1. (14 points) Consider the area enclosed by the y-axis, the x-axis, the vertical line \(x = 1 \) and the curve \(y = e^{-x} \). It is rotated about the y-axis. Find the volume of the resulting solid. For full credit you must do the integral analytically. However, a numerical answer is better than nothing.

2. (14 points) A water truck weighs 10,000 lbs when it is full of water. The truck starts up a mountain road full of water. The truck travels at a constant speed and the road has a constant incline. At the start of the trip the truck springs a leak. Water leaks out at a constant rate and at the top the truck only weighs 6,000 lbs. The top of the road is 5,000 feet higher than the bottom.

(a) Find a formula for the weight of the truck as a function of its elevation \(h \) assuming that \(h = 0 \) where the truck starts its trip.

(b) Find the total work done by the truck.

3. (8 points) Find the arc length of the graph of \(y = 2x^{3/2} \) for \(0 \leq x \leq 3 \).

4. (14 points) A dam is 200 feet across the top and 100 feet tall at its midpoint. Its shape is approximately given by the parabola \(y = x^2/100 \) with \(-100 \leq x \leq 100\). The water behind the dam goes up to the very top of the dam. Find the total force on the dam.

(Recall that at a depth of \(h \) feet below the surface the water pressure is \(62.4h \) lbs per ft\(^2\))

5. (14 points) A cylindrical barrel is 5 ft tall has a radius of 1.5 ft. It it filled to a depth of 4 ft with a mysterious liquid whose density depends on the depth in the liquid. The density \(d \) depends on the distance \(h \) below the surface according to \(d(h) = 40(1 + h/10) \). (The density is in lbs/ft\(^3\) and the distance \(h \) is in feet.) Find the total work needed to pump the liquid to the top rim of the barrel.

6. (12 points) Find the sums of the following series

\[
1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} \cdots \frac{1}{2^{20}}
\]

\[-3 + 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \frac{1}{81} \cdots \]

\[
\sum_{n=0}^{\infty} x^{2n}
\]
7. (14 points) A tetrahedron has vertices at \((0,0,0), (2,0,0), (0,1,0)\) and \((0,0,1)\). Find its volume. (A tetrahedron has four faces, each of which is a triangle. Moreover, any slice through a tetrahedron is a triangle.)

8. (10 points) Determine whether the following improper integral converges and explain your reasoning.

\[
\int_0^{\infty} e^{-x} (1 + \cos x) \, dx
\]

There are lots of ways to do this. Grading will be based on how well you explain your reasoning.