Order

Solve the ODE over some interval $a \leq x \leq b$.

$\text{error} = y(b) - \text{approximation}$

$y(a)$ is initial condition

Typically

$\text{error} \approx ch^p$

Euler $p = 1$ first order
Better methods

\[y(x_0 + h) = \int_{x_0}^{x_0 + h} y'(x) \, dx + y(x_0) \]

\[= \int_{x_0}^{x_0 + h} g(x, y) \, dx + y(x_0) \]

\[= g(x_0, y(x_0)) \, h + y(x_0) \]

LEFT corresponds to Euler

What about trapezoid?

\[\approx \frac{h}{2} \left[g(x_0, y(x_0)) + g(x_0 + h, y(x_0 + h)) \right] + y(x_0) \]

Approximate \(y(x_0 + h) \approx y(x_0) + g(x_0, y(x_0)) \, h \)

Let \(m_0 = g(x_0, y_0) \)

\(k_1 = g(x_0 + \frac{h}{2}, y_0 + g(x_0, y_0) \, \frac{h}{2}) \)

\[y(x_0 + h) = y(x_0) + \frac{h}{2} \left(m_0 + k_1 \right) \]

Modified Euler, Huen's method \(p = 2 \)
Even better method

Runge-Kutta fourth order

$p = 4$

Numerical problems

If \(g(x, y) \) is nice then solution curves doesn't don't cross.

Computer doesn't know this.

\[
\frac{dy}{dx} = y^2 \quad y(0) = -1.2
\]

\(h = 0.1 \) \hspace{1cm} Euler

\(y < 0 \) is a solution

\[
y(0.1) = y(0) + y(0, -1.2) \cdot 0.1
\]

\[
= -1.2 + 1(-4) \cdot 0.1
\]

\[
= -2.4
\]
Example

\[y' = y^2 \]
\[y(0) = 1 \]

\[y = \frac{1}{1-x} \]
by sep. of vars

Look at

\[y' = y^2 + x \]
\[f(x,y) = y^2 + x \]
\[g(x,y) = y^2 \]
\[f(x,y) > g(x,y) \quad \text{for} \quad x > 0 \]

So theorems say solutions to

\[\frac{dy}{dx} = f(x,y) \]

with initial condition \(y(0) = 1 \)

is above solution to

\[\frac{dy}{dx} = g(x,y) \quad \text{with same I.C.} \]

So solution to \(\frac{dy}{dx} = y^2 + x \)

must have a vertical asymptote at \(x = a \quad \text{at} \quad a \leq 1 \).