D be a finite dimensional division algebra over Q. An involution † : D → D is an Q-linear automor-
phism on D satisfying the following properties:

• For x, y ∈ D, (xy)† = y†x†.
• (x†)† = x

In addition, we say † is a positive involution if for any x ∈ D,x ̸= 0, we have

trD/Q(xx
†) > 0

Here, trD/Q(x) is the trace of x as an element in EndQ(D).
Now † is a positive involution on D. Let L = Z(D) be the center of D.

(1) Suppose L is fixed by †, then notice that identity is a positive involution on L. Use weak approxima-
tion, show that L is totally real.

(2) Suppose L is not fixed by †. Let L† be the fixed subfield. Show that L is totally imaginary extension
of L†. Moreover, show that for any embedding ψ : L→ C, † induces complex conjugation on L. That
is, for any x ∈ L, we have

ψ(x) = ψ(x†)

In particular, the endomorphism algebra of a simple abelian variety is equipped with a positive involution
induced by polarization.
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Problem 10 (⋆⋆)
Let A/Fq be a simple abelian variety. Fix a polarization λ : A → A∨. Then λ induces an involution

† : End0(A) → End0(A) as follows. Since λ is an isogeny, there exists λ′ : A∨ → A such that λ′ ◦ λ = [n].
So we have the element λ−1 := 1

nλ
′ in End0(A). Then, given φ ∈ End(A), we define

φ† := λ−1 ◦ φ∨ ◦ λ
This is the Rosati involution on End0(A).

(1) Let L be an line bundle on A. Show that ϕ∗qL = L⊗q.
(2) Now let L be the line bundle that gives the polarization λ : A→ A∨. Show that for any a ∈ A(k), n ∈

Z>0, [n]
∗(t∗aL ⊗ L−1) ∼= (t∗aL ⊗ L−1)⊗

n

(3) Recall the φ∨ : A∨(Fq) → A∨(Fq) is given by φ∨(L) = φ∗L. Deduce the identity:

ϕ∨q ◦ λ ◦ ϕq = [q]∨ ◦ λ
as morphism from A(Fq) → A∨(Fq).

(4) Combine with the fact that Rosati involution is positive and Problem 9, show that ϕq is a q-Weil
number.

Similar to the characteristic polynomial, we define the minimal polynomial hA(T ) of the q-Frobenius
endomorphism ϕq : A → A to be the minimal polynomial of the corresponding endomorphism Tℓ(ϕq) of
the Tate module TℓA. The following problem is a reformulation of [CO09, Exercise 3.14].

Problem 11 (⋆⋆)
Let A/Fq be a simple abelian variety of dimension g, where q = pg and p ̸= 2. Then we know that

D := End0(A) is a division algebra over Q, with center L = Q(ϕq). Moreover, since A is an abelian
variety defined over finite fields, it admits complex multiplication.
Let (n,m) be a pair of positive integers such that g = m+n and gcd(m,n) = 1. Suppose ϕq has minimal
polynomiala

hA(T ) := T 2 + pnT + pg.

(1) Show that hA(T ) is irreducible over Q and that both roots are Weil q-numbers. Compute the p-adic
valuation of the roots.

(2) Use the fact that A has complex multiplication, determine [D : Q(ϕq)].

(3) For each place v of L, compute the local Hasse invariant invv(D ⊗L Lv).
b

(4) Recall the definition and notation of Dp,h,m in PSET 2, Problem 4.
Show that D ⊗Q Qp

∼= Dp,g,n ⊕Dp,g,m.
(5) Let Fq ⊆ Fqr be a degree r extension and AFqr

be the base change of A to Fqr . Show that

End0(A) = End0(AFqr
) ⇐⇒ Q(ϕq) = Q(ϕqr )

ahA(T ) is IrrπA in [CO09, Theorem 10.17]. For a simple abelian variety A, it coincides with the minimal polynomial of the

algebraic integer ϕq .
bHint: Use [CO09][Theorem 10.17]

Recall that in the lecture note, we see the definition of the Jacobian variety associated to a non-singular
curve. The following problem relates elliptic curve and the Jacobian of its homogeneous space.

Problem 12 (⋆⋆)
Let K be a perfect field. Let E/K be an elliptic curve with zero marked by O, C/K be a smooth
projective curve of genus one with a transitive action

µ : C × E → C.

This means µ is a morphism over K satisfying

(1) µ(x,O) = x for all x ∈ C(K̄),
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(2) µ(µ(x, P ), Q) = µ(x, P +Q) for all x ∈ C(K̄), P,Q ∈ E(K̄),
(3) Given x, y ∈ C(K̄), there exists a unique P ∈ E(K̄) satisfying µ(x, P ) = y.

We call this pair (C/K, µ) a homogeneous space for E/K. Recall that

(a) Pic0(CK̄) = Div0(CK̄)/K̄(C)×

(b) Pic0(C) = Pic0(CK̄)GK

Show that there is an isomorphism Pic0(C)
∼−→ E(K). From this, we can deduce Jac(C)(L) = E(L) for

any algebraic field extension L/K. a

aIn fact, the equality Jac(C) = E is true as functors. That is, for any k-algebra R, we have Jac(C)(R) = E(R).

We can find Jacobian variety for a curve of genus 1 by using above homogeneous space.

Problem 13 (⋆)
Let C/Q be the Selmer curve 3x3 + 4y3 + 5z3 = 0 and let E/Q be an elliptic curve x3 + y3 + 60z3 = 0
with origin [1 : −1 : 0]. Show Jac(C)(L) = E(L) where L/Q is an algebraic extension of Q.

In the following two exercises, we prove the Weil conjectures for smooth projective curves. In case you
get stuck, a nice reference is available here.

Problem 14 (⋆⋆)
Let C/Fq be a smooth projective curve of genus g. We prove the rationality and functional equation part
of the Weil conjectures for C.

(1) Calculate formally that the zeta function

Z(C, T ) :=
∏

x∈|C|

(1− T deg(x))−1 =
∏

x∈|C|

∞∑
k=0

T k·deg(x) =
∑
D≥0

T deg(D),

where the last sum is taken over all effective divisors on C.
(2) Each D corresponds to a pair (L, f), where L is a line bundle and f ∈ (Γ(C,L) − {0})/F×

q is a
homogeneous global section. Hence, the above expression further evolves to∑

L∈Pic(C)
deg(L)≥0

#P(Γ(C,L)) · T deg(L) =
∑

L∈Pic(C)
deg(L)≥0

qh
0(L) − 1

q − 1
· T deg(L),

where h0(L) denotes the Fq-dimension of the global sections of L.
(3) Split the sum into two parts

g1(T ) =
∑

0≤deg(L)≤2g−2

qh
0(L) − 1

q − 1
· T deg(L)

g2(T ) =
∑

deg(L)>2g−2

qh
0(L) − 1

q − 1
· T deg(L).

Use the Riemann-Roch theorem to show that

g2(T ) =
∑

deg(L)>2g−2

qdeg(L)+1−g − 1

q − 1
· T deg(L)

(4) Use the fact that Pic0(C) is finite to conclude that g1(T ) is a polynomial of degree 2g − 2, and that

g2(T ) = #Pic0(C)
∑

n>2g−2

qn+1−g − 1

q − 1
· Tn =

h(T )

(1− T )(1− qT )
,
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for some polynomial h(T ) of degree 2g. Deduce that Z(C, T ) is of the form P1(T )
(1−T )(1−qT ) , where P1(T )

is a polynomial with degree at most 2g and constant term 1.
(5) (⋆ ⋆ ⋆) Use the involution L 7→ ωC ⊗ L−1 and the Serre duality to verify the functional equation

Z(C, (qT )−1) = q1−gT 2−2gZ(C, T )

and conclude that the polynomial P1(T ) has degree 2g. Here ωC is the canonical sheaf, a line bundle
of degree 2g − 2.

We continue to prove the Riemann hypothesis part of the Weil conjectures following the proof of Weil.
Some intersection theory on surfaces is needed.

Problem 15 (⋆ ⋆ ⋆ [Har77, Appendix C, 5.7])
Let C/Fq be a smooth projective curve of genus g as above. Let tr := 1 + qr −#C(Fqr ) be the trace of
the qr-Frobenius endomorphism. Let P1(T ) be as before, and we write

P1(T ) =

2g∏
i=1

(1− αiT ).

(1) Let ϕq be the geometric Frobenius on C. Denote by Γr ⊂ C ×C the graph of ϕrq and ∆ ⊂ C ×C the

diagonal. Show that the self-intersection Γ2
r = qr(2− 2g) and Γr ·∆ = #C(Fqr ).

(2) Apply the Castelnuovo-Severi inequalitya to D = aΓr+b∆ for all a and b to obtain that |tr| ≤ 2g
√
qr.

(3) Use the definition of the zeta function and taking logs, show that for each r

tr =

2g∑
i=1

αr
i .

(4) Show that |tr| ≤ 2g
√
qr for all r is equivalent to |αi| ≤

√
q for all i.

(5) Use the functional equation to show that |αi| ≤
√
q for all i implies that |αi| =

√
q for all i. Conclude

the Riemann hypothesis part of the Weil conjectures from here.

aIn particular, the form stated in [Har77, Exercise V.1.9].
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