1. (16 points total) Consider the differential equation
\[
\frac{dy}{dx} = 2y^{1/2}
\]
(a) Find the solution that passes through \((0, 4)\).
\[
\int \frac{dy}{\sqrt{y}} = \int dx
\]
\[
y^{1/2} = x + C
\]
\[
2 = 0 + C \quad \Rightarrow \quad C = 2
\]
\[
y = (x + 2)^2
\]
Note: \((x - 2)^2\) is not a solution.

(b) The function \(y(x) = 0\) is a solution of this differential equation. Show that your solution in (a) intersects this solution and explain why this does not contradict the existence-uniqueness theorem.

Solution from (a) hits 0 at \(x = -2\). So the two solutions intersect at \((-2, 0)\). But 2 \(y^{1/2}\) is not defined for \(y < 0\), so theorem does not apply to the initial condition \((-2, 0)\).
2. (20 points) Consider the differential equation \(\frac{dy}{dx} = y(2 - y) \).

(a) Find \(a \) so that the following is a solution.

\[
y(x) = \frac{2}{1 + e^{-ax}}
\]

\[
y'(x) = \frac{2 a e^{-ax}}{(1 + e^{-ax})^2}
\]

\[
y'(2 - y) = \frac{2}{1 + e^{-ax}} \left(2 - \frac{2}{1 + e^{-ax}} \right)
= \frac{2 \left(2 + 2 e^{-ax} - 2 \right)}{(1 + e^{-ax})^2}
= \frac{4 e^{-ax}}{(1 + e^{-ax})^2}
\]

So \(2a = 2 \), i.e., \(a = 1 \).

(b) Which of the following is a symmetry of the dif. eq.

(i) horizontal translation, i.e., if \(y(x) \) is a solution then \(y(x - c) \) is too.

\(\text{YES} \)

(ii) vertical translation, i.e., if \(y(x) \) is a solution then \(y(x) + c \) is too.

\(\text{NO} \)

(c) Find the solution through the point \((1, 1)\) Hint: Note that the solution in part (a) passes through \((0, 1)\).

Let \(y'(x) = \frac{2}{1 + e^{-2x}} \).

It is a solution and \(y(0) = 1 \).

By (b), \(\tilde{y}(x) = y(x - c) \) is also a solution.

Choose \(c \) so \(\tilde{y}(1) = 1 \). \(\tilde{y}(0) = 1 \), so \(\tilde{y}(1) = y(1 - c) \). So \(2 \)

\[
y(x) = \frac{2}{1 + e^{-2(x-1)}}
\]
3. (18 points) Consider the differential equation,

\[
\frac{dy}{dt} = y(2 - e^{y/b})
\]

The parameter \(b \) can be any nonzero number. Find the equilibrium solutions and determine if they are stable, unstable or semistable.

\[
y'(2 - e^{y/b}) = 0
\]

\[
y = 0 \quad \text{or} \quad e^{y/b} = 2
\]

\[
\text{I.C.} \quad y = b \ln 2
\]

\[
y' = 2 - e^{y/b} - y e^{y/b} + \frac{1}{b}
\]

\[
y'(0) = 2 - 1 - 0 = 1
\]

So, \(y = 0 \) is always \underline{unstable}

\[
y'(b \ln 2) = 2 - e^{b \ln 2} - b \ln 2 e^{b \ln 2} + \frac{1}{b}
\]

\[
= -2 b \ln 2 < 0
\]

So, \(b \ln 2 \) is always \underline{stable}
4. (16 points) For the differential equation
\[\frac{dy}{dx} = e^{x+y} - 1 \]

(a) Where are the solution curves increasing and where are they decreasing?
\[\frac{dy}{dx} > 0 \implies e^{x+y} > 1 \iff x+y < 0 \]
\[\frac{dy}{dx} < 0 \implies e^{x+y} < 1 \iff x+y > 0 \]

(b) Where are the solution curves concave up and where are they concave down?
\[\frac{d^2y}{dx^2} = e^{x+y} \left(1 + \frac{dy}{dx}\right) = e^{x+y} \left(1 + e^{x+y} - 1\right) \]
\[= e^{2(x+y)} > 0 \quad \text{always} \]
So \underline{always concave up}

5. (12 points) For this question, you need not show any work. No partial credit will be given on this one. Let \(y(x) \) be a solution of the differential equation
\[\frac{dy}{dx} = \frac{1}{(y-x)^2} + 1 \]

(a) Let \(\bar{y}(x) = y(-x) \). Is \(\bar{y} \) a solution?
\[\text{NO} \]

(b) Let \(\bar{y}(x) = -y(x) \). Is \(\bar{y} \) a solution?
\[\text{NO} \]

(c) Let \(\bar{y}(x) = -y(-x) \). Is \(\bar{y} \) a solution?
\[\text{YES} \]
6. (15 points) In the homework you solved the differential equation
\(y' = \frac{1}{2} (1 - y^2) \) with the initial condition \(y(0) = 0 \) and found, hopefully,

\[
y(x) = \frac{e^x - 1}{e^x + 1}
\]

Now consider the differential equation \(f' = 4 - f^2 \) with the initial condition \(f(0) = 0 \). Find the solution. Hint: There are two ways to do this. You can ignore the above formula for \(y(x) \) and just solve the dif eq for \(f \). Of you can use scaling.

Try
\[
\begin{align*}
f(a) &= a \cdot y(bx) \\
\frac{df}{dx} &= a b \cdot y'(bx) \\
&= a b \cdot \frac{1}{2} \left(1 - y^2(bx) \right) \\
&= \frac{a b}{2} \left(1 - \left(\frac{f(x)}{a} \right)^2 \right) \\
&= \frac{a b}{2} - \frac{b}{2a} \cdot f(x)
\end{align*}
\]

want
\[
4 - f^2
\]

So
\[
\frac{a b}{2} = 4, \quad \frac{b}{2a} = 1
\]

\(\Rightarrow \)
\[
a = 2, \quad b = 4
\]

So
\[
\begin{align*}
f(\pi) &= 2 \cdot y(4 \pi) = 2 \cdot \frac{e^{4 \pi} - 1}{e^{4 \pi} + 1}
\end{align*}
\]