1. A window frame has the shape of a rectangle with a semicircle on top. All four sides of the rectangle are part of the frame. The straight portions of the frame (the four sides of the rectangle) cost 8$ per foot, and the curved portion (the semicircle) costs 12$ per foot. The total area of the window must be 20 square feet. Find the dimensions that minimize the cost of the frame.

2. \(f(x) = xe^{-x^2} \)
 (a) Find all \(x \) values at which \(f \) has a local min or max.
 (b) Find all inflection points.
 (c) Find the global min and max over \(0 \leq x \leq 1 \).

3. Find the following limits exactly,
 \[
 \lim_{x \to \infty} \frac{1 - \cos(ax)}{x^2}, \quad \lim_{x \to 0} \frac{1 - \cos(ax)}{x^2}, \quad \lim_{x \to \infty} \frac{\ln(x)}{\sinh(x)}
 \]

4. Let \(f(x) = 5a^3x^2 - 2x^5 \). Here \(a \) is a parameter; it does not depend on \(x \).
 (a) Find the critical points and determine if they are local min or maxs. Your answer should involve \(a \).
 (b) Find the global max over \(x \geq 0 \).

5. Consider the curve \(x^3 + y^2 \cosh(y - 1) = 2 \)
 (a) Find the equation of the tangent line at the point \((1, 1)\) to the curve.
 (b) Use your answer to (a) to find approximately the value of \(y \) so that \((1.01, y)\) is also on the curve.

6. A function \(f(x) \) has the following properties:
 (i) \(f \) has a local min at \(x = 0 \).
 (ii) \(f \) has inflection points at \(x = 2 \) and \(x = 5 \).
 (iii) \(f \) has a local max at \(x = 3 \)
 (iv) \(f'(7) = 0 \), but \(x = 7 \) is neither a local min or max.
 On the interval \([0, 8]\), \(f \) has no other critical points or inflection points other than those given above. Sketch a possible graph of the derivative \(f'(x) \).